Skip to main content Accessibility help

Optical design of perovskite solar cells for applications in monolithic tandem configuration with CuInSe2 bottom cells

  • Ramez H. Ahangharnejhad (a1) (a2), Zhaoning Song (a1), Adam B. Phillips (a1) (a2), Suneth C. Watthage (a1), Zahrah S. Almutawah (a1), Dhurba R Sapkota (a1), Prakash Koirala (a1), Robert W. Collins (a1), Yanfa Yan (a1) and Michael J. Heben (a1) (a2)...


Monolithic integrated thin film tandem solar cells consisting of a high bandgap perovskite top cell and a low bandgap thin film bottom cell are expected to reach higher power conversion efficiencies (PCEs) with lower manufacturing cost and environmental impacts than the market-dominant crystalline silicon photovoltaics. There have been several demonstrations of 4-terminal and 2-terminal perovskite tandem devices with CuInGaSe2 (CIGS) or CuInSe2 (CIS) and, similar to the other tandem structures, the optimization of this device relies on optimal choice for the perovskite bandgap and thickness. Therefore, further advancement will be enabled by tuning the perovskite absorber to maximize the photocurrent limited by the current match condition. Here, we systematically study the optical absorption and transmission of perovskite thin films with varying absorber band gap. Based on these results, we model the photocurrent generations in both perovskite and CIS subcells and estimate the performances of projected tandem devices by considering the ideally functioning perovskite and CIS device. Our results show that for perovskite layers with 500 nm thickness the optimal bandgap is around 1.6 eV. With these configurations, PCEs above 20% could be achieved by monolithically integrated perovskite/CIS tandem solar cells. Also by modelling the absorption at every layer we calculate the quantum efficiency at each subcell in addition to tracking optical losses.


Corresponding author


Hide All
1.De Vos, A., J. Phys. D 13, 839846 (1980).
2.Essig, S., Allebé, C., Remo, T., Geisz, J. F., Steiner, M. A., Horowitz, K., Barraud, L., Ward, J. S., Schnabel, M., Descoeudres, A., Young, D. L., Woodhouse, M., Despeisse, M., Ballif, C. and Tamboli, A., Nat. Energy 2, 17144 (2017).
3.Werner, J., Weng, C. H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., Niesen, B. and Ballif, C., J. Phys. Chem. Lett., 7, 161166 (2016).
4.Werner, J., Nogay, G., Sahli, F., Yang, C. T., Christmann, G., Walter, A., Kamino, B., Fiala, P., Nicolay, S., Jeangros, Q., Niesen, B. and Ballif, C., ACS Energy Lett. 12 (1), 876883 (2018).
5.Celik, I., Phillips, A. B., Song, Z., Yan, Y., Ellingson, R. J., Heben, M. J. and Apul, D., Energy Environ. Sci. 10, 18741884 (2017).
6.Celik, I., Philips, A. B., Song, Z., Yan, Y., Ellingson, R. J., Heben, M. J. and Apul, D., IEEE J. Photovoltaics 8, 305309 (2018).
7.Song, Z., McElvany, C. L., Phillips, A. B., Celik, I., Krantz, P. W., Watthage, S. C., Liyanage, G. K., Apul, D. and Heben, M. J., Energy Environ. Sci 10, 12971305 (2017).
8.Zhao, D., Yu, Y., Wang, C., Liao, W., Shrestha, N., Grice, C. R., Cimaroli, A. J., Guan, L., Ellingson, R. J., Zhu, K., Zhao, X., Xiong, R.-G. and Yan, Y., Nat. Energy 2, 17018 (2017).
9.Lim, Y. S., Kwon, H. S., Jeong, J., Kim, J. Y., Kim, H., Ko, M. J., Jeong, U. and Lee, D. K., ACS Appl. Mater. Interfaces 6, 259267 (2014).
10.Yuan, D.-X., Yuan, X.-D., Xu, Q.-Y., Xu, M.-F., Shi, X.-B., Wang, Z.-K. and Liao, L.-S., Phys. Chem. Chem. Phys. 17, 2665326658 (2015).
11.You, J., Meng, L., Song, T., Guo, T., Yang, Y. M., Chang, W., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y. and De Marco, N., Yang Yang, Nat. Nanotechnol. 11, 7581 (2016).
12.Zhao, D., Wang, C., Song, Z., Yu, Y., Chen, C., Zhao, X., Zhu, K. and Yan, Y., ACS Energy Lett. 3 (2), 305306 (2018).
13.Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. and Im, S. H., Energy Environ. Sci. 8, 16021608 (2015).
14.Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., Lee, Y. H., Kim, H. J., Sarkar, A., Nazeeruddin, M. K., Grätzel, M. and Il Seok, S., Nat. Photonics 7, 486491 (2013).
15.Ibdah, A. R. A., Koirala, P., Aryal, P., Pradhan, P., Heben, M. J., Podraza, N. J., Marsillac, S. and Collins, R. W., J. Energy Chem. 2095 4956, (2017).
16.Konig, T. A. F., Ledin, P. A., Kerszulis, J., Mahmoud, M. A., El-sayed, M. A., Reynolds, J. R. and V Tsukruk, V., ACS Nano 8, 61826192 (2014).
17.Pettersson, L. A. A., Roman, L. S. and Inganäs, O., J. Appl. Phys. 86, 487496 (1999).
18.Rodríguez-de Marcos, L. V., Larruquert, J. I., Méndez, J. A., Aznárez, J. A., Opt. Exp. 7 (3), 9891006 (2017).
19.Gasiorowski, J., Menon, R., Hingerl, K., Dachev, M. and Sariciftci, N. S., Thin Solid Films 536, 211215 (2013).
20.Chen, C.-W., Hsiao, S.-Y., Chen, C.-Y., Kang, H.-W., Huang, Z.-Y. and Lin, H.-W., J. Mater. Chem. A 3, 91529159 (2015).
21.Burkhard, B. G. F., Hoke, E. T. and Mcgehee, M. D., Adv. Mater. 22, 32933297 (2010).
22.Song, Z., Werner, J., Shrestha, N., Sahli, F., De Wolf, S., Niesen, B., Watthage, S. C., Phillips, A. B., Ballif, C., Ellingson, R. J. and Heben, M. J., J. Phys. Chem. Lett. 7, 51145120 (2016).
23.Kemp, K. W., Labelle, A. J., Thon, S. M., Ip, A. H., Kramer, I. J., Hoogland, S. and Sargent, E. H., Adv. Energy Mater. 3, 917922 (2013).
24.Kandil, K. M., Altouq, M. S., Al-asaad, A. M., Alshamari, L. M., Kadad, I. M. and Ghoneim, A. A., Smart Grid Renew. Energy 2, 375387 (2011).
25.Uhl, A. R., Yang, Z., Jen, A. K.-Y. and Hillhouse, H. W., J. Mater. Chem. A 5, 32143220 (2017).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed