We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Robots of next-generation physically interact with the world rather than be caged in a controlled area, and they need to make contact with the open-ended environment to perform their task. Compliant robot links offer intrinsic mechanical compliance for addressing the safety issue for physical human–robot interactions (pHRI). However, many important research questions are yet to be answered. For instance, how do system parameters, for example, mechanical compliance, motor torque, impact velocities, and so on, affect the impact force? how to formulate system impact dynamics of compliant robots, and how to size their geometric dimensions to maximize impact force reduction. In this paper, we present a parametric study of compliant link (CL) design for safe pHRI. We first present a theoretical model of the pHRI system that is comprised of robot dynamics, an impact contact model, and dummy head dynamics. After experimentally validating the theoretical model, we then systematically study the effects of CL parameters on the impact force in more detail. Specifically, we explore how the design and actuation parameters affect the impact force of pHRI system. Based on the parametric studies of the CL design, we propose a step-by-step process and a list of concrete guidelines for designing CL with safety constraints in pHRI. We further conduct a simulation case study to validate this design process and design guidelines.
This paper describes the construction of portals for electrode placement during cochlear implantation and emphasises the utility of pre-operative temporal bone three-dimensional computed tomography.
Methods
Temporal bone three-dimensional computed tomography was used to plan portal creation for electrode insertion.
Results
Pre-operative temporal bone three-dimensional computed tomography can be used to determine the orientation of temporal bone structures, which is important for mastoidectomy, posterior tympanotomy and cochleostomy, and when using the round window approach.
Conclusion
It is essential to create appropriate portals (from the mastoid cortex to the cochlea) in a step-by-step manner, to ensure the safe insertion of electrodes into the scala tympani. Pre-operative three-dimensional temporal bone computed tomography is invaluable in this respect.
Patients with schizophrenia and individuals with schizotypy, a subclinical group at risk for schizophrenia, have been found to have impairments in cognitive control. The Dual Mechanisms of Cognitive Control (DMC) framework hypothesises that cognitive control can be divided into proactive and reactive control. However, it is unclear whether individuals with schizotypy have differential behavioural impairments and neural correlates underlying these two types of cognitive control.
Method:
Twenty-five individuals with schizotypy and 26 matched healthy controls (HCs) completed both reactive and proactive control tasks with electroencephalographic data recorded. The proportion of congruent and incongruent trials was manipulated in a classic colour-word Stroop task to induce proactive or reactive control. Proactive control was induced in a context with mostly incongruent (MI) trials and reactive control in a context with mostly congruent (MC) trials. Two event-related potential (ERP) components, medial frontal negativity (MFN, associated with conflict detection) and conflict sustained potential (conflict SP, associated with conflict resolution) were examined.
Results:
There was no significant difference between the two groups in terms of behavioural results. In terms of ERP results, in the MC context, HC exhibited significantly larger MFN (360–530 ms) and conflict SP (600–1000 ms) amplitudes than individuals with schizotypy. The two groups did not show any significant difference in MFN or conflict SP in the MI context.
Conclusions:
The present findings provide initial evidence for dissociation of neural activation between proactive and reactive cognitive control in individuals with schizotypy. These findings help us understand cognitive control deficits in the schizophrenia spectrum.
Lipopolysaccharides (LPS) could induce milk fat depression via regulating the body and blood fat metabolism. However, it is not completely clear how LPS might regulate triglyceride synthesis in dairy cow mammary epithelial cells (DCMECs). DCMECs were isolated and purified from dairy cow mammary tissue and treated with LPS. The level of triglyceride synthesis, the expression and activity of the liver X receptor α (LXRα), enzymes related to de novo fatty acid synthesis, and the expression of the fatty acid transporters were investigated. We found that LPS decreased the level of triglyceride synthesis via a down-regulation of the transcription, translation, and nuclear translocation level of the LXRα. The results also indicated that the transcription level of the LXRα target genes, sterol regulatory element binding protein 1 (SREBP1), fatty acid synthetase (FAS), acetyl-CoA carboxylase-1 (ACC1), were significantly down-regulated in DCMECs after LPS treatment. Our data may provide new insight into the mechanisms of milk fat depression caused by LPS.
Background: After the Middle East respiratory syndrome coronavirus outbreak in Korea in 2015, the government newly established the additional reimbursement for infection prevention to encourage infection control activities in the hospitals. The new policy was announced in December 2015 and was implemented in September 2016. We evaluated how infection control activities improved in hospitals after the change of government policy in Korea. Methods: Three cross-sectional surveys using the WHO Hand Hygiene Self-Assessment Framework (HHSAF) were conducted in 2013, 2015, and 2017. Using multivariable linear regression model including hospital characteristics, we analyzed the changes in total HHSAF scores according to the survey time. Results: In total, 32 hospitals participated in the survey in 2013, 52 in 2015, and 101 in 2017. The number of inpatient beds per infection control professionals decreased from 324 in 2013 to 303 in 2015 and 179 in 2017. Most hospitals were at intermediate or advanced levels of progress (90.6% in 2013, 86.6% in 2015, and 94.1% in 2017). In a multivariable linear regression model, the total HHSAF scores were significantly associated with hospital teaching status (β coefficient of major teaching hospital, 52.6; 95% CI, 8.9–96.4; P = .018), bed size (β coefficient of 100-bed increase, 5.1; 95% CI, 0.3–9.8; P = .038), and survey time (β coefficient of 2017 survey, 45.1; 95% CI, 19.3–70.9; P = .001). Conclusions: After the national policy implementation, the number of infection control professionals increased, and the promotion of hand hygiene activities was strengthened in Korean hospitals.
In the present paper, the authors investigated the microstructures and mechanical properties of dual-phase Co–Ti–V-based superalloys with different additions of Ru. The results showed that with the increase of Ru contents, the size of γ′ precipitates of the alloy gradually raised, the volume fraction of γ′ phase slightly, and the lattice misfit between γ/γ′ phases increased. Ru was enriched in the γ′ phase, and the elemental partition coefficients (KX = Cγ′/Cγ) of Ti and V increased with the increment of Ru. The Ru contents have no remarkable influence on the solvus temperatures of γ′ in the Co–Ti–V alloys. The yield strength at 1000 °C of the Co–10Ti–11V–0.5Ru alloy was the highest, while the yield strength of the 1Ru alloy was the smallest. Transmission electron microscopy and scanning electron microscopy observations showed that the γ′ shape in the compressed specimen containing 0.5Ru remain integrated, while the γ′ in other alloys were cut into several parts.
Nearly 80% of new cases of myopia arise between 9 and 13 years old when puberty development also progresses rapidly. However, little is known about the association between myopia and puberty. We aim to evaluate the association between myopia and menarche, the most important puberty indicator for girls, and to test whether menarche could modify the effects of myopia-related behaviors. The participants came from two consecutive national surveys conducted in 30 provinces in mainland China in 2010 and 2014. We included 102,883 girls (61% had experienced menarche) aged 10–15 years. Risk behaviors for myopia which included sleep duration, homework time, and outdoor activity were measured by self-administrated questionnaire. Myopia was defined according to a validated method, and its relationships with menarche status and behaviors were evaluated by robust Poisson regression models based on generalized estimated equation adjusting for cluster effect of school. We found that postmenarche girls were at 13% (95% confidence interval: 11%–16%) higher risk of myopia than premenarche girls, after adjusting for exact age, urban–rural location, survey year, and four behavioral covariates. Short sleep duration (<7 h/d), long homework time (>1 h/d) and low frequency of weekend outdoor activity tended to be stronger (with higher prevalence ratios associated with myopia) risk factors for myopia in postmenarche girls than in premenarche girls, and their interaction with menarche status was all statistically significant (P < 0.05). Overall, our study suggests that menarche onset may be associated with increased risk of myopia among school-aged girls and could also enhance girls’ sensitivity to myopia-related risk behaviors.
To identify the association of the glucokinase gene (GCK) rs4607517 polymorphism with gestational diabetes mellitus (GDM) and determine whether sweets consumption could interact with the polymorphism on GDM in Chinese women.
Design:
We conducted a case–control study at a hospital including 1015 participants (562 GDM cases and 453 controls). We collected the data of pre-pregnancy BMI, sweets consumption and performed genotyping of the GCK rs4607517 polymorphism. Logistic regression was performed to test the association between the rs4607517 polymorphism and GDM, and the stratified analyses by sweets consumption were conducted, using an additive genetic model.
Setting:
A case–control study of women at a hospital in Beijing, China.
Participants
One thousand and fifteen Chinese women.
Results:
The GCK rs4607517 A allele was significantly associated with GDM (OR 1·35, 95 % CI 1·03, 1·77; P = 0·028). Furthermore, stratified analyses showed that the A allele increased the risk of GDM only in women who had a habitual consumption of sweet foods (sweets consumption ≥ once per week) (OR 1·61, 95 % CI 1·17, 2·21; P = 0·003). Significant interaction on GDM was found between the rs4607517 A allele and sweets consumption (P = 0·004).
Conclusions:
This study for the first time reported the interaction between the GCK rs4607517 polymorphism and sweets consumption on GDM. The results provided novel evidence for risk assessment and personalised prevention of GDM.
A certain degree of pulmonary stenosis after total correction of tetralogy of Fallot has been considered acceptable. But the long-term outcomes are not well understood. We observed the natural course of immediate pulmonary stenosis and investigated related factors for progression.
Methods:
Fifty-two patients with acceptable pulmonary stenosis immediately after operation were enrolled. Acceptable pulmonary stenosis was defined as peak pressure gradient between 15 and 45 mmHg by Doppler echocardiography. Latent class linear mixed model was used to differentiate patients with progressed pulmonary stenosis, and the factors related to progression were analysed.
Results:
Pulmonary stenosis progressed in 14 patients (27%). Between the progression group and no progression group, there were no significant differences in operative age, sex, and the use of the transannular patch technique. However, immediate gradient was higher in the progression group (32.1 mmHg versus 25.7 mmHg, p = 0.009), and the cut-off value was 26.8 mmHg (sensitivity = 65.3%, specificity = 65.8%). Main stenosis at the sub-valve was observed more frequently in the progression group (85.7% versus 52.6%, p = 0.027). Despite no difference in the preoperative pulmonary valve z value, the last follow-up pulmonary valve z value was significantly lower in the progression group (−1.15 versus 0.35, p = 0.002).
Conclusions:
Pulmonary stenosis immediately after tetralogy of Fallot total correction might progress in patients with immediate pulmonary stenosis higher than ≥26.8 mmHg and the main site was sub-valve area.
We aimed to investigate the associations between school-level characteristics and obesity among Chinese primary school children with consideration of individual-level characteristics.
Design:
This cross-sectional study was conducted in 2015/2016. School-level characteristics were assessed using an interviewer-administered school questionnaire, and a ‘school-based obesity prevention index’ was further developed. Individual-level characteristics were collected by self-administered questionnaires. Objectively measured height and weight of students were collected, and obesity status was classified according to the International Obesity Task Force criteria for Asian children. Generalised linear mixed models were used to estimate the associations among the school- and individual-level characteristics and obesity of students.
Setting:
Thirty-seven primary schools from an urban and a rural district of Beijing, China.
Participants:
School staffs, 2201 students and their parents.
Results:
The school-based obesity prevention index involved the number of health professionals, availability of students’ health records, monitoring students’ nutrition status, frequency of health education activities, reporting achievements of obesity prevention activities to parents, duration of physical activity during school time and availability of playground equipment. The prevalence of obesity was lower in schools with the higher index value compared with that in schools with the lower index value (OR 0·56; 95 % CI 0·40, 0·79). Some individual-level characteristics were negatively associated with childhood obesity: liking sports, duration of screen time ≤2 h/d, perceived lower eating speed, parental non-overweight/obesity.
Conclusions:
Irrespective of individual-level characteristics, the specific school-level characteristics had a cumulative effect on obesity among Chinese primary school children. Further school-based obesity intervention should consider these characteristics simultaneously.
This article presents a brief review of our case studies of data-driven Integrated Computational Materials Engineering (ICME) for intelligently discovering advanced structural metal materials, including light-weight materials (Ti, Mg, and Al alloys), refractory high-entropy alloys, and superalloys. The basic bonding in terms of topology and electronic structures is recommended to be considered as the building blocks/units constructing the microstructures of advanced materials. It is highlighted that the bonding charge density could not only provide an atomic and electronic insight into the physical nature of chemical bond of materials but also reveal the fundamental strengthening/embrittlement mechanisms and the local phase transformations of planar defects, paving a path in accelerating the development of advanced metal materials via interfacial engineering. Perspectives on the knowledge-based modeling/simulations, machine-learning knowledge base, platform, and next-generation workforce for sustainable ecosystem of ICME are highlighted, thus to call for more duty on the developments of advanced structural metal materials and enhancement of research productivity and collaboration.
Transmission of varicella occurs frequently in schools and households. We investigated the characteristics of varicella cases derived from within-household transmission and the modes of varicella transmission between school and household settings in Shanghai, China, from 2009 to 2018. Within-household transmission occurred in 278 households, of which 134 transmission events were between children. Sixty-one household varicella transmission events may be attributed to isolation procedures for infected students during school outbreaks, and 7.6% of school outbreaks were caused by schoolchildren cases derived from within-household transmission. The frequency of ‘school-household-school’ transmission adds an additional layer of complexity to the control of school varicella outbreaks. Administration of varicella vaccine as post-exposure prophylaxis after exposure is considered to be an effective measure to control varicella spread within households and schools.
We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of $0.05\pm 0.005~\text{cm}^{-1}$ at $2.09~\unicode[STIX]{x03BC}\text{m}$. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 $\unicode[STIX]{x03BC}\text{m}$ spectral range.
The present study was conducted to evaluate the effects of glucose, soya oil or glutamine on jejunal morphology, protein metabolism and protein expression of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in jejunal villus or crypt compartment of piglets. Forty-two 21 d-weaned piglets were randomly allotted to one of the three isoenergetic diets formulated with glucose, soya oil or glutamine for 28 d. On day 14 or 28, the proteins in crypt enterocytes were analysed with isobaric tags for relative and absolute quantification and proteins involved in mTORC1 signalling pathway in villus or crypt compartment cells were determined by Western blotting. Our results showed no significant differences (P > 0·05) in jejunal morphology among the three treatments on day 14 or 28. The differentially expressed proteins mainly took part in a few network pathways, including antimicrobial or inflammatory response, cell death and survival, digestive system development and function and carbohydrate metabolism. On day 14 or 28, there were higher protein expression of eukaryotic initiation factor-4E binding protein-1 in jejunal crypt compartment of piglets supplemented with glucose or glutamine compared with soya oil. On day 28, higher protein expression of phosphor-mTOR in crypt compartment was observed in piglets supplemented with glucose compared with the soya oil. In conclusion, the isoenergetic glucose, soya oil or glutamine did not affect the jejunal morphology of piglets; however, they had different effects on the protein metabolism in crypt compartment. Compared with soya oil, glucose or glutamine may be better energy supplies for enterocytes in jejunal crypt compartment.
Metabolic syndrome (MetS) risk is influenced by genetic and environmental factors. The present study explored genetic risk scores (GRS) of genetic variants that influence the MetS and the effect of interactions between GRS and nutrient intake on MetS risk. The genetic variants that influence MetS risk were selected by genome-wide association study after adjusting for age, sex, area of residence and BMI in 8840 middle-aged adults. GRS were calculated by summing the risk alleles of the selected SNP and divided into low (0–1), medium (2–3) and high (4–7) risk groups, and the relationships between the MetS and GRS were determined by logistic regression after adjusting covariates involved in MetS risk. We also analysed the interaction between GRS and lifestyles. Four genetic variants (APOA5_rs651821, EFCAB4B_rs4766165, ZNF259_rs2160669 and APOBEC1_rs10845640) were selected because they increased MetS risk after adjusting for covariates. Individuals with medium-GRS and high-GRS alleles had a higher MetS risk by 1·48- and 2·23-fold, respectively, compared with those with low-GRS after adjusting for covariates. The increase in MetS risk was mainly related to serum TAG and HDL-cholesterol concentrations. The GRS had an interaction with carbohydrate (CHO) and Na intakes and daily physical activities for MetS risk. In conclusion, Asian middle-aged adults with high-GRS alleles were at increased MetS risk mainly due to dyslipidaemia. High daily physical activity (≥1 h moderate activity per d) reduced the MetS risk but a low-CHO diet (<65 % of total energy intake) increased the risk in carriers with high-GRS alleles. Low Na intake (<1·6 g Na intake/4 MJ) did not decrease its risk.
Conventional silicon-based electronics have faced challenges in the realization of soft bioelectronics, such as wearable and implantable integrated devices, which necessitate electrically and mechanically interactive biotic–abiotic interfacing without disturbing the daily life of the user or posing biocompatibility issues. Recently, much effort has been directed at overcoming the mechanical limitations of conventional rigid electronics by replacement of bulky, thick, and rigid electronic materials with biocompatible, soft, and nanoscale electronic materials, which exhibit intrinsic mechanical deformability as well as superior electrical properties. Recent advances in the synthesis of unconventional nanomaterials, surface functionalization methods, and integrated device fabrication techniques have resulted in further improvements in the performance of nanomaterials-based soft bioelectronics. Numerous studies have focused on the biological, electrical, and mechanical analyses of heterogeneous nanomaterial–biosystem interfaces as well as the development of efficient integration processes of soft nanomaterials into devices. In this article, we summarize the latest advances and future prospects in nanomaterials synthesis, processing, and integration strategies for flexible and stretchable bioelectronics, and their application to wearable and implantable devices.
Schizophrenia is a complex mental disorder with high heritability and polygenic inheritance. Multimodal neuroimaging studies have also indicated that abnormalities of brain structure and function are a plausible neurobiological characterisation of schizophrenia. However, the polygenic effects of schizophrenia on these imaging endophenotypes have not yet been fully elucidated.
Aims
To investigate the effects of polygenic risk for schizophrenia on the brain grey matter volume and functional connectivity, which are disrupted in schizophrenia.
Method
Genomic and neuroimaging data from a large sample of Han Chinese patients with schizophrenia (N = 509) and healthy controls (N = 502) were included in this study. We examined grey matter volume and functional connectivity via structural and functional magnetic resonance imaging, respectively. Using the data from a recent meta-analysis of a genome-wide association study that comprised a large number of Chinese people, we calculated a polygenic risk score (PGRS) for each participant.
Results
The imaging genetic analysis revealed that the individual PGRS showed a significantly negative correlation with the hippocampal grey matter volume and hippocampus–medial prefrontal cortex functional connectivity, both of which were lower in the people with schizophrenia than in the controls. We also found that the observed neuroimaging measures showed weak but similar changes in unaffected first-degree relatives of patients with schizophrenia.
Conclusions
These findings suggested that genetically influenced brain grey matter volume and functional connectivity may provide important clues for understanding the pathological mechanisms of schizophrenia and for the early diagnosis of schizophrenia.
Major incidents affecting large numbers of people may increase the rate of acute cardiovascular events, even among those who are not directly involved in the incident. It is hypothesized that the MV Sewol ferry disaster (South Korea) would increase the incidence of cardiovascular events nation-wide.
Methods:
Data on all adult patients (>18 years) who were diagnosed with acute cardiovascular events, including acute myocardial infarction (MI), angina, and cardiac arrhythmias, were extracted from the National Emergency Department Information System (NEDIS) from March 15 through June 17, during the years 2011-2014 (four weeks before to eight weeks after the event date). Poisson regression models were used to calculate the incidence rate ratios (IRRs) comparing the weekly changes in the occurrences of cardiovascular events from the week of the Sewol event (April 16-22, 2014) to eight weeks after the disaster (June 11-17, 2014), using the one-month period before Sewol as a reference period (March 15-April 15), adjusting for calendar years (years 2011-2014) and environmental factors.
Results:
During the study periods, cardiovascular events were identified in 73,823 patients. Compared to the reference period, the week of the Sewol disaster and the three weeks after the disaster showed a significant increase in the number of acute cardiovascular events, IRRs of 1.09 (95% CI, 1.03-1.15) and 1.08 (95% CI, 1.02-1.15), respectively (P <.01 for both). In particular, there was 21% increase in incidence of arrhythmia (IRR = 1.21; 95% CI, 1.02-1.44; P = .03) during the week of the Sewol disaster compared with the reference period.
Conclusion:
This study showed a significant increase in the incidence of acute cardiovascular events during the week of, and the three weeks after, the Sewol ferry disaster in 2014. These additional cardiac emergencies may be triggered by emotional stressors related to the event, highlighting the public health importance of indirect exposure to a tragic catastrophe.
Kong SY, Song KJ, Shin SD, Ro YS. Cardiovascular events after the Sewol ferry disaster, South Korea. Prehosp Disaster Med. 2019;34(2):142–148
To examine urban–rural disparity in childhood stunting, wasting and malnutrition at national and subnational levels in Chinese primary-school children in 2010 and 2014.
Design
Data were obtained from two nationwide cross-sectional surveys conducted in 2010 and 2014. Malnutrition was classified using the Chinese national ‘Screening Standard for Malnutrition of Children’.
Setting
All twenty-seven mainland provinces and four municipalities of mainland China.
Participants
Children aged 7–12 years (n 215 214; 107 741 in 2010 and 107 473 in 2014) from thirty-one provinces.
Results
Stunting, wasting and malnutrition prevalence were 1·9, 12·3 and 13·7 % in 2010, but decreased to 1·0, 9·4 and 10·2 % in 2014, respectively. The prevalence of stunting, wasting and malnutrition in both urban and rural children was higher in western provinces, while lower in eastern provinces. Although the prevalence of wasting and malnutrition was higher in rural children than their urban counterparts, the urban–rural disparity in both wasting and malnutrition decreased from 2010 to 2014 (prevalence OR: wasting, 1·35 to 1·16; malnutrition, 1·50 to 1·27). A reversal occurred in 2014 in several eastern provinces where the prevalence of wasting and malnutrition in urban children surpassed their rural peers. The urban–rural disparity was larger in western provinces than eastern provinces.
Conclusions
The shrinking urban–rural disparity and the reversal in wasting and malnutrition suggest that the malnutrition situation has improved during the post-crisis period, especially in the western provinces. Region-specific policies and interventions can be useful to sustainably mitigate malnutrition in Chinese children, especially in rural areas and the western provinces.
3D ordered bimodal mesoporous carbon (OBMC) with a high specific surface area of 1368.7 m2/g, ordered large mesopores, and small mesopores on the walls is prepared by a surfactant-free rapid method using SiO2 nanosphere arrays as templates. The resulting OBMC is then composited with sulfur to prepare S/OBMC hybrids via a simple solution infiltration method followed by a heat treatment process. In S/OBMC composite, sulfur is uniformly infiltrated inside the 3D hierarchical pores of OBMC. On the basis of this systematic design, the obtained S/OBMC cathode shows a large discharge capacity value of 1590 mA h/g at first cycle and maintains 989 mA h/g after 100 cycles at 0.2 C. Furthermore, at 1 C charge–discharge rate, a reversible discharge capacity of 733 mA h/g after 100 cycles is reached. The extraordinary electrochemical property of S/OBMC derives from the unique bimodal mesoporous structure with large mesopores and small mesopores that can facilitate the mass transfer and strict dissolution of polysulfide species into the electrolyte.