Skip to main content Accessibility help

Does maternal smoking in pregnancy explain the differences in the body composition trajectory between breastfed and formula-fed infants?

  • Shao J. Zhou (a1), Karen Hawke (a2), Carmel T. Collins (a2) (a3), Robert A. Gibson (a1) (a2) and Maria Makrides (a2) (a3)...


Growth patterns are known to differ between breastfed and formula-fed infants, but little is known about the relative impact of maternal smoking in pregnancy v. feeding mode on growth trajectory in infancy. We conducted a secondary analysis of a trial, the Tolerance of Infant Goat Milk Formula and Growth Assessment trial involving 290 healthy infants, to examine whether smoking in pregnancy modified the association between feeding mode and body composition of infants. Fat mass (FM) and fat-free mass (FFM) were estimated at 1, 2, 3, 4, 6 and 12 months of age using bioimpedance spectroscopy. Formula-fed infants (n 190) had a higher mean FFM at 4 months (mean difference (MD) 160 g, 95 % CI 50·4, 269·5 g, P < 0·05)) and 6 months (MD 179 g, 95 % CI 41·5, 316·9 g, P < 0·05) compared with the breastfed infants (n 100). Sub-group analysis of breastfed v. formula-fed infants by maternal smoking status in pregnancy showed that there were no differences in the FM and FFM between the breastfed and formula-fed infants whose mothers did not smoke in pregnancy. Formula-fed infants whose mothers smoked in pregnancy were smaller at birth and had a lower FM% and higher FFM% at 1 month compared with infants of non-smoking mothers regardless of feeding mode, but the differences were not significant at other time points. Adequately powered prospective studies with an appropriate design are warranted to better understand the relative impact of maternal smoking, feeding practice and the growth trajectory of infants.


Corresponding author

*Corresponding author: Shao J. Zhou, fax +61 8 8 8313 7135, email


Hide All
1. Dewey, KG (1998) Growth characteristics of breast-fed compared to formula-fed infants. Biol Neonate 74, 94105.
2. Gale, C, Logan, KM, Santhakumaran, S, et al. (2012) Effect of breastfeeding compared with formula feeding on infant body composition: a systematic review and meta-analysis. Am J Clin Nutr 95, 656669.
3. Koletzko, B, von Kries, R, Closa, R, et al. (2009) Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 89, 18361845.
4. Dewey, KG (1998) Growth patterns of breastfed infants and the current status of growth charts for infants. J Hum Lact 14, 8992.
5. de Beer, M, Vrijkotte, TG, Fall, CH, et al. (2015) Associations of infant feeding and timing of linear growth and relative weight gain during early life with childhood body composition. Int J Obes (2005) 39, 586592.
6. Ejlerskov, KT, Christensen, LB, Ritz, C, et al. (2015) The impact of early growth patterns and infant feeding on body composition at 3 years of age. Br J Nutr 114, 316327.
7. Robinson, SM, Marriott, LD, Crozier, SR, et al. (2009) Variations in infant feeding practice are associated with body composition in childhood: a prospective cohort study. J Clin Endocrinol Metab 94, 27992805.
8. Owen, CG, Martin, RM, Whincup, PH, et al. (2005) The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr 82, 12981307.
9. Harrod, CS, Reynolds, RM, Chasan-Taber, L, et al. (2014) Quantity and timing of maternal prenatal smoking on neonatal body composition: the Healthy Start study. J Pediatr 165, 707712.
10. Samper, MP, Jimenez-Muro, A, Nerin, I, et al. (2012) Maternal active smoking and newborn body composition. Early Hum Dev 88, 141145.
11. Harrison, GG, Branson, RS & Vaucher, YE (1983) Association of maternal smoking with body composition of the newborn. Am J Clin Nutr 38, 757762.
12. Harrod, CS, Fingerlin, TE, Chasan-Taber, L, et al. (2015) Exposure to prenatal smoking and early-life body composition: the healthy start study. Obesity (Silver Spring) 23, 234241.
13. Spady, DW, Atrens, MA, Szymanski, WA (1986) Effects of mother’s smoking on their infants’ body composition as determined by total body potassium. Pediatr Res 20, 716719.
14. Cameron, N, Pettifor, J, De Wet, T, et al. (2003) The relationship of rapid weight gain in infancy to obesity and skeletal maturity in childhood. Obes Res 11, 457460.
15. Ong, KK, Ahmed, ML, Emmett, PM, et al. (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ 320, 967971.
16. Hawke, K, Louise, J, Collins, C, et al. (2017) Growth patterns during the first 12 months of life: post-hoc analysis for South Australian Aboriginal and Caucasian infants in a randomised controlled trial of formula feeding. Asia Pac J Clin Nutr 26, 464470.
17. Zhou, SJ, Sullivan, T, Gibson, RA, et al. (2014) Nutritional adequacy of goat milk infant formulas for term infants: a double-blind randomised controlled trial. Br J Nutr 111, 16411651.
18. WHO Multicentre Growth Reference Study Group (2006) WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl 450, 7685.
19. Lingwood, BE, Storm van Leeuwen, AM, Carberry, AE, et al. (2012) Prediction of fat-free mass and percentage of body fat in neonates using bioelectrical impedance analysis and anthropometric measures: validation against the PEA POD. Br J Nutr 107, 15451552.
20. Collins, CT, Reid, J, Makrides, M, et al. (2013) Prediction of body water compartments in preterm infants by bioelectrical impedance spectroscopy. Eur J Clin Nutr 67, Suppl. 1, S47S53.
21. Butte, NF, Wong, WW, Fiorotto, M, et al. (1995) Influence of early feeding mode on body composition of infants. Biol Neonate 67, 414424.
22. Butte, NF, Wong, WW, Hopkinson, JM, et al. (2000) Infant feeding mode affects early growth and body composition. Pediatrics 106, 13551366.
23. de Bruin, NC, Degenhart, HJ, Gal, S, et al. (1998) Energy utilization and growth in breast-fed and formula-fed infants measured prospectively during the first year of life. Am J Clin Nutr 67, 885896.
24. Bell, KA, Wagner, CL, Feldman, HA, et al. (2017) Associations of infant feeding with trajectories of body composition and growth. Am J Clin Nutr 106, 491498.
25. Zaren, B, Lindmark, G & Gebre-Medhin, M (1996) Maternal smoking and body composition of the newborn. Acta Paediatr 85, 213219.
26. Harvey, NC, Poole, JR, Javaid, MK, et al. (2007) Parental determinants of neonatal body composition. J Clin Endocrinol Metab 92, 523526.
27. Hawkes, JS, Gibson, RA, Roberton, D, et al. (2006) Effect of dietary nucleotide supplementation on growth and immune function in term infants: a randomized controlled trial. Eur J Clin Nutr 60, 254264.
28. Hofstetter, A, Schutz, Y, Jequier, E, et al. (1986) Increased 24-hour energy expenditure in cigarette smokers. N Engl J Med 314, 7982.
29. Li, MD, Parker, SL & Kane, JK (2000) Regulation of feeding-associated peptides and receptors by nicotine. Mol Neurobiol 22, 143165.
30. Pollack, RN & Divon, MY (1992) Intrauterine growth retardation: definition, classification, and etiology. Clin Obstet Gynecol 35, 99107.
31. Turck, D, Michaelsen, KF, Shamir, R, et al. (2013) World Health Organization 2006 child growth standards and 2007 growth reference charts: a discussion paper by the committee on Nutrition of the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 57, 258264.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Zhou et al. supplementary material
Figures S1-S2

 Word (194 KB)
194 KB
Supplementary materials

Zhou et al. supplementary material
Tables S1-S3

 Word (47 KB)
47 KB

Does maternal smoking in pregnancy explain the differences in the body composition trajectory between breastfed and formula-fed infants?

  • Shao J. Zhou (a1), Karen Hawke (a2), Carmel T. Collins (a2) (a3), Robert A. Gibson (a1) (a2) and Maria Makrides (a2) (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.