Skip to main content Accessibility help
×
Home

Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial

  • Carmel T. Collins (a1) (a2) (a3), Maria Makrides (a1) (a2) (a3), Robert A. Gibson (a1) (a2) (a4), Andrew J. McPhee (a5), Peter G. Davis (a6), Lex W. Doyle (a6), Karen Simmer (a7), Paul B. Colditz (a8), Scott Morris (a9) (a10), Thomas R. Sullivan (a11) and Philip Ryan (a11)...

Abstract

The effect of the dietary n-3 long-chain PUFA, DHA (22 : 6n-3), on the growth of pre-term infants is controversial. We tested the effect of higher-dose DHA (approximately 1 % dietary fatty acids) on the growth of pre-term infants to 18 months corrected age compared with standard feeding practice (0·2–0·3 % DHA) in a randomised controlled trial. Infants born < 33 weeks gestation (n 657) were randomly allocated to receive breast milk and/or formula with higher DHA or standard DHA according to a concealed schedule stratified for sex and birth-weight ( < 1250 and ≥ 1250 g). The dietary arachidonic acid content of both diets was constant at approximately 0·4 % total fatty acids. The intervention was from day 2 to 5 of life until the infant's expected date of delivery (EDD). Growth was assessed at EDD, and at 4, 12 and 18 months corrected age. There was no effect of higher DHA on weight or head circumference at any age, but infants fed higher DHA were 0·7 cm (95 % CI 0·1, 1·4 cm; P = 0·02) longer at 18 months corrected age. There was an interaction effect between treatment and birth weight strata for weight (P = 0·01) and length (P = 0·04). Higher DHA resulted in increased length in infants born weighing ≥ 1250 g at 4 months corrected age and in both weight and length at 12 and 18 months corrected age. Our data show that DHA up to 1 % total dietary fatty acids does not adversely affect growth.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: M. Makrides, fax +61 8 8239 0267, email maria.makrides@health.sa.gov.au

References

Hide All
1 Embleton, NE, Pang, N & Cooke, RJ (2001) Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics 107, 270273.
2 Carlson, SJ (1999) Actual nutrient intakes of extremely low-birthweight infants. In Nutrition of the Very Low Birthweight Infant, pp. 221228 [Ziegler, EE, Lucas, A and Moro, GE, editors]. Philadelphia, PA: Lippincott Williams & Wilkins.
3 Ehrenkranz, RA, Younes, N, Lemons, JA, et al. (1999) Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 104, 280289.
4 Fenton, TR, McMillan, DD & Sauve, RS (1990) Nutrition and growth analysis of very low birth weight infants. Pediatrics 86, 378383.
5 Franz, AR, Pohlandt, F, Bode, H, et al. (2009) Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5·4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 123, e101e109.
6 Tan, M, Abernethy, L & Cooke, R (2008) Improving head growth in preterm infants – a randomised controlled trial II: MRI and developmental outcomes in the first year. Arch Dis Child Fetal Neonatal Ed 93, F342F346.
7 Ehrenkranz, RA (2007) Early, aggressive nutritional management for very low birth weight infants: what is the evidence? Semin Perinatol 31, 4855.
8 Latal-Hajnal, B, von Siebenthal, K, Kovari, H, et al. (2003) Postnatal growth in VLBW infants: significant association with neurodevelopmental outcome. [see comment]. J Pediatr 143, 163170.
9 Carlson, SE, Werkman, SH & Tolley, EA (1996) Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. Am J Clin Nutr 63, 687697.
10 Ryan, AS, Montalto, MB, Groh-Wargo, S, et al. (1999) Effect of DHA-containing formula on growth of preterm infants to 59 weeks postmenstrual age. Am J Hum Biol 11, 457467.
11 Carlson, SE, Cooke, RJ, Werkman, SH, et al. (1992) First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 27, 901907.
12 Carlson, SE, Werkman, SH, Peeples, JM, et al. (1993) Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci U S A 90, 10731077.
13 Clandinin, MT, Van Aerde, JE, Merkel, KL, et al. (2005) Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. J Pediatr 146, 461468.
14 Innis, SM, Adamkin, DH, Hall, RT, et al. (2002) Docosahexaenoic acid and arachidonic acid enhance growth with no adverse effects in preterm infants fed formula. J Pediatr 140, 547554.
15 O'Connor, DL, Hall, R, Adamkin, D, et al. (2001) Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics 108, 359371.
16 Vanderhoof, J, Gross, S, Hegyi, T, et al. (1999) Evaluation of a long-chain polyunsaturated fatty acid supplemented formula on growth, tolerance, and plasma lipids in preterm infants up to 48 weeks postconceptional age. J Pediatr Gastroenterol Nutr 29, 318326.
17 Clandinin, MT, Van Aerde, JE, Parrott, A, et al. (1997) Assessment of the efficacious dose of arachidonic and docosahexaenoic acids in preterm infant formulas: fatty acid composition of erythrocytemembrane lipids. Pediatr Res 42, 819825.
18 Stier, C, Hess, M, Watzer, B, et al. (1997) Prostanoid formation during feeding of a preterm formula with long-chain polyunsaturated fatty acids in healthy preterm infants during the first weeks of life. Pediatr Res 42, 509513.
19 Fewtrell, MS, Morley, R, Abbott, RA, et al. (2002) Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. [see comment]. Pediatrics 110, 7382.
20 Simmer, K, Schulzke, SM & Patole, S (2008) Long chain polyunsaturated fatty acid supplementation in preterm infants. The Cochrane Database of Systematic Reviews 2008, issue 1, CD000375. http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD000375/frame.html.
21 Rosenfeld, E, Beyerlein, A, Hadders-Algra, M, et al. (2009) IPD meta-analysis shows no effect of LC-PUFA supplementation on infant growth at 18 months. Acta Paediatrica 98, 9197.
22 Makrides, M, Gibson, RA, McPhee, AJ, et al. (2009) Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial. JAMA 301, 175182.
23 WHO Multicentre Growth Reference Study Group (2006) WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl 450, 7685.
24 WHO (2009) Anthro for Personal Computers, Version 3: Software for Assessing Growth and Development of the World's Children. Geneva: WHO. http://www.who.int/childgrowth/software/en.
25 Kan, E, Roberts, G, Anderson, PJ, et al. (2008) The association of growth impairment with neurodevelopmental outcome at eight years of age in very preterm children. Early Hum Dev 84, 409416.
26 Ehrenkranz, RA, Dusick, AM, Vohr, BR, et al. (2006) Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117, 12531261.
27 Smithers, LG, Gibson, RA, McPhee, A, et al. (2008) Effect of two doses of docosahexaenoic acid (DHA) in the diet of preterm infants on infant fatty acid status: results from the DINO trial. Prostaglandins Leukot Essent Fatty Acids 79, 141146.
28 Gibson, RA, Neumann, MA & Makrides, M (1997) Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur J Clin Nutr 51, 578584.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed