We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Background: Tumor treatment fields (TTFields) are an approved adjuvant therapy for glioblastoma. The magnitude of applied electrical field is related to the anti-tumoral response. However, peritumoral edema (ptE) may result in shunting of electrical current around the tumor, thereby reducing the intra-tumoral electric field. In this study, we address this issue with computational simulations. Methods: Finite element models were created with varying amounts of ptE surrounding a virtual tumor. The electric field distribution was simulated using the standard TTFields electrode montage. Electric field magnitude was extracted from the tumor and related to edema thickness. Two patient specific models were created to confirm these results. Results: The inclusion of ptE decreased the magnitude of the electric field within the tumor. In the model considering a frontal tumor and an anterior-posterior electrode configuration, ≥ 6 mm of ptE decreased the electric field by 52%. In the patient specific models, ptE decreased the electric field within the tumor by an average of 26%. The effect of ptE on the electric field distribution was spatially heterogenous. Conclusions: Given the importance of electric field magnitude for the anti-tumoral effects of TTFields, the presence of edema should be considered both in future modelling studies and as a predictor of non-response.
Obtaining informed consent is a fundamental and ethical practice within human subjects’ research. Informed consent forms (ICFs) include a large amount of information, much of which may be unfamiliar to research subjects, and the revised Common Rule resulted in several required additions to that language. As limited health literacy impacts many potential subjects, efforts should be made to optimize subjects’ ability to read and understand ICFs. In this brief report, we describe an assessment of ICFs at an academic medical center to evaluate longitudinal changes in readability with the introduction and update of a plain language ICF template.
The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients.
The sustainability concept seeks to balance how present and future generations of humans meet their needs. But because nature is viewed only as a resource, sustainability fails to recognize that humans and other living beings depend on each other for their well-being. We therefore argue that true sustainability can only be achieved if the interdependent needs of all species of current and future generations are met, and propose calling this ‘multispecies sustainability’. We explore the concept through visualizations and scenarios, then consider how it might be applied through case studies involving bees and healthy green spaces.
The COVID-19 pandemic has greatly affected public health and wellbeing. In response to the pandemic threat of the coronavirus epidemic, several countries, including China, adopted lockdown and quarantine policies, which may cause psychological distress. This study aimed to explore the psychological impact of province-wide lockdown and personal quarantine during the COVID-19 outbreak in China as well as the corresponding risk factors and protective factors.
Methods
We examined the immediate (2-week) and delayed (2-month) impact of province-wide lockdown and personal quarantine on psychological distress in a national sample of 1390 Chinese residents.
Results
No immediate impact of province-wide lockdown on psychological distress was observed, whereas personal quarantine increased individuals’ anxiety, fear, and anger. Despite the lack of initial association, psychological distress increased among those in province-wide lockdown. Self-stigma and personal control both significantly moderated the association between lockdown and psychological distress, but in different directions. Those with higher self-stigma and lower personal control were more impacted by the lockdown. Government support moderated the impact of quarantine on psychological distress, but not that of lockdown.
Conclusions
The delayed effects of lockdown and quarantine on psychological distress were observed, and self-stigma, social support, and perceived control moderate the relationships. This study is the first to demonstrate the psychological costs of province-wide lockdowns on individuals’ mental health, providing evidence of the need for mitigation strategies and timely public mental health preparedness in countries with recent outbreaks of COVID-19.
In this paper, we characterize a high repetition-rate regenerating plasma mirror produced by the thin film of liquid formed when two laminar streams collide. The use of a flowing liquid film is inexpensive and the interaction surface refreshes automatically, avoiding buildup of on-target debris. The composition of the liquid material and the relative angle of the film-generating nozzles was optimized for this application. Spectra measured in reflection from a water-based plasma mirror showed a blue shift but an optical reflectivity of up to 30%. The thickness of the film was found to be of the order of 2 ${\rm \mu}$m, and the stability of the reflected spot was ${\approx }1$ mrad. The reflected beam profile was highly distorted but stable. Further optimization of the nozzles to affect the fluid flow should enable significant improvements in control of the fluid films and increase in the reflectivity of these mirrors.
The extent of intertidal flats in the Yellow Sea region has declined significantly in the past few decades, resulting in severe population declines in several waterbird species. The Yellow Sea region holds the primary stopover sites for many shorebirds during their migration to and from northern breeding grounds. However, the functional roles of these sites in shorebirds’ stopover ecology remain poorly understood. Through field surveys between July and November 2015, we investigated the stopover and moult schedules of migratory shorebirds along the southern Jiangsu coast, eastern China during their southbound migration, with a focus on the ‘Critically Endangered’ Spoon-billed Sandpiper Calidris pygmaea and ‘Endangered’ Nordmann’s Greenshank Tringa guttifer. Long-term count data indicate that both species regularly occur in globally important number in southern Jiangsu coast, constituting 16.67–49.34% and 64.0–80.67% of their global population estimates respectively, and it is highly likely that most adults undergo their primary moult during this southbound migration stopover. Our results show that Spoon-billed Sandpiper and Nordmann’s Greenshank staged for an extended period of time (66 and 84 days, respectively) to complete their primary moult. On average, Spoon-billed Sandpipers and Nordmann’s Greenshanks started moulting primary feathers on 8 August ± 4.52 and 27 July ± 1.56 days respectively, and their moult durations were 72.58 ± 9.08 and 65.09 ± 2.40 days. In addition, some individuals of several other shorebird species including the ‘Endangered’ Great Knot Calidris tenuirostris, ‘Near Threatened’ Bar-tailed Godwit Limosa lapponica, ‘Near Threatened’ Eurasian Curlew Numenius arquata and Greater Sand Plover Charadrius leschenaultii also underwent primary moult. Our work highlights the importance of the southern Jiangsu region as the primary moulting ground for these species, reinforcing that conservation of shorebird habitat including both intertidal flats and supratidal roosting sites in this region is critical to safeguard the future of some highly threatened shorebird species.
The University of Arkansas for Medical Sciences (UAMS), like many rural states, faces clinical and research obstacles to which digital innovation is seen as a promising solution. To implement digital technology, a mobile health interest group was established to lay the foundation for an enterprise-wide digital health innovation platform. To create a foundation, an interprofessional team was established, and a series of formal networking events was conducted. Three online digital health training models were developed, and a full-day regional conference was held featuring nationally recognized speakers and panel discussions with clinicians, researchers, and patient advocates involved in digital health programs at UAMS. Finally, an institution-wide survey exploring the interest in and knowledge of digital health technologies was distributed. The networking events averaged 35–45 attendees. About 100 individuals attended the regional conference with positive feedback from participants. To evaluate mHealth knowledge at the institution, a survey was completed by 257 UAMS clinicians, researchers, and staff. It revealed that there are opportunities to increase training, communication, and collaboration for digital health implementation. The inclusion of the mobile health working group in the newly formed Institute for Digital Health and Innovation provides a nexus for healthcare providers and researches to facilitate translational research.
This paper argues that diversity is more than just a mixing of people perceived as different, and consists of activities and relationships much like other social phenomena. Consequently, there is much to be studied, beginning with the diversification process by which diversity is implemented. Since diversification is often initiated as a deliberate policy, researchers can be helpful to policy makers, especially with empirical research that addresses their policy related questions.
Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.
Competitive crops or cultivars can be an important component of integrated weed management systems. A study was conducted from 2003 to 2006 at four sites across semiarid prairie ecoregions in western Canada to investigate the weed-suppression ability of canola and mustard cultivars. Four open-pollinated canola cultivars, four hybrid canola cultivars, two canola-quality mustard cultivars, two oriental mustard cultivars, and two yellow mustard cultivars were grown in competition with indigenous weed communities. Yellow mustard was best able to suppress weed growth, followed in decreasing order of weed competitiveness by oriental mustard and hybrid canola, open-pollinated canola, and canola-quality mustard. Competitive response of cultivars, assessed by weed biomass suppression, was negatively correlated with time to crop emergence and positively correlated with early-season crop biomass accumulation (prior to bolting) and plant height.
The wake of polygonal cylinders with side number $N=2\sim \infty$ is systematically studied based on fluid force, hot-wire, particle image velocimetry and flow visualisation measurements. Each cylinder is examined for two orientations, with a flat surface or a corner leading and facing normally to the free stream. The Reynolds number $Re$ is $1.0\times 10^{4}\sim 1.0\times 10^{5}$, based on the longitudinally projected cylinder width. The time-averaged drag coefficient $C_{D}$ and fluctuating lift coefficient on these cylinders are documented, along with the characteristic properties including the Strouhal number $St$, flow separation point and angle $\unicode[STIX]{x1D703}_{s}$, wake width and critical Reynolds number $Re_{c}$ at which the transition from laminar to turbulent flow occurs. It is found that once $N$ exceeds 12, $Re_{c}$ depends on the difference between the inner diameter (tangent to the faces) and the outer diameter (connecting corners) of a polygon, the relationship being approximately given by the dependence of $Re_{c}$ on the height of the roughness elements for a circular cylinder. It is further found that $C_{D}$ versus $\unicode[STIX]{x1D709}$ or $St$ versus $\unicode[STIX]{x1D709}$ for all the tested cases collapse onto a single curve, where the angle $\unicode[STIX]{x1D709}$ is the corrected $\unicode[STIX]{x1D703}_{s}$ associated with the laterally widest point of the polygon and the separation point. Finally, the empirical correlation between $C_{D}$ and $St$ is discussed.
Supplementation with n-3 fatty acids may improve long-term outcomes of renal transplant recipients (RTR). Recent evidence suggests that EPA and DHA have different outcomes compared with α-linolenic acid (ALA). We examined the prospective associations of EPA–DHA and ALA intakes with graft failure and all-cause mortality in 637 RTR. During 3·1 years (interquartile range 2·7, 3·8) of follow-up, forty-one developed graft failure and sixty-seven died. In age- and sex-adjusted analyses, EPA–DHA and ALA intakes were not associated with graft failure. EPA–DHA intake was not significantly associated with mortality (hazard ratio (HR) 0·79; 95% CI 0·54, 1·15 per 0·1 energy% difference). ALA intake was significantly associated with mortality (HR 1·17; 95% CI 1·04, 1·31 per 0·1 energy% difference). This association remained following adjustments for BMI, proteinuria and intakes of fat, carbohydrate and protein. RTR in the highest tertile of ALA intake exhibited about 2-fold higher mortality risk (HR 2·21; 95% CI 1·23, 3·97) compared with the lowest tertile. In conclusion, ALA intake may be associated with increased mortality in RTR. Future RCT are needed to confirm these results.
During its maximum extension, the Saalian ice cap reached into the central Netherlands, where glacier tongues excavated over 100 m deep basins in the unconsolidated Middle and Early Pleistocene sediments. The basins are filled by relatively thick successions of Late Saalian, Eemian and Weichselian sediments. The fill of the Amsterdam glacial basin is among the best known and studied in the Netherlands. The Late Saalian sediments consist mainly of warves and ill-bedded clays and silts with, along its southern margin, influxes of sands from the surrounding ice-pushed ridges. During deposition of these sediments, the Amsterdam basin formed part of a large lake extending into the present North Sea. Draining of this lake at the end of the Late Saalian left small, shallow pools at the site of the glacial basins.
Late Saalian and Eemian sediments are probably separated by a short break, although sedimentation may have been continuous in the deepest part of the basin. The Eemian deposits consist in main lines of a thin, diatom-rich sapropel at the base, overlain by an up to 30 m thick clay-rich sequence covered by a wedge of sand that measures more than 20 m in the northern part of the basin and that peters out southwards. As appears from the fauna, most of the clays were deposited in a lagoonal setting shielded behind a threshold and/or barrier. The rate of sediment supply was low so that lagoonal conditions were maintained over a long timespan. Sands derived from the surrounding ice-pushed ridges and transported by longshore drift and tidal currents formed a spit at the northern margin of the basin, which moved southward after eustatic sea-level rise stabilized and the lagoon was filled by clay. Loading of this clay-rich sequence by the spit and its washover fans induced subsidence, however, because of compaction, so that marine conditions were maintained until after the Eemian highstand. Fluvial and eolian sediments of Weichselian age, locally reaching a thickness of almost 10 m, eventually levelled the Amsterdam glacial basin.
The mean inner potential (MIP) and inelastic mean free path (IMFP) of undoped ZnTe are determined using a combination of off-axis electron holography and convergent beam electron diffraction. The ZnTe MIP is measured to be 13.7±0.6 V, agreeing with previously reported simulations, and the IMFP at 200 keV is determined to be 46±2 nm for a collection angle of 0.75 mrad. Dynamical effects affecting holographic phase imaging as a function of incident beam direction for several common semiconductors are systematically studied and compared using Bloch wave simulations. These simulation results emphasize the need for careful choice of specimen orientation when carrying out quantitative electron holography studies in order to avoid erroneous phase measurements.
Metabarcoding, the coupling of DNA-based species identification and high-throughput sequencing, offers enormous promise for arthropod biodiversity studies but factors such as cost, speed and ease-of-use of bioinformatic pipelines, crucial for making the leapt from demonstration studies to a real-world application, have not yet been adequately addressed. Here, four published and one newly designed primer sets were tested across a diverse set of 80 arthropod species, representing 11 orders, to establish optimal protocols for Illumina-based metabarcoding of tropical Malaise trap samples. Two primer sets which showed the highest amplification success with individual specimen polymerase chain reaction (PCR, 98%) were used for bulk PCR and Illumina MiSeq sequencing. The sequencing outputs were subjected to both manual and simple metagenomics quality control and filtering pipelines. We obtained acceptable detection rates after bulk PCR and high-throughput sequencing (80–90% of input species) but analyses were complicated by putative heteroplasmic sequences and contamination. The manual pipeline produced similar or better outputs to the simple metagenomics pipeline (1.4 compared with 0.5 expected:unexpected Operational Taxonomic Units). Our study suggests that metabarcoding is slowly becoming as cheap, fast and easy as conventional DNA barcoding, and that Malaise trap metabarcoding may soon fulfill its potential, providing a thermometer for biodiversity.