We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mathematician and popular science author Eugenia Cheng is on a mission to show you that mathematics can be flexible, creative, and visual. This joyful journey through the world of abstract mathematics into category theory will demystify mathematical thought processes and help you develop your own thinking, with no formal mathematical background needed. The book brings abstract mathematical ideas down to earth using examples of social justice, current events, and everyday life – from privilege to COVID-19 to driving routes. The journey begins with the ideas and workings of abstract mathematics, after which you will gently climb toward more technical material, learning everything needed to understand category theory, and then key concepts in category theory like natural transformations, duality, and even a glimpse of ongoing research in higher-dimensional category theory. For fans of How to Bake Pi, this will help you dig deeper into mathematical concepts and build your mathematical background.
A partially-auxetic metamaterial is introduced, inspired by the Maltese cross. Each unit of this metamaterial consists of a pair of counter-rotating equal-armed crosses, which is interconnected to neighboring units via hinge rods and connecting rods. Based on linkage theory, the on-axes Poisson's ratio was established considering a two-fold symmetrical mechanism, while the (anti)tetrachiral mechanisms were identified for on-axes uniaxial compression. A shearing mechanism is suggested for pure shearing and diagonal loading of the metamaterial with square array. Results suggest that the approximated infinitesimal models are valid for the Poisson's ratio of the two-fold symmetrical and the (anti)tetrachiral mechanisms under on-axis tension and compression, respectively; however, the finite model is recommended for quantifying the Poisson's ratio under pure shear and off-axis loading. This metamaterial manifests microstructural trinity, in which three different loading modes result in three different groups of deformation mechanisms. Finally, suggestions are put forth for some unsolved predictive problems.
Sentence-final particles are normally assumed to occur in the CP domain, i.e., the domain of the complementizer phrase. Their exact syntactic position varies given the heterogeneity of these elements. The position of these particles usually depends on how they are categorized semantically, and also on how they conform to different syntactic principles. Several distinctive and often competing approaches are addressed here. This chapter also discusses those 'sentence-final particles' that are found in the lower domains and revisits the question of whether some, if not all, elements that are said to belong to the category of sentence-final particles should be construed as non-CP elements.
The impact of Strouhal number St (= 0.1–1.0), Reynolds number Re (= 50–2000) and dimensionless wavelength λ (= 0.5–2.0) on the hydrodynamic performance of a travelling wavy foil of a constant length is extensively investigated. The relationship of time-mean thrust with St, Re and λ is presented, suggesting that the propulsive force increases with increasing St, Re and λ. As such, the drag–thrust boundary advances as these parameters increase. A shorter λ makes the thrust steadier while a longer λ enhances the maximum instantaneous thrust. The latter is beneficial for prey to escape from a predator. The fluid added mass caused by the foil oscillation increases with St and λ but declines with Re (<500). Seven types of wake structures produced by the foil are identified, discussed and connected to thrust generation, showing how St, Re and λ affect the fluid dynamics, wake transition, vortex strength, wake jet, velocity, added mass, added damping, power input, efficiency and pressure profiles. The outcome of this work renders a physical basis for understanding the swimming of aquatic animals.
Elucidating individual aberrance is a critical first step toward precision medicine for heterogeneous disorders such as depression. The neuropathology of depression is related to abnormal inter-regional structural covariance indicating a brain maturational disruption. However, most studies focus on group-level structural covariance aberrance and ignore the interindividual heterogeneity. For that reason, we aimed to identify individualized structural covariance aberrance with the help of individualized differential structural covariance network (IDSCN) analysis.
Methods
T1-weighted anatomical images of 195 first-episode untreated patients with depression and matched healthy controls (n = 78) were acquired. We obtained IDSCN for each patient and identified subtypes of depression based on shared differential edges.
Results
As a result, patients with depression demonstrated tremendous heterogeneity in the distribution of differential structural covariance edges. Despite this heterogeneity, altered edges within subcortical-cerebellum network were often shared by most of the patients. Two robust neuroanatomical subtypes were identified. Specifically, patients in subtype 1 often shared decreased motor network-related edges. Patients in subtype 2 often shared decreased subcortical-cerebellum network-related edges. Functional annotation further revealed that differential edges in subtype 2 were mainly implicated in reward/motivation-related functional terms.
Conclusions
In conclusion, we investigated individualized differential structural covariance and identified that decreased edges within subcortical-cerebellum network are often shared by patients with depression. The identified two subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of depression.
We develop a new methodology to assess the streamwise inclination angles (SIAs) of the wall-attached eddies populating the logarithmic region with a given wall-normal height. To remove the influences originating from other scales on the SIA estimated via two-point correlation, the footprints of the targeted eddies in the vicinity of the wall and the corresponding streamwise velocity fluctuations carried by them are isolated simultaneously, by coupling the spectral stochastic estimation with the attached-eddy hypothesis. Datasets produced with direct numerical simulations spanning $Re_{\tau } \sim O(10^2)\unicode{x2013}O(10^3)$ are dissected to study the Reynolds number effect. The present results show, for the first time, that the SIAs of attached eddies are Reynolds-number-dependent in low and medium Reynolds numbers, and tend to saturate at $45^{\circ }$ as the Reynolds number increases. The mean SIA reported by vast previous experimental studies are demonstrated to be the outcomes of the additive effect contributed by multi-scale attached eddies. These findings clarify the long-term debate and perfect the picture of the attached-eddy model.
The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between Dietary Inflammatory Index (DII) and DKD in US Adults.
Design:
This is a cross-sectional study.
Setting:
Data from the National Health and Nutrition Examination Survey (NHANES 2007-2016) were used. DII were calculated from 24-hour dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate (GFR), or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations.
Results:
4264 participants were included in this study. The adjusted odd ratio (OR) of DKD was 1.04 (95 % CI 0.81, 1.36) for quartile 2, 1.24 (95 % CI 0.97, 1.59) for quartile 3 and 1.64 (95 % CI 1.24, 2.17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose-response pattern was observed between DII and DKD (Pnonlinearity = 0.73). In the stratified analyses, the ORs for quartile 4 of DII were significant among adults with higher educational level, (OR 1.83, 95% CI 1.26, 2.66) and overweight or obese participants (OR 1.67, 95% CI 1.23, 2.28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0.05).
Conclusions:
Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
The turbulent kinetic energy and energy dissipation rate in the wake of a circular cylinder are examined at a Reynolds number of 1000. The turbulence characteristics are quantified using direct numerical simulation, which provides a comprehensive dataset that is almost impossible to acquire from physical experiments. The energy dissipation rate is decomposed into the components due to the mean flow, the coherent primary vortices and the remainder. It is found that the remainder component, which develops only in a three-dimensional turbulent wake and resides mainly in the regions of vortices, accounts for 95 % and 97 % of the total dissipation rate for 10 and 20 cylinder diameters downstream of the cylinder, respectively (while the remainder accounts for 62 % and 83 % of the total turbulent kinetic energy). Based on the remainder component, the validity of local isotropy, local axisymmetry, local homogeneity and homogeneity in the y–z plane for the turbulent dissipation in the wake is examined. The analysis reveals that the turbulent dissipation is largely locally homogeneous, but not locally isotropic or axisymmetric, even after the annihilation of the primary vortex street. In addition, the performances of the four corresponding surrogates to the true dissipation rate are evaluated. Owing to the general validity of local homogeneity, the surrogates of local homogeneity and homogeneity in the y–z plane perform well. Although local axisymmetry does not hold, the corresponding surrogate performs well, because errors from different terms largely cancel out. However, the surrogate of local isotropy generally underestimates the true dissipation rate.
Hepatitis E is an increasingly serious worldwide public health problem that has attracted extensive attention. It is necessary to accurately predict the incidence of hepatitis E to better plan ahead for future medical care. In this study, we developed a Bi-LSTM model that incorporated meteorological factors to predict the prevalence of hepatitis E. The hepatitis E data used in this study are collected from January 2005 to March 2017 by Jiangsu Provincial Center for Disease Control and Prevention. ARIMA, GBDT, SVM, LSTM and Bi-LSTM models are adopted in this study. The data from January 2009 to September 2014 are used as the training set to fit models, and data from October 2014 to March 2017 are used as the testing set to evaluate the predicting accuracy of different models. Selecting models and evaluating the effectiveness of the models are based on mean absolute per cent error (MAPE), root mean square error (RMSE) and mean absolute error (MAE). A total of 44 923 cases of hepatitis E are detected in Jiangsu Province from January 2005 to March 2017. The average monthly incidence rate is 0.35 per 100 000 persons in Jiangsu Province. Incorporating meteorological factors of temperature, water vapour pressure, and rainfall as a combination into the Bi-LSTM Model achieved the state-of-the-art performance in predicting the monthly incidence of hepatitis E, in which RMSE is 0.044, MAPE is 11.88%, and MAE is 0.0377. The Bi-LSTM model with the meteorological factors of temperature, water vapour pressure, and rainfall can fully extract the linear and non-linear information in the hepatitis E incidence data, and has significantly improved the interpretability, learning ability, generalisability and prediction accuracy.
Mechanistic studies have suggested that antioxidants have beneficial effects on age-related macular degeneration (AMD). This study aimed to investigate the association between the types and sources of dietary vitamin and carotenoid intakes and AMD risk in China. A matched case-control study of 260 patients who were clinically diagnosed with AMD and 260 matched controls was performed. The participants were interviewed for dietary information and potential confounders, and comprehensive ophthalmic examinations were performed. Conditional logistic models were used to estimate the odds ratio (OR) and 95% confidence interval (CI) across the categories of specific vitamins and carotenoids and their main sources. When comparing the extreme quartiles, the ORs(95% CI) were 0.30 (0.10, 0.88) for lutein and 0.28 (0.11, 0.74) for β-cryptoxanthin. The associations between AMD and other dietary vitamin and carotenoid intakes were generally weaker and non-significant. Higher intakes of spinach and egg, which are important sources of lutein, were associated with a reduced odds of AMD, with an OR comparing the highest and lowest categories of spinach being 0.42 (95%CI: 0.20, 0.88) and that comparing the highest and lowest categories of the egg being 0.52 (95% CI: 0.27, 0.98). Participants who were in the highest category of both egg intake and spinach intake had a much greater reduced odds of having AMD (OR: 0.23; 95%CI: 0.08, 0.71) than those in the lowest category of egg intake and spinach intake. In conclusion, a higher intake of lutein and lutein-rich foods was associated with a significantly decreased odds of AMD. These findings provide further evidence of the benefits of lutein and lutein-rich foods in the prevention of AMD.