Skip to main content Accessibility help

Identification of Defect Levels in Copper Indium Diselenide (CuInSe2) Thin Films via Photoluminescence Studies

  • Niraj Shrestha (a1), Dhurba R. Sapkota (a1), Kamala K. Subedi (a1), Puja Pradhan (a1), Prakash Koirala (a1), Adam B. Phillips (a1), Robert W. Collins (a1), Michael J. Heben (a1) and Randy J. Ellingson (a1)...


Photoluminescence (PL) spectroscopy has been used to study the defect levels in thin film copper indium diselenide (CuInSe2, CIS) which we are developing as the absorber layer for the bottom cell of a monolithically grown perovskite/CuInSe2 tandem solar cell. Temperature and laser power dependent PL measurements of thin film CIS for two different Cu/In ratios (0.66 and 0.80) have been performed. The CIS film with Cu/In = 0.80 shows a prominent donor-to-acceptor peak (DAP) involving a shallow acceptor of binding energy ∼22 meV, with phonon replica at ∼32 meV spacing. In contrast, PL measurement of CIS film for Cu/In = 0.66 taken at 20 K exhibited an asymmetric and broad PL spectrum with peaks at 0.845 eV and 0.787 eV. Laser intensity dependent PL revealed that the observed peaks 0.845 eV and 0.787 eV shift towards higher energy (aka j-shift) at ∼11.7 meV/decade and ∼ 8 meV/decade with increase in laser intensity respectively. The asymmetric and broad spectrum together with large j-shift suggests that the observed peaks at 0.845 eV and 0.787 eV were related to band-to-tail (BT) and band-to-impurity (BI) transition, respectively. Such a band-tail-related transition originates from the potential fluctuation of defect states at low temperature. The appearance of band related transition in CIS film with Cu/In = 0.66 is the indicator of the presence of large number of charged defect states.


Corresponding author


Hide All
1.Shigeru, N., Yunosuke, M., Akimasa, Y., Akira, O., Syunji, M., Osamu, I., Kazuhiro, A. and Noboru, K., Jpn. J. Appl. Phys. 33 (4A), L500 (1994).
2.Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Prog. Photovoltaics 23(1), 19 (2015).
3.Yüksel, Ö. F., Basol, B. M., Safak, H. and Karabiyik, H., Appl. Phys. A 73(3), 387389 (2001).
4.Wagner, M., Dirnstorfer, I., Hofmann, D. M., Lampert, M. D., Karg, F. and Meyer, B. K., Phys. Status Solidi A 167(1), 131142 (1998).
5.Turcu, M., Pakma, O. and Rau, U., Appl. Phys. Lett. 80(14), 25982600 (2002).
6.Deprédurand, V., Tanaka, D., Aida, Y., Carlberg, M., Fèvre, N. and Siebentritt, S., Journal of Applied Physics 115(4), 044503 (2014).
7.Siebentritt, S., Gütay, L., Regesch, D., Aida, Y. and Deprédurand, V., Solar Energy Materials and Solar Cells 119, 1825 (2013).
8.Yakushev, M. V., Krustok, J., Grossberg, M., Volkov, V. A., Mudryi, A. V. and Martin, R. W., J. Phys. D: Appl. Phys. 49(10), 105108 (2016).
9.Krustok, J., Collan, H., Yakushev, M. and Hjelt, K., Phys. Scr. 1999 (T79), 179 (1999).
10.Levanyuk, A. P. and Osipov, V. V., Phys.-Usp. 24(3), 187 (1981).
11.Dagan, G., Abou-Elfotouh, F., Dunlavy, D. J., Matson, R. J. and Cahen, D., Chem. Mater. 2(3), 286293 (1990).
12.Susanne Siebentritt, U. R., Wide-Gap Chalcopyrites, 1 ed. (Springer-Verlag Berlin Heidelberg, 2006).
13.Yu, P. W., Journal of Applied Physics 48(12), 50435051 (1977).
14.Krustok, J., Jagomägi, A., Grossberg, M., Raudoja, J. and Danilson, M., Solar Energy Materials and Solar Cells 90(13), 19731982 (2006).
15.Somphong, C., Kajornyod, Y., Pong, S., Chanwit, C., Khampheuy, S., Somrit, W. and Per Olof, H., Jpn. J. Appl. Phys. 37 (3A), L269 (1998).
16.Kodigala, S. R., Cu(In1-xGax)Se2 Based Thin Film Solar Cells, 1 ed. (Elsevier Science, 2011).
17.Krustok, J., Valdna, V., Hjelt, K. and Collan, H., J. Appl. Phys. 80(3), 17571762 (1996).
18.Schmidt, T., Daniel, G. and Lischka, K., J. Cryst. Growth 117(1), 748752 (1992).
19.Niki, S., Makita, Y., Yamada, A., Hellman, O., Fons, P. J., Obara, A., Okada, Y., Shioda, R., Oyanagi, H., Kurafuji, T., Chichibu, S. and Nakanishi, H., J. Cryst. Growth 150, 12011205 (1995).
20.Yadav, S., Rodríguez-Fernández, C., CantareroM. M. d. L. Jr., A. M. M. d. L. Jr., A. and Dhar, S., Journal of Applied Physics 118(22), 225703 (2015).
21.Krustok, J., Jagomägi, A., Raudoja, J. and Altosaar, M., Sol. Energy Mater. Sol. Cells 79(3), 401408 (2003).
22.Krustok, J., Collan, H. and Hjelt, K., J. Appl. Phys. 81(3), 14421445 (1997).
23.Wasim, S. M., Sol. Cells 16, 289316 (1986).
24.Taizo, I., Saburo, E. and Shigeo, K., Jpn. J. Appl. Phys. 18(7), 1303 (1979).
25.Neumann, H., Nowak, E. and Kühn, G., Krist. Tech. 16(12), 13691376 (1981).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed