Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T14:02:58.779Z Has data issue: false hasContentIssue false

Manipulation of Fetal Amniotic Fluid Volume

from Section 2: - Fetal Disease: Pathogenesis and Treatment

Published online by Cambridge University Press:  21 October 2019

Mark D. Kilby
Affiliation:
University of Birmingham
Anthony Johnson
Affiliation:
University of Texas Medical School at Houston
Dick Oepkes
Affiliation:
Leids Universitair Medisch Centrum
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Fetal Therapy
Scientific Basis and Critical Appraisal of Clinical Benefits
, pp. 191 - 214
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Greizerstein, HB. Placental and fetal composition during the last trimester of gestation in the rat. Biol Reprod. 1982; 26: 847–53.Google Scholar
Engle, WA, Lemons, JA. Composition of the fetal and maternal guinea pig throughout gestation. Pediatr Res. 1986; 20: 1156–60.CrossRefGoogle ScholarPubMed
Hartnoll, G, Betremieux, P, Modi, N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000; 82: F24–8.Google ScholarPubMed
Barker, G, Boyd, RD, D’Souza, SW, et al. Placental water content and distribution. Placenta. 1994; 15: 4756.Google Scholar
Goodwin, JW, Godden, JO, Chance, GW. Perinatal Medicine: The Basic Science Underlying Clinical Practice. Baltimore: The Williams and Wilkins Co, 1976.Google Scholar
Campbell, J, Wathen, N, Macintosh, M, et al. Biochemical composition of amniotic fluid and extraembryonic coelomic fluid in the first trimester of pregnancy. Br J Obstet Gynaecol. 1992; 99: 563–5.Google Scholar
Faber, J, Gault, TJ, Long, LR, Thornburg, KL. Chloride and the generation of amniotic fluid in the early embryo. J Exp Zool. 1973; 183: 343–52.CrossRefGoogle ScholarPubMed
Gillibrand, PN. Changes in the electrolytes, urea and osmolality of the amniotic fluid with advancing pregnancy. J Obstet Gynaecol Br Commonw. 1969; 76: 898905.Google Scholar
Desai, M, Ladella, S, Ross, MG. Reversal of pregnancy-mediated plasma hypotonicity in the near-term rat. J Matern Fetal Neonatal Med. 2003; 13: 197202.Google Scholar
Cheung, CY, Brace, RA. Amniotic fluid volume and composition in mouse pregnancy. J Soc Gynecol Investig. 2005; 12: 558–62.CrossRefGoogle ScholarPubMed
Brace, RA, Wolf, EJ. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol. 1989; 161: 382–8.CrossRefGoogle ScholarPubMed
Gadd, RL. The volume of the liquor amnii in normal and abnormal pregnancies. J Obstet Gynaecol Br Commonw. 1966; 73: 1122.CrossRefGoogle ScholarPubMed
Beischer, NA, Brown, JB, Townsend, L. Studies in prolonged pregnancy. 3. Amniocentesis in prolonged pregnancy. Am J Obstet Gynecol. 1969; 103: 496503.Google Scholar
Queenan, JT, Von Gal, HV, Kubarych, SF. Amniography for clinical evaluation of erythroblastosis fetalis. Am J Obstet Gynecol. 1968; 102: 264–74.Google Scholar
Sibley, CP, Boyd, DH. Mechanisms of transfer across the human placenta. In Polin, RA, Fox, WW, Abman, S, eds., Fetal and Neonatal Physiology. Philadelphia: WB Saunders, 2006, pp. 111–22.Google Scholar
Stulc, J, Stulcova, B, Sibley, CP. Evidence for active maternal-fetal transport of Na+ across the placenta of the anaesthetized rat. J Physiol. 1993; 470: 637–49.CrossRefGoogle ScholarPubMed
Faber, JJ, Anderson, DF. Current topic: water volume of the ovine conceptus; point of view. Placenta. 1992; 13: 199212.Google Scholar
Lumbers, ER, Smith, FG, Stevens, AD. Measurement of net transplacental transfer of fluid to the fetal sheep. J Physiol. 1985; 364: 289–99.Google Scholar
Faichney, GJ, Fawcett, AA, Boston, RC. Water exchange between the pregnant ewe, the foetus and its amniotic and allantoic fluids. J Comp Physiol B. 2004; 174: 503–10.Google Scholar
Brace, RA. Progress toward understanding the regulation of amniotic fluid volume: water and solute fluxes in and through the fetal membranes. Placenta. 1995; 16: 118.Google Scholar
Schroder, HJ. Basics of placental structures and transfer functions. In Brace, RA, Ross, MG, Robillard, JE, eds., Fetal & Neonatal Body Fluids. Ithaca: Perinatology Press, 1989, pp. 187226.Google Scholar
Hempstock, J, Bao, YP, Bar-Issac, M, et al. Intralobular differences in antioxidant enzyme expression and activity reflect the pattern of maternal arterial bloodflow within the human placenta. Placenta. 2003; 24: 517–23.Google Scholar
Stulc, J, Stulcova, B. Asymmetrical transfer of inert hydrophilic solutes across rat placenta. Am J Physiol. 1993; 265: R670–5.Google ScholarPubMed
Schroder, H, Nelson, P, Power, G. Fluid shift across the placenta: I. The effect of dextran T 40 in the isolated guinea-pig placenta. Placenta. 1982; 3: 327–38.Google Scholar
Hanson, RS, Powrie, RO, Larson, L. Diabetes insipidus in pregnancy: a treatable cause of oligohydramnios. Obstet Gynecol. 1997; 89: 816–17.Google Scholar
Ross, MG, Cedars, L, Nijland, MJ, Ogundipe, A. Treatment of oligohydramnios with maternal 1-deamino-[8-D-arginine] vasopressin-induced plasma hypoosmolality. Am J Obstet Gynecol. 1996; 174: 1608–13.Google Scholar
Ross, MG, Nijland, MJ, Kullama, LK. 1-Deamino-[8-D-arginine] vasopressin-induced maternal plasma hypoosmolality increases ovine amniotic fluid volume. Am J Obstet Gynecol. 1996; 174: 1125–7.Google ScholarPubMed
Gizzo, S, Noventa, M, Vitagliano, A, et al. An update on maternal hydration strategies for amniotic fluid improvement in isolated oligohydramnios and normohydramnios: evidence from a systematic review of literature and meta-analysis. PLoS ONE. 2015. 10: e0144334.Google Scholar
Leichtweiss, HP, Schroder, H. The effect of elevated outflow pressure on flow resistance and the transfer of THO, albumin and glucose in the isolated guinea pig placenta. Pflugers Arch. 1977; 371: 251–6.Google Scholar
Brace, RA, Moore, TR. Transplacental, amniotic, urinary, and fetal fluid dynamics during very-large-volume fetal intravenous infusions. Am J Obstet Gynecol. 1991; 164: 907–16.Google Scholar
Brownbill, P, Sibley, CP. Regulation of transplacental water transfer: the role of fetoplacental venous tone. Placenta. 2006; 27: 560–7.Google Scholar
Reynolds, LP, Redmer, DA. Utero-placental vascular development and placental function. J Anim Sci. 1995; 73: 1839–51.CrossRefGoogle ScholarPubMed
Coan, PM, Ferguson-Smith, AC, Burton, GJ. Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol Reprod. 2004; 70: 1806–13.Google Scholar
Jansson, T, Powell, TL, Illsley, NP. Gestational development of water and non-electrolyte permeability of human syncytiotrophoblast plasma membranes. Placenta. 1999; 20: 155–60.Google Scholar
Faber, JJ, Thornburg, KL. Fetal homeostasis in relation to placental water exchange. Ann Rech Vet. 1977; 8: 353–61.Google Scholar
Jansson, T, Illsley, NP. Osmotic water permeabilities of human placental microvillous and basal membranes. J Membr Biol. 1993; 132: 147–55.CrossRefGoogle ScholarPubMed
Liu, H, Koukoulas, I, Ross, MC, Wang, S, Wintour, EM. Quantitative comparison of placental expression of three aquaporin genes. Placenta. 2004; 25: 475–8.CrossRefGoogle ScholarPubMed
Beall, MH, Chaudhri, N, Amidi, F, et al. Increased expression of aquaporins in placenta of the late gestation mouse fetus. J Soc Gynecol Investig. 2005; 12 (Suppl.): 780.Google Scholar
Zhu, X, Jiang, S, Zou, S, Hu, Y, Wang, Y. Expression of aquaporin 3 and aquaporin 9 in placenta and fetal membrane with idiopathic polyhydramnios. Zhonghua Fu Chan Ke Za Zhi. 2009; 144: 920–3.Google Scholar
Zhu, XQ, Jiang, SS, Zhu, XJ, et al. Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta. 2009; 30: 670–6.Google Scholar
Rabinowitz, R, Peters, MT, Vyas, S, Campbell, S, Nicolaides, KH. Measurement of fetal urine production in normal pregnancy by real-time ultrasonography. Am J Obstet Gynecol. 1989; 161: 1264–6.Google Scholar
Fagerquist, M, Fagerquist, U, Oden, A, Blomberg, SG. Fetal urine production and accuracy when estimating fetal urinary bladder volume. Ultrasound Obstet Gynecol. 2001; 17: 132–9.CrossRefGoogle ScholarPubMed
Ross, MG, Ervin, MG, Rappaport, VJ, et al. Ovine fetal urine contribution to amniotic and allantoic compartments. Biol Neonate. 1988; 53: 98104.Google Scholar
Wlodek, ME, Challis, JR, Patrick, J. Urethral and urachal urine output to the amniotic and allantoic sacs in fetal sheep. J Dev Physiol. 1988; 10: 309–19.Google Scholar
Gresham, EL, Rankin, JH, Makowski, EL, Meschia, G, Battaglia, FC. An evaluation of fetal renal function in a chronic sheep preparation. J Clin Invest. 1972; 51: 149–56.Google Scholar
Hargrave, BY, Castle, MC. Effects of phenylephrine induced increase in arterial pressure and closure of the ductus arteriosus on the secretion of atrial natriuretic peptide (ANP) and renin in the ovine fetus. Life Sci. 1995; 57: 3143.Google Scholar
Silberbach, M, Woods, LL, Hohimer, AR, et al. Role of endogenous atrial natriuretic peptide in chronic anemia in the ovine fetus: effects of a non-peptide antagonist for atrial natriuretic peptide receptor. Pediatr Res. 1995; 38: 722–8.CrossRefGoogle ScholarPubMed
Lee, SM, Jun, JK, Lee, EJ, et al. Measurement of fetal urine production to differentiate causes of increased amniotic fluid volume. Ultrasound Obstet Gynecol. 2010; 36: 191–5.Google Scholar
Xu, Z, Glenda, C, Day, L, Yao, J, Ross, MG. Osmotic threshold and sensitivity for vasopressin release and fos expression by hypertonic NaCl in ovine fetus. Am J Physiol Endocrinol Metab. 2000; 279: E1207–15.Google Scholar
Horne, RS, MacIsaac, RJ, Moritz, KM, Tangalakis, K, Wintour, EM. Effect of arginine vasopressin and parathyroid hormone-related protein on renal function in the ovine foetus. Clin Exp Pharmacol Physiol. 1993; 20: 569–77.Google Scholar
Cabrol, D, Landesman, R, Muller, J, Sureau, C, Saxena, BB. Treatment of polyhydramnios with prostaglandin synthetase inhibitor (indomethacin). Am J Obstet Gynecol. 1987; 157: 422–6.CrossRefGoogle ScholarPubMed
Kullama, LK, Nijland, MJ, Ervin, MG, Ross, MG. Intraamniotic deamino(D-Arg8)-vasopressin: prolonged effects on ovine fetal urine flow and swallowing. Am J Obstet Gynecol. 1996; 174: 7884.Google Scholar
Brace, RA, Wlodek, ME, Cock, ML, Harding, R. Swallowing of lung liquid and amniotic fluid by the ovine fetus under normoxic and hypoxic conditions. Am J Obstet Gynecol. 1994; 171: 764–70.Google Scholar
Evrard, VA, Flageole, H, Deprest, JA, et al. Intrauterine tracheal obstruction, a new treatment for congenital diaphragmatic hernia, decreases amniotic fluid sodium and chloride concentrations in the fetal lamb. Ann Surg. 1997; 226: 753–8.Google Scholar
Ross, MG, Ervin, G, Leake, RD, Fu, P, Fisher, DA. Fetal lung liquid regulation by neuropeptides. Am J Obstet Gynecol. 1984; 150: 421–5.CrossRefGoogle ScholarPubMed
Lawson, EE, Brown, ER, Torday, JS, Madansky, DL, Taeusch, HWJ. The effect of epinephrine on tracheal fluid flow and surfactant efflux in fetal sheep. Am Rev Respir Dis. 1978; 118: 1023–6.Google Scholar
Dodic, M, Wintour, EM. Effects of prolonged (48 h) infusion of cortisol on blood pressure, renal function and fetal fluids in the immature ovine foetus. Clin Exp Pharmacol Physiol. 1994; 21: 971–80.Google Scholar
Jain, L, Eaton, DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006; 30: 3443.Google Scholar
Norlin, A, Folkesson, HG. Ca(2+)-dependent stimulation of alveolar fluid clearance in near-term fetal guinea pigs. Am J Physiol Lung Cell Mol Physiol. 2002; 282: L642–9.CrossRefGoogle ScholarPubMed
Pritchard, JA. Fetal swallowing and amniotic fluid volume. Obstet Gynecol. 1966; 28: 606–10.Google Scholar
Bradley, RM, Mistretta, CM. Swallowing in fetal sheep. Science. 1973; 179: 1016–17.Google Scholar
Nijland, MJ, Day, L, Ross, MG. Ovine fetal swallowing: expression of preterm neurobehavioral rhythms. J Matern Fetal Med. 2001; 10: 251–7.CrossRefGoogle ScholarPubMed
Matsumoto, LC, Cheung, CY, Brace, RA. Effect of esophageal ligation on amniotic fluid volume and urinary flow rate in fetal sheep. Am J Obstet Gynecol. 2000; 182: 699705.Google Scholar
Xu, Z, Nijland, MJ, Ross, MG. Plasma osmolality dipsogenic thresholds and c-fos expression in the near-term ovine fetus. Pediatr Res. 2001; 49: 678–85.Google Scholar
El-Haddad, MA, Ismail, Y, Gayle, D, Ross, MG. Central angiotensin II AT1 receptors mediate fetal swallowing and pressor responses in the near term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005; 288: R1014–20.Google Scholar
El-Haddad, MA, Ismail, Y, Guerra, C, Day, L, Ross, MG. Neuropeptide Y administered into cerebral ventricles stimulates sucrose ingestion in the near-term ovine fetus. Am J Obstet Gynecol. 2003; 189: 949–52.Google Scholar
El-Haddad, MA, Ismail, Y, Guerra, C, Day, L, Ross, MG. Effect of oral sucrose on ingestive behavior in the near-term ovine fetus. Am J Obstet Gynecol. 2002; 187: 898901.Google Scholar
Sherman, DJ, Ross, MG, Day, L, Humme, J, Ervin, MG. Fetal swallowing: response to graded maternal hypoxemia. J Appl Physiol. 1991; 71: 1856–61.Google Scholar
Queenan, JT, Allen, FH Jr., Fuchs, F, et al. Studies on the method of intrauterine transfusion. I. Question of erythrocyte absorption from amniotic fluid. Am J Obstet Gynecol. 1965; 92: 1009–13.Google Scholar
Gilbert, WM, Brace, RA. The missing link in amniotic fluid volume regulation: intramembranous absorption. Obstet Gynecol. 1989; 74: 748–54.Google Scholar
Gilbert, WM, Cheung, CY, Brace, RA. Rapid intramembranous absorption into the fetal circulation of arginine vasopressin injected intraamniotically. Am J Obstet Gynecol. 1991; 164: 1013–18.Google Scholar
Jang, PR, Brace, RA. Amniotic fluid composition changes during urine drainage and tracheoesophageal occlusion in fetal sheep. Am J Obstet Gynecol. 1992; 167: 1732–41.Google Scholar
Brace, RA. Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol. 1997; 40: 280–9.Google Scholar
Hedriana, HL, Gilbert, WM, Brace, RA. Arginine vasopressin-induced changes in blood flow to the ovine chorion, amnion, and placenta across gestation. J Soc Gynecol Invest. 1997; 4: 203–8.Google Scholar
Verkman, AS, Dix, JA. Effect of unstirred layers on binding and reaction kinetics at a membrane surface. Anal Biochem. 1984; 142: 109–16.CrossRefGoogle Scholar
Daneshmand, SS, Cheung, CY, Brace, RA. Regulation of amniotic fluid volume by intramembranous absorption in sheep: role of passive permeability and vascular endothelial growth factor. Am J Obstet Gynecol. 2003; 188: 786–93.Google Scholar
Wynn, RM, French, GL. Comparative ultrastructure of the mammalian amnion. Obstet Gynecol. 1968; 31: 759–74.Google Scholar
Curran, MA, Nijland, MJ, Mann, SE, Ross, MG. Human amniotic fluid mathematical model: determination and effect of intramembranous sodium flux. Am J Obstet Gynecol. 1998; 178: 484–90.Google Scholar
Faber, JJ, Anderson, DF. Absorption of amniotic fluid by amniochorion in sheep. Am J Physiol Heart Circ Physiol. 2002; 282: H850–4.Google Scholar
Matsumoto, LC, Cheung, CY, Brace, RA. Increased urinary flow without development of polyhydramnios in response to prolonged hypoxia in the ovine fetus. Am J Obstet Gynecol. 2001; 184: 1008–14.Google Scholar
Faber, JJ, Anderson, DF. Regulatory response of intramembranous absorption of amniotic fluid to infusion of exogenous fluid in sheep. Am J Physiol. 1999; 277: R236–42.Google Scholar
Matsumoto, LC, Bogic, L, Brace, RA, Cheung, CY. Prolonged hypoxia upregulates vascular endothelial growth factor messenger RNA expression in ovine fetal membranes and placenta. Am J Obstet Gynecol. 2002; 186: 303–10.Google Scholar
Zhu, X, Jiang, S, Hu, Y, et al. The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev. 2010; 86: 657–63.CrossRefGoogle ScholarPubMed
Huang, J, Qi, HB. Expression of aquaporin 8 in human fetal membrane and placenta of idiopathic polyhydramnios. Zhonghua Fu Chan Ke Za Zhi. 2009; 44: 1922.Google Scholar
Qi, H, Li, L, Zong, W, Hyer, BJ, Huang, J. Expression of aquaporin 8 is diversely regulated by osmotic stress in amnion epithelial cells. J Obstet Gynaecol Res. 2009; 35: 1019–25.Google Scholar
Wang, S, Amidi, F, Yin, S, Beall, M, Ross, MG. Cyclic adenosine monophosphate regulation of aquaporin gene expression in human amnion epithelia. Reprod Sci. 2007; 14: 234–40.Google Scholar
Ross, MG, Ervin, MG, Leake, RD, et al. Bulk flow of amniotic fluid water in response to maternal osmotic challenge. Am J Obstet Gynecol. 1983; 147: 697701.Google Scholar
Leontic, EA, Tyson, JE. Prolactin and fetal osmoregulation: water transport across isolated human amnion. Am J Physiol. 1977; 232: R124–7.Google Scholar
Holt, WF, Perks, AM. The effect of prolactin on water movement through the isolated amniotic membrane of the guinea pig. Gen Comp Endocrinol. 1975; 26: 153–64.CrossRefGoogle ScholarPubMed

References

Magann, EF, Sanderson, M, Martin, JN, et al. The amniotic fluid index, single deepest pocket, and two-diameter pocket in normal human pregnancy. Am J Obstet Gynecol. 2001; 182: 1581–8.Google Scholar
Sandlin, AT, Chauhan, SP, Magann, EF. Clinical relevance of sonographically estimated amniotic fluid volume. J Ultrasound Med. 2013; 32: 851–63.Google Scholar
Karkhanis, P, Patni, S. Polyhydramnios in singleton pregnancies: perinatal outcomes and management. Obstet Gynaecol. 2014; 16: 207–13.Google Scholar
Dashe, JS, McIntire, DD, Ramus, RM, et al. Hydramnios: anomaly prevalence and sonographic detection. Obstet Gynecol. 2002; 100: 134–9.Google Scholar
Martinez-Frias, MJ, Bermejo, E, Rodriguez-Pinilla, E, et al. Maternal and fetal factors related to abnormal amniotic fluid. J Perinatol. 1999; 19: 514–20.CrossRefGoogle ScholarPubMed
Golan, A, Wolman, I, Langer, R, et al. Fetal malformations associated with chronic polyhydramnios in singleton pregnancies. Eur J Obstet Gynecol. 1992; 47: 185–8.Google Scholar
Brady, K, Polzin, WJ, Kopelman, JN, et al. Risk of chromosomal abnormalities in patients with idiopathic polyhydramnios. Obstet Gynecol. 1992; 79: 234–8.Google Scholar
Lee, JF, Wang, KK, Lan, CC. Risk of fetal chromosomal abnormalities in idiopathic polyhydramnios. Zhonghua Yi Xue Za Zhi (Taipei). 1996; 57: 42–6.Google Scholar
Lazebnik, N, Many, A. The severity of polyhydramnios, estimated fetal weight and preterm delivery are independent risk factors for the presence of congenital malformations. Gynecol Obstet Invest. 1999; 48: 2832.Google Scholar
Sickler, GK, Nyberg, DA, Sohaey, R, et al. Polyhydramnios and fetal intrauterine growth restriction: ominous combination. J Ultrasound Med. 1997; 16: 609–14.Google Scholar
Sagi-Dain, L, Sagi, S. Chromosomal aberrations in idiopathic polyhydramnios: a systematic review and meta-analysis. Eur J Med Genet. 2015; 58: 409–15.Google Scholar
Magann, EF, Chauhan, SP, Boherty, DA, et al. A review of idiopathic hydramnios and pregnancy outcomes. Obstet Gynecol Survey. 2007; 62: 795801.Google Scholar
Morris, RK, Meller, CH, Tamblyn, J, et al. Association and prediction of amniotic fluid measurements for adverse pregnancy outcome: systematic review and meta-analysis. BJOG. 2014; 121: 686–99.Google Scholar
Many, A, Hill, LM, Lazebnik, N, Martin, JG. The association between polyhydramnios and preterm delivery. Obstet Gynecol. 1995; 86: 389–91.CrossRefGoogle ScholarPubMed
Odibo, IN, Newville, TM, Ounpraseuth, ST, et al. Idiopathic polyhydramnios: persistence across gestation and impact on pregnancy outcomes. Eur J Obstet Gynecol Reprod Biol. 2016; 199: 175–8.Google Scholar
Fisk, NM, Vaughn, J, Talbert, D. Impaired fetal blood gas status in polyhydramnios and its relation to raised amniotic fluid pressure. Fetal Diag Ther. 1994; 9: 713.Google Scholar
Hershkovitz, R, Furman, B, Bashiri, A, et al. Evidence for abnormal middle cerebral artery values in patients with idiopathic hydramnios. J Matern Fetal Med. 2001; 10: 404–8.Google Scholar
Dickinson, JE, Tjioe, YY, Jude, E, et al. Amnioreduction in the management of polyhydramnios complicating singleton pregnancies. Am J Obstet Gynecol. 2014; 211: e1–7.Google Scholar
Dickinson, JE, Evans, SF. Obstetric and perinatal outcomes from the Australian and New Zealand Twin-Twin Transfusion Syndrome Registry. Am J Obstet Gynecol. 2000; 182: 706–12.Google Scholar
Taylor, MJO, Fisk, NM. Hydramnios and oligohydramnios. In James, DK, Steer, PJ, Weiner, CP, Gonik, B, eds., High Risk Pregnancy: Management Options, 3rd edn. Philadelphia: Elsevier Publishers, 2006, pp. 272–90.Google Scholar
Denbow, ML, Fisk, NM. The consequences of monochorionic placentation. Baillieres Clin Obstet Gynecol. 1998; 12: 3751.CrossRefGoogle ScholarPubMed
Moise, KJ Jr. Polyhydramnios. Clin Obstet Gynecol. 1997; 40: 266–79.Google Scholar
Van den Veyver, I, Moise, KJ, Ou, C-N, et al. The effect of gestational age and fatal indomethacin levels on the incidence of constriction of the ductus arteriosus. Obstet Gynecol. 1993; 182: 500–3.Google Scholar
Kramer, WB, Saade, GS, Ou, C-N, et al. Placental transfer of sulindac and its active sulfide metabolite in humans. Am J Obstet Gynecol. 1995; 172: 886–90.Google Scholar
Rasanen, J, Jouppila, P. Fetal cardiac function and ductus arteriosus during indomethacin and sulindac therapy for threatened preterm labor: a randomized study. Am J Obstet Gynecol. 1995; 173: 20–5.Google Scholar
Sawdy, RJ, Lye, S, Fisk, NM, et al. A double-blind randomized study of fetal side effects during and after the short-term maternal administration of indomethacin, sulindac, and nimesulide for the treatment of preterm labor. Am J Obstet Gynecol. 2003; 188: 1046–51.Google Scholar
Society for Maternal-Fetal Medicine, Dashe, JS, Pressman, EK, Hibbard, JU. SMFM Consult Series #46: Evaluation and Management of PolyhydramniosAm J Obstet Gynecol. 2018; 219: B2–8.CrossRefGoogle Scholar
Moore, TR, Longo, J, Leopold, GR, Casola, G, Gosink, BB. The reliability and predictive value of an amniotic fluid scoring system in severe second trimester oligohydramnios. Obstet Gynecol. 1989; 73: 739–42.Google Scholar
Fisk, NF. Oligohydramnios-related pulmonary hypoplasia. Contemp Rev Obstet and Gynecol. 1992; 4: 191210.Google Scholar
Yoshimura, S, Masuzaki, H, Miura, K, Hayashi, H, Gotoh, H, Ishimaru, T. The effects of oligohydramnios and cervical cord transection on lung growth in experimental pulmonary hypoplasia in rabbits. Am J Obstet Gynecol. 1997; 177: 72–7.Google Scholar
Nelson, SM, Hajivassiliou, CA, Haddock, G, Cameron, AD, Robertson, L, Olver, RE, Hume, R. Rescue of the hypoplastic lung by prenatal cyclical strain. Am J Resp Critical Care Med. 2005; 171: 1395–402.Google Scholar
van Teeffelen, ASP, van der Heijden, J, Oei, SG, Porath, MM, Willekes, C, Opmeer, B, Mol, BWJ. Accuracy of imagining parameters in the prediction of lethal pulmonary hypoplasia secondary to mid-trimester prelabour rupture of membranes: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2012; 39: 495–9.Google Scholar
Golbus, MS, Harrison, MR, Filly, RA, et al. In utero treatment of urinary tract obstruction. Am J Obstet Gynecol. 1982; 142: 383–8.Google Scholar
Morris, RK, Malin, GL, Quinlan‐Jones, E, Middleton, LJ, Hemming, K, Burke, D, et al. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet. 2013; 382: 1496–506.CrossRefGoogle ScholarPubMed
Caughey, AB, Robinson, JN, Norwitz, ER. Contemporary diagnosis and management of preterm premature rupture of membranes. Rev Obstet Gynecol. 2008; 1: 1122.Google Scholar
Garite, TJ, Freeman, RK, Linzey, EM, Braly, P. The use of amniocentesis in patients with premature rupture of membranes. Obstet Gynecol. 1979; 54: 226–30.Google Scholar
Lee, J, Romero, R, Kim, SM, Chaemsaithong, P, Yoon, BH. A new antibiotic regimen treats and prevents intra-amniotic inflammation/infection in patients with preterm PROM. J Matern Fetal Neonatal Med. 2016; 29: 2727–37.Google Scholar
Devlieger, R, Millar, LK, Bryant-Greenwood, G, Lewi, L, Deprest, JA. Fetal membrane healing after spontaneous and iatrogenic membrane rupture: a review of current evidence. Am J Obstet Gynecol. 2006; 195: 1512–20.Google Scholar
Quintero, RA, Mendoza, GA, Allen, M, Arroyo, J, Bornick, PW, Morales, WJ, et al. In vivo laser welding of collagen-based graft material to the amnion in a rabbit model of ruptured membranes. Prenat Neonat Med. 1999; 4: 453–6.Google Scholar
Borgida, A, Mills, A, Feldman, D, et al. Outcome of pregnancies complicated by ruptured membranes after genetic amniocentesis. Am J Obstet Gynecol. 2000; 183: 937–9.Google Scholar
Harrison, MR. Surgically correctable fetal disease. Am J Surg. 2000; 180: 335–42.CrossRefGoogle ScholarPubMed
Beck, V, Lewi, P, Gucciardo, L, Devlieger, R. Preterm prelabour rupture of membranes and fetal survival after minimally invasive fetal surgery: a systematic review of the literature. Fetal Diagn Ther. 2012; 31: 19.Google Scholar
Akkermans, J, Peeters, SHP, Klumper, FJ, Lopriore, E, Middeldorp, JM, Oepkes, D. Twenty-five years of fetoscopic laser coagulation of twin-twin transfusion syndrome: a systematic review. Fetal Diagn Ther. 2015; 38: 241–53.Google Scholar
Senat, MV, Deprest, J, Boulvain, M, Paupe, A, Winer, N, Ville, Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004; 351: 136–44.Google Scholar
Stirnemann, J, Djaafri, F, Kim, A, Mediouni, I, Bussieres, L, Spaggiari, E, et al. Preterm premature rupture of membranes is a collateral effect of improvement in perinatal outcomes following fetoscopic coagulation of chorionic vessels for twin-twin transfusion syndrome: a retrospective observational study of 1092 casesBJOG. 2018; 125: 1154–62.Google Scholar
Gratacὀs, E, Sanin-Blair, J, Lewi, L, Toran, N, Verbist, L, Cabero, L, et al. A histological study of fetoscopic membrane defects to document membrane healing. Placenta. 2006; 27: 452–6.Google Scholar
Dewan, H, Morris, J. A systematic review of pregnancy outcome following preterm premature rupture of membranes at a previable gestational age. Aust N Z J Obstet Gynecol. 2001; 41: 389–94.Google Scholar
Chauleur, C, Rochigneux, S, Seffert, P, et al. Neonatal outcomes and four-year follow-up after spontaneous or iatrogenic preterm prelabour rupture of membranes before 24 weeks. Acta Obstet Gynecol Scand. 2009; 88: 801–6.Google Scholar
Linehan, LA, Walsh, J, Morris, A, Kenny, L, O’Donoghue, K, Dempsey, E, Russell, N. Neonatal and maternal outcomes following midtrimester preterm premature rupture of the membranes: a retrospective cohort study. BMC Pregnancy Childbirth. 2016; 16: 25.Google Scholar
van der Heyden, JL, van der Ham, DP, van Kuijk, S, Notten, KJ, Janssen, T, Nijhuis, JG, et al. Outcome of pregnancies with preterm prelabor rupture of membranes before 27 weeks’ gestation: a retrospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2013; 170: 125130.Google Scholar
Vergani, P, Ghidini, A, Locatelli, A, et al. Risk factors for pulmonary hypoplasia in second-trimester premature rupture of membranes. Am J Obstet Gynecol. 1994; 170: 1359–64.Google Scholar
Kilbride, HW, Yeast, J, Thibeault, DW. Defining the limits of survival: lethal pulmonary hypoplasia after midtrimester premature rupture of membranes. Am J Obstet Gynecol. 1996; 175: 675–81.Google Scholar
Snowise, S, Mann, LK, Moise, JR, Johnson, M, Bebbington, MW, Papanna, R. Preterm prelabour rupture of membranes after fetoscopic laser surgery for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol. 2017; 49: 607–11.Google Scholar
Genz, HJ, Gerlach, H, Metzger, H. Behandlung des vorzeitigen Blasensprungs durch fibrinklebung. Med Welt. 1979; 42: 1557.Google Scholar
Quintero, RA, Morales, WJ, Allen, M, Bornick, PW, Arroyo, J, LeParc, G. Treatment of iatrogenic previable premature rupture of membranes with intra-amniotic injection of platelets and cryo-precipitate (amniopatch): preliminary experience. Am J Obstet Gynecol. 1999; 181: 744–9.Google Scholar
Richter, J, Henry, A, Ryan, G, Lewi, L, Deprest, J. Amniopatch procedure after previable iatrogenic rupture of the membranes: a two-centre review. Prenat Diagn. 2013; 33: 391–6.CrossRefGoogle Scholar
Chmait, RH, Kontopoulos, EV, Chon, AH, Korst, LM, Llanes, A, Quintero, RA. Amniopatch treatment of iatrogenic preterm premature rupture of membranes (iPPROM) after fetoscopic laser surgery for twin–twin transfusion syndrome. J Matern Fetal Neonatal Med. 2017; 30: 1349–54.Google Scholar
Locatelli, A, Vergani, P, Di Pirro, G, Doria, V, Biffi, A, Ghidini, A. Role of amnioinfusion in the management of premature rupture of the membranes at <26 weeks’ gestation. Am J Obstet Gynecol. 2000; 183: 878–82.Google Scholar
Vergani, P, Locatelli, A, Verderio, M, Assi, F. Premature rupture of the membranes at <26 weeks’ gestation: role of amnioinfusion in the management of oligohydramnios. Acta Biomed. 2004; 75 (Suppl.): 62–6.Google Scholar
Hofmeyr, GJ, Essilfie-Appiah, G, Lawrie, TA. Amnioinfusion for preterm premature rupture of membranes. Cochrane Database Syst Rev. 2011; 12: CD000942.Google Scholar
Porat, S, Amsalem, H, Shah, PS, Murphy, KE. Transabdominal amnioinfusion for preterm premature rupture of membranes: a systematic review and meta analysis of randomized and observational studies. Am J Obstet Gynecol. 2012; 207: 393. e1–11.Google Scholar
Vergani, P, Locatelli, A, Strobelt, N, et al. Amnioinfusion for prevention of pulmonary hypoplasia in second-trimester rupture of membranes. Am J Perinatol. 1997; 14: 325–9.Google Scholar
Ogunyemi, D, Thompson, W. A case controlled study of serial transabdominal amnioinfusions in the management of second trimester oligohydramnios due to premature rupture of membranes. Eur J Obstet Gynecol Reprod Biol. 2002; 102: 167–72.Google Scholar
De Santis, M, Scavo, M, Noia, G, et al. Transabdominal amnioinfusion treatment of severe oligohydramnios in preterm premature rupture of membranes at less than 26 gestational weeks. Fetal Diagn Ther. 2003; 18: 412–17.Google Scholar
Roberts, D, Vause, S, Martin, W, Green, P, Walkinshaw, S, Bricker, L, et al. Amnioinfusion in very early preterm premature rupture of membranes – pregnancy, neonatal and maternal outcomes in the AMIPROM randomised controlled pilot study. Ultrasound Obstet Gynecol. 2013; 43: 490–9.Google Scholar
van Kempen, LEM, van Teeffelen, AS, de Ruigh, AA, Oepkes, D, Haak, MC, van Leeuwen, E, et al. Amnioinfusion compared with no intervention in women with second-trimester rupture of membranes: a randomized controlled trial. Obstet Gynecol. 2019; 133: 129136.Google Scholar
Hofmeyr, GJ, Eke, AC, Lawrie, TA. Amnioinfusion for third trimester preterm premature rupture of membranes. Cochrane Database Syst Rev. 2014; 3: CD000942.Google Scholar
Nageotte, MP, Freeman, RK, Garite, TJ, Dorchester, W. Prophylactic intrapartum amnioinfusion in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 1985; 153: 557–62.Google Scholar
Puertas, A, Tirado, P, Perez, I, Lopez, MS, Montoya, F, Canizares, JM, et al. Transcervical intrapartum amnioinfusion for preterm premature rupture of the membranes. Eur J Obstet Gynecol Reprod Biol. 2007; 131: 40–4.Google Scholar
Singla, A, Yadav, P, Vaid, NB, Suneja, A, Faridi, MMA. Transabdominal amnioinfusion in preterm premature rupture of membranes. Int J Gynecol Obstet. 2010; 108: 199202.Google Scholar
Tranquilli, AL, Giannubilo, SR, Bezzeccheri, V, Scagnoli, C. Transabdominal amnioinfusion in preterm premature rupture of membranes: a randomised controlled trial. BJOG. 2005; 112: 759–63.Google Scholar
Hofmeyr, GJ, Xu, H, Eke, AC. Amnioinfusion for meconium-stained liquor in labour. Cochrane Database Syst Rev. 2014; 1: CD000014.Google Scholar
Fraser, WD, Hofmeyr, J, Lede, R, Faron, G, Alexander, S, Goffinet, F, et al. Amnioinfusion for the prevention of the meconium aspiration syndrome. N Engl J Med. 2005; 353: 909–17.Google Scholar
Hofmeyr, GJ. Amnioinfusion for meconium-stained liquor in labour. Cochrane Database Syst Rev. 2002; 1: CD000014.Google Scholar
Hemming, K, Hutton, JL. Intrapartum amnioinfusion for meconium-stained amniotic fluid: evidence for small study effect bias? BJOG. 2009; 116: 128–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×