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Previous work suggests that the arrangement of elements in an obstruction may influence
the bulk flow velocity through the obstruction, but the physical mechanisms for this
influence are not yet clear. This is the motivation for this study, where direct numerical
simulation is used to investigate flow through an array of cylinders at a resolution sufficient
to observe interactions between wakes of individual elements. The arrangement is altered
by varying the gap ratio G/d (1.2 – 18, G is the distance between two adjacent cylinders,
d is the cylinder diameter), array-to-element diameter ratio D/d (3.6 – 200, D is the array
diameter), and incident flow angle (0◦ − 30◦). Depending on the element arrangement, it
is found that the average root-mean-square lift and drag coefficients can vary by an order
of magnitude, whilst the average time-mean drag coefficient of individual cylinders (Cd),
and the bulk velocity are found to vary by up to 50 % and a factor of 2, respectively. These
arrangement effects are a consequence of the variation in flow and drag characteristics
of individual cylinders within the array. The arrangement effects become most critical in
the intermediate range of flow blockage parameter Γ ′

D = 0.5 − 1.5 (Γ ′
D = CdaD/(1 − φ),

where a is frontal element area per unit volume, and φ is solid volume fraction), due to the
high variability in element-scale flow characteristics. Across the full range of arrangements
modelled, it is confirmed that the bulk velocity is governed by flow blockage parameter
but only if the drag coefficient incorporates arrangement effects. Using these results, this
paper proposes a framework for describing and predicting flow through an array across a
variety of arrangements.
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(a) (b) (c) (d)

Figure 1. Arrangements of natural and engineered porous obstructions in aquatic environments. (a) Parallel
rows of transplanted mangrove shoots for restoration programmes (Marchand 2008); (b) jacket structure
representative of a 3-D truss (Bradshaw et al. 2024); (c) foundation piles arranged in a concentric ring (Wang
et al. 2022); (d) an arrangement of tidal turbines (Walker & Cappietti 2017) (all figures reproduced with
permission).

1. Introduction

Porous obstructions in water flows can be arranged in various configurations. For example,
transplanted mangrove shoots in restoration programmes are normally arranged into
parallel inline rows (figure 1a); jacket structures are designed as a three-dimensional
(3-D) truss with elements often having different orientation depending on the local
load they withstand (figure 1b); foundation piles can be organised in a concentric
ring (figure 1c); and tidal turbines are often arranged in staggered or inline patterns
(figure 1d). The arrangement of these systems is often driven by hydrodynamic factors.
For instance, arranging turbines in an inline arrangement leads to lower power generation
due to stronger wake interaction at the scale of individual turbines in comparison
with a staggered arrangement (Draper & Nishino 2014). Aquatic vegetation tends to
self-organise into parallel rows of shoots normal to the flow direction which leads to
reduction in hydrodynamic forces on individual shoots and velocity between adjacent
rows; the force reduction makes the shoots less vulnerable to bending and the velocity
reduction contributes to stabilising mobile bed loads within the vegetated region (Fonseca,
Koehl & Kopp 2007). These applications highlight the importance of investigating the
hydrodynamic influences of arrangement.

Although their geometries vary widely, arrangement effects in these porous systems can
be investigated by examining the simpler problem of an arrangement of vertical cylinders
and the wake interaction between these cylinders (see figure 2). When the total number
of cylinders is small (N � 9) or cylinders align in a single line, the arrangement effect
on flow patterns and cylinder forces has been the focus of extensive studies. For example,
researchers have investigated the simplest, classical, two-cylinder system, with ‘inline’
(figure 2a) and ‘side-by-side’ (figure 2b) configurations formed when the line joining
the cylinder centres is aligned with (θ = 0°) and perpendicular to (θ = 90°) the incident
flow, respectively (Zdravkovich 1977); a ‘staggered’ pattern is formed when 0° < θ < 90°
(figure 2c). In addition, studies have also investigated the scenarios of three cylinders with
equilateral configuration (figure 2d) (Bao, Zhou & Huang 2010; Chen et al. 2020) and
four, six and nine cylinders with an inline pattern at different θ (figure 2e) (Lam, Li &
So 2003; Wang et al. 2013; Gao et al. 2020; Yin et al. 2020). More recently, a single
line of cylinders (figure 2f ) has been investigated in an attempt to understand variation in
hydrodynamic force and flow characteristics along the line (Hosseini, Griffith & Leontini
2020; Zhu, Zhong & Zhou 2021; Eizadi et al. 2022).

Across this body of research, the hydrodynamics of a small cluster of cylinders
(figure 2a–e) and a single line of cylinders (figure 2f ) has been shown to be primarily
governed by the gap ratio G/d (G is the centre-to-centre distance between two nearest
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Figure 2. A summary of cylinder arrangements used in previous studies. (a–c) Two cylinders with different
arrangements; (d) three cylinders arranged in an equilateral-triangle with arbitrary flow angle; (e) 4–9 cylinders
arranged in rectangular configuration; ( f ) a single line of cylinders. ‘C1’ represents the first cylinder in the line.
(g) a circular array of cylinders arranged in multiple lines. Here U∞ is the velocity of the incident flow, d is the
cylinder diameter, G is the centre-to-centre distance between two nearest cylinders, θ is the orientation angle
of incident flow relative to the primary axis of the array, D is the array diameter and α is the intrinsic angle
defined based on the three nearest cylinders. The array-to-element scale ratio D/d is important in influencing
flow through a circular array in (g), which is not considered in earlier studies with configurations in (a–f ).

cylinders and d is the cylinder diameter; see figure 2a), the orientation angle θ (figure 2c)
and the Reynolds number Red = U∞d/ν (in which ν is the kinematic viscosity of the fluid
and U∞ is the upstream velocity of the array) (Lam et al. 2003; Sumner 2010; Chen et al.
2020; Yin et al. 2020). Through varying G/d, θ and Red, flow regimes have been mapped
out based on a variety of element-scale flow patterns and force coefficients (Sumner 2010;
Zhou & Alam 2016; Chen et al. 2020; Gao et al. 2020). A general conclusion from these
studies is that as G/d decreases, the element-scale vortex structures become less dominant,
and the cylinders collectively behave as effectively a single body to form large-scale
vortex shedding. The threshold of G/d for the transition from an element-scale-dominant
to ‘single-body’-dominant flow pattern depends on θ and Red.

In comparison with the studies mentioned above, a large number (N � 9) of cylinders
are normally considered in the form of a circular array (see figure 2g), which has the
advantage of eliminating the influence of array circumferential shape on flow and drag
characteristics when varying θ (Chang & Constantinescu 2015). A key distinction from the
other scenarios reviewed above is that the ratio of array diameter D to element diameter d,
and the solid volume fraction (φ = (π/4)nd2, where n is the number of cylinders per unit
area) have been used to parameterise the finite array of cylinders (e.g. Nicolle & Eames
2011; Chang & Constantinescu 2015). For a circular array, previous studies have mainly
focused on flow structures behind the array (array scale) (e.g. Zong & Nepf 2012), the
velocity of bulk flow through it (bleeding flow) (e.g. Chen et al. 2012) and the total drag
on the array (e.g. Cheng et al. 2019) when varying the array arrangement. It has been
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shown that a denser array (lower φ) coincides with lower averaged drag coefficient for
the individual cylinders Cd (Chang & Constantinescu 2015; Cheng et al. 2019), and lower
bleeding velocity, thus a more unstable array-scale wake behind the array (Ball et al. 1996;
Zong & Nepf 2012). Additionally, as shown by the data in Zhao et al. (2015) (for square
arrays), the Cd value can decrease by 36 %, and the von Kármán vortex street behind the
array may be suppressed by changing the cylinder arrangement from staggered to inline
(i.e. changing θ and α simultaneously). These results highlight the significant effects of
cylinder arrangement on the array-scale flow and drag characteristics for an array of a
large number of cylinders. However, there is no quantitative guidance to determine if
arrangement effects are critical for a given porous array. More importantly, the physical
mechanisms for these arrangement effects have yet to be investigated.

A possible mechanism is associated with the element-scale flow characteristics within
an array. This idea is informed by the similarities of flow structures between a single
line of cylinders (Hosseini et al. 2020; Zhu et al. 2021; Eizadi et al. 2022) and an
array of multiple lines of cylinders (Ziada 2006; Zhao et al. 2015). Research on a small
number of cylinders and a single line of cylinders has revealed that the drag on individual
cylinders depends on the local flow characteristics around these cylinders. For instance, the
formation of characteristic flow structures such as two-row structure (TRS) and shear-layer
reattachment (SLR) can cause significant element drag reduction (e.g. Sumner 2010;
Hosseini et al. 2020). It is suspected that a similar correlation between local drag and
flow characteristics should also exist in a multiple-line array. It is therefore hypothesised
that varying the cylinder arrangement (both array geometry and array orientation relative
to the incident flow) will result in variations in the local flow and the drag characteristics of
individual elements. Consequently, this may result in changes in the overall drag force on
the array, the bulk flow through the array and hence the array-scale wake characteristics.
One of the motivations of the present study is to examine this hypothesis based on the
well-established knowledge of the flow physics for a small number of cylinders (N � 9)

and a single line of cylinders.
To account for the array-scale effects, previous studies have defined the array-induced

flow modifications through the dimensionless flow blockage parameter (Rominger & Nepf
2011; Chang & Constantinescu 2015). This parameter is derived from the two-dimensional
(2-D) streamwise momentum equation that applies to the array:

ū
∂ ū
∂x︸︷︷︸
i

+ v̄
∂ ū
∂y

= − 1
ρ

∂ p̄
∂x

− 1
2

CdaD
(1 − φ)

ū(ū2 + v̄2)
1/2

︸ ︷︷ ︸
ii

, (1.1)

where u and v are, respectively, the velocity components in the streamwise (x) and
transverse (y) directions for which an overbar represents the time-average operation, p
is the pressure, ρ is the fluid density and a = nd is the frontal area of cylinders per unit
area within the array. Note that the Reynolds stress term is omitted from this equation since
this term is negligible compared with the drag term (ii) within the array (Rominger & Nepf
2011). The bulk bleeding flow velocity is dependent on the ratio of term ‘ii’ in (1.1) of drag
on the array elements retarding the flow and the advection term ‘i’ describing the flow
deceleration through the array (Chang & Constantinescu 2015). Using the characteristic
values

x ∼ D, u ∼ U∞ (1.2a,b)
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to scale the ratio of these two terms yields the important non-dimensional flow blockage
parameter:

Γ ′
D = CdaD

(1 − φ)
. (1.3)

Application of (1.3) to describe the flow requires an estimate of Cd, and hence a range
of assumptions have been made in previous studies to form this estimate. Arguably, the
most common approach is to assume this coefficient to be unity (Zong & Nepf 2012),
in which case the flow blockage parameter is termed ΓD (i.e. the prime is dropped
when Cd = 1). The geometric flow blockage ΓD therefore differs from the effective
flow blockage parameter Γ ′

D where Cd is from direct measurement. The parameter ΓD
captures the variation of bleeding velocity due to the changes in the solid volume fraction
φ (a parameter characterising the array configuration in a spatially averaged sense) but
not the changes in the local element arrangement (local positioning between individual
elements relative to the incident flow, e.g. staggered and inline) (Chen et al. 2012;
Nair et al. 2023). For instance, at the same ΓD (and φ), the bleeding velocity can be
decreased by approximately 20 % when the array changes from the inline to staggered
arrangement, as seen in the data from Takemura & Tanaka (2007). This implies that ΓD
provides an insufficient description of the blockage because the cylinder arrangement
significantly influences Cd, as shown in previous studies (e.g. Takemura & Tanaka
2007; Zhao et al. 2015). Over a wide range of ΓD, it is not clear how Cd varies due
to changes in arrangement. Therefore, another motivation of the present work is to
systematically explore the variability of Cd with the cylinder arrangement to investigate
the appropriateness of assuming Cd = 1.

In light of the motivations outlined above, the main goal of this paper is to investigate
flow through a circular array with D/d ∼ O(10−100) through 3-D direct numerical
simulations (DNS) and complementary 2-D numerical simulations, with three major
objectives: (i) to interpret, at the element scale, the physical mechanisms associated with
different cylinder arrangements; (ii) to identify the parameter range where arrangement
effects are critical; and (iii) to develop a universal framework for describing flow through
a finite circular array of any arrangement.

2. Methodology

2.1. Numerical approach
Three-dimensional DNS of the incompressible continuity and Navier–Stokes equations
have been performed, in which:

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν∇2u, (2.2)

where u = (u, v, w)(x, y, z, t) is the velocity field and t is the time. Equations (2.1) and (2.2)
were solved by using a spectral/hp element method embedded in the open-source software
package Nektar++ (Cantwell et al. 2015). A second-order time integration method was
applied, together with a velocity correction scheme, as detailed in previous work (e.g.
Guermond & Shen 2003; Blackburn & Sherwin 2004; Vos et al. 2011).

A quasi-3-D approach is employed in Nekter++ as detailed in Cantwell et al. (2015).
Specifically, the spectral/hp element method was employed in the (x, y) plane and a Fourier
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Figure 3. Mesh topology for an array of cylinders with N = 31. (a) Global view of entire computational
domain; (b) close-up view of h-type mesh distribution for the cylinder array; (c) close-up view of detailed
h-type mesh distribution around seven cylinders around the array centre; (d) close-up view of a hp-refined
mesh around the central cylinder for which the h-type element is in black and the p-type expanded element is
in grey. The overall mesh resolution is defined by both the distribution of the h-type meshes and the expansion
order Np (= 5) for the p-type refinement.

expansion was used in the spanwise direction (z direction) to resolve 3-D structures. Only a
2-D mesh was therefore required for this quasi-3-D approach. The solution of the velocity
and pressure fields can be expressed through Nz/2 Fourier modes in the spanwise direction,
where Nz is the total quadrature points (Fourier planes) of the z-direction expansion basis.

The mesh resolution in the spectral/hp element method is determined by both the
distribution of the h-type elements and the interpolation order Np for the p-type refinement.
Specifically, a polynominal expansion of order Np is applied to each h-type element such
that each element (in black in figure 3d) consists of a (Np − 1) × (Np − 1) array of p-type
cells (in grey in figure 3d). In this study, fifth-order Lagrange polynomials were used
on Gauss–Lobatto–Legendre quadrature points (Np = 5). The number of macro-elements
used to discretise the cylinder surface was Nc = 48, and the radial thickness of the first
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macro-element next to each cylinder surface was 	/d ≈ 0.03. These parameters are
determined based on other spectral element studies of flow interaction with multiple
cylinders at comparable Red (e.g. Ren et al. 2019; 2021a,b). The mesh expansion ratios
are kept below 1.2 throughout the domain. The number of cells in the x–y plane varies
from 210 000 to 3 375 000 as N increases from 7 to 109.

A circular computational domain was used, with detailed mesh configurations shown
in figure 3. A porous array of diameter D was placed at the centre of the domain, i.e. (x,
y) = (0, 0). The radius of the domain is r = 20D, with the wall blockage ratio D/2r = 0.025.
This blockage ratio has been shown to have negligible effects on the hydrodynamic forces
on similar arrays modelled in 2-D simulations in Nicolle & Eames (2011).

For the selection of spanwise length Lz and resolution Nz for 3-D simulations, different
strategies are performed owing to the distinct wake characteristics of the array.

(i) When the elements are sparsely distributed within the array (G/d � 3), existing
research implies that the three-dimensionality develops directly in the wakes of
individual elements. Hence, a spanwise length of 1D with a resolution (Lz/Nz)
of ∼0.2d is employed to ensure adequate resolution of element-scale 3-D flow
structures (see table 1). This choice of length and resolution were found to be
adequate to resolve the 3-D flow structures for an isolated solid cylinder (e.g. Jiang
& Cheng 2021) and two side-by-side cylinders (Ren et al. 2023).

(ii) When the elements are closely packed (G/d � 3), the element-scale vortex shedding
is expected to be suppressed due to limited gaps between individual cylinders,
whereas the array-scale vortex shedding develops behind the array. To examine the
three-dimensionality in the array-scale wake behind the array, the spanwise length
is doubled to 2D with a spanwise resolution of ∼0.2d.

When doubling the spanwise length or the Fourier plane number for the sparsest array
2* and the densest array 16* in table 1, a relatively small statistical difference in the
average drag coefficient and bleeding velocity was observed (e.g. relative differences in
Cd are within 3 %). This suggests that the spanwise lengths and resolutions used here are
sufficient to resolve the full 3-D flow structures. The spanwise lengths and resolutions
outlined in (i, ii) have also been shown to be adequate to resolve the 3-D flow structures of
a porous array in Chang & Constantinescu (2015).

A Dirichlet velocity boundary condition (u = U∞ and v = 0) was specified on the inlet
boundary (front half of the circumference of the computational domain), while on the
outlet boundary (back half of the circumference) a Neumann velocity boundary condition
(∂u/∂n = 0 and ∂v/∂n = 0, where n is the normal vector to the outlet boundary) was
applied. A no-slip boundary condition was enforced on all cylinder walls. As suggested
by Blackburn & Sherwin (2004) and Karniadakis, Israeli & Orszag (1991), a high-order
Neumann pressure condition was specified across domain boundaries, with the exception
of the Dirichlet pressure condition employed at the outlet boundary, which was set to
zero as a reference. The time step 	tU∞/d varies from 0.001 to 0.004 to ensure a
Courant–Friedrichs–Lewy limit of 0.5.

The present computations were performed on a Cray XC40 system supercomputer. For
each case, parallel simulation was conducted on multiple computing nodes with scalability
checks. The computational costs of 3-D simulations with 10 000 non-dimensional time
units (defined as d/U∞) are summarised in table 1. The cost for 3-D simulation
surged extraordinarily due to the extremely large number of mesh cells in the domain.
For instance, for the array 19* with 109 cylinders, the total number of mesh cells is
approximately 0.18 billion; the parallel computation for this case was done with 5120 cores,
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Case N G/d θ ΓD ReD
Lz
D

Lz
d Nz

Δz
d Ntotal (million)

Computational
cost (core

hours, million)

3-D 1* 31 14.7 0° 0.50 15 800 1 79.0 396 0.20 113.63 2.765
2* 31 14.7 30° 0.50 15 800 1 79.0 396 0.20 113.63 2.534
3* 31 8.0 0° 0.93 8660 1 43.3 224 0.19 217.88 4.625
4* 31 6.0 0° 1.24 6540 1 32.7 160 0.20 78.274 0.595
5* 31 6.0 30° 1.24 6540 1 32.7 160 0.20 78.274 0.595
6* 31 4.5 0° 1.68 4960 1 24.8 128 0.19 59.926 0.499
7* 31 4.5 10° 1.68 4960 1 24.8 128 0.19 59.926 0.499
8* 31 4.5 30° 1.68 4960 1 24.8 128 0.19 58.049 0.461
9* 31 3.8 0° 2.01 4220 1 21.1 96 0.22 44.622 0.553

10* 31 2.7 0° 2.98 3060 2 30.6 160 0.19 67.110 0.461
11* 31 2.7 10° 2.98 3060 2 30.6 160 0.19 67.110 0.461
12* 31 2.7 30° 2.98 3060 2 30.6 160 0.19 64.709 0.645
13* 31 2.3 30° 4.83 2200 2 22.0 96 0.23 29.491 0.307
14* 31 1.9 30° 4.83 2200 2 22.0 96 0.23 29.491 0.307
15* 31 1.2 0° 12.93 1460 2 14.6 64 0.22 31.363 0.346
16* 31 1.2 30° 12.93 1460 2 14.6 64 0.22 31.363 0.346
17* 109 8.0 0° 1.65 17 132 1 85.6 390 0.22 408.413 6.144
18* 109 4.5 0° 2.99 9720 1 48.6 256 0.19 158.471 3.686
19* 109 4.5 30° 2.99 9720 1 48.6 256 0.19 182.795 3.789
20* 109 2.5 0° 5.91 5500 2 55.0 256 0.21 133.788 2.048

2-D 1 7 17.0 0° 0.26 7000 — — — 0.237 0.004
10 7 1.7 0° 3.17 880 — — — 0.215 0.003
22 31 14.7 0° 0.50 15 800 — — — 0.926 0.013
48 31 1.2 30° 12.93 1460 — — — 0.871 0.026
61 109 17.0 0° 0.77 36 180 — — — 3.376 0.039
77 109 1.2 0° 24.20 2740 — — — 2.691 0.060

Table 1. Summary of mesh and simulation statistics at Red = 200 for 3-D and 2-D cases. Parameters Lz, Nz,
Δz and Ntotal represent the spanwise length of the array, the number of Fourier planes, the spanwise resolution
and the total number of mesh cells in the domain, respectively.

with 3.8 million core hours for 10 000 d/U∞ (see table 1). The total computational cost of
wall-clock time for these 3-D simulations is 31.7 million core hours.

Due to the high computational costs for 3-D simulations, 2-D simulations were
conducted, serving as complement to the 3-D simulations to conduct a parametric study
across a wide and well resolved parameter space. The 2-D DNS has been used for
examining arrangement effects on the array-scale wake at (Red, ReD) = (100, 2100) in
Nicolle & Eames (2011) and on the drag and wake characteristics at (500, 2500) in Nair
et al. (2023) (ReD = U∞D/ν). More importantly, it was shown in figure 18(c) of Chang,
Constantinescu & Tsai (2017) that there is good agreement in average drag coefficient Cd
among 2-D simulations with (Red, ReD) = (100, 2100) in Nicolle & Eames (2011), 3-D
simulations with (480, 10 000) in Chang & Constantinescu (2015) and 3-D simulations
with (2010, 67 000) and (2010, 37 500) in Chang et al. (2017). These results support
the applicability of 2-D DNS in exploring the arrangement effects. Besides the above
justification based on the literature, independent evaluation about the applicability of 2-D
simulations was made through comparison to the 3-D simulations presented later in this
paper. For a 2-D case, the computational cost ranged from approximately 3000 core hours
for the smallest array with N = 7 cylinders to 60 000 core hours for the largest array with
N = 109 (see table 1).
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Each 2-D flow was simulated for at least 2000 non-dimensional time units to reach
a fully developed state. The 2-D simulation was then continued for at least 5000 time
units (called full length) for statistical analysis. As the three-dimensionality in the system
is weak, it took a longer time to reach a fully developed 3-D state. Each 3-D flow was
simulated for at least 5000 time units to reach a fully developed state, after which the 3-D
simulation was run for at least another 5000 time units for statistical analysis. The good
agreement between the results (average drag coefficient, bleeding velocity) calculated with
the full simulated duration and only the second half of the simulated duration for both the
2-D and 3-D cases (e.g. relative differences in Cd are within 0.1 %) suggests that the data
is sufficient to ensure statistical convergence.

Following Chang & Constantinescu (2015), the numerical validation in the present study
was conducted based on the simulations of flow past an isolated cylinder. The simulations
represented two limiting conditions: (1) when the cylinders within the array are spaced far
enough apart to have no wake effect (φ ≈ 0) and (2) when the array becomes very dense to
be a solid body (φ ≈ 1). Whilst the case for φ ≈ 0 was run at Red = 200 for both 2-D and
3-D simulations, the case for φ ≈ 1 was run at ReD = 1500 for 3-D simulations where the
diameter of the isolated cylinder is equal to the array diameter. This Reynolds number of
1500 is close to the array Reynolds number (1469) for the densest array in the present study,
and is expected to manifest strongest three-dimensionality in the flow. Detailed numerical
validations are shown in Appendices A1 and A2.

2.2. Quantification of flow and force characteristics
Drag forces, the vorticity field and the flow through the array (bleeding flow) are analysed
to quantify the influence of arrangement on hydrodynamics of a porous array. Definitions
of these variables are given in this section.

2.2.1. Force quantification
The force acting on the ith cylinder is characterised by drag and lift coefficients, which are
defined as follows:

Cd,i = Fd,i
1
2ρ dU2∞

, Cl,i = Fl,i
1
2ρ dU2∞

, (2.3a,b)

where Fd,i and Fl,i are the drag (in the streamwise direction) and lift (normal to the
streamwise direction) forces on the ith cylinder (per unit length), respectively. The
time-mean drag and lift coefficients are denoted as Cd,i and Cl,i, respectively. The averaged
drag force exerting on cylinders within the array is characterised by the average drag
coefficient, which can be written as

Cd =
(∑N

i=1 Cd,i

)
N

. (2.4)

The averaged fluctuating components of the drag and lift coefficients are quantified by
the average root-mean-square drag and lift coefficients as

Cd,rms = 1
N

N∑
i=1

√√√√√ 1
M

M∑
j=1

(C j
d,i − Cd,i )

2
, Cl,rms = 1

N

N∑
i=1

√√√√√ 1
M

M∑
j=1

(C j
l,i − Cl,i )

2
,

(2.5a,b)
where M is the whole number of discrete values of the time histories of Cd,i and Cl,i.
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F. He and others

2.2.2. Flow quantification
The vortex structures formed in the system can be identified through visualising the
dimensionless vorticity field in the spanwise and streamwise directions, ωz and ωx, defined
respectively as

ωz = ∂v

∂x
− ∂u

∂y
, ωx = ∂w

∂y
− ∂v

∂z
. (2.6a,b)

The bulk bleeding flow through a porous array is quantified using the time-mean
streamwise velocity ūp over the fraction of the array circumference for which U · n > 0
(where U is the vector of time-mean velocity and n is the outward pointing normal vector
for the cylindrical surface enclosing the array and shown as dashed circles in figure 4), i.e.:

ūp = 1
P

∮
ū dp, (2.7)

where P is summation of integrating arc segments for U · n > 0. Note that the integrating
arc segments for which calculating ūp are case-dependent and only part of the array
perimeter. In 3-D simulations, ū is post processed on a spanwise-averaged flow field.

2.3. Dimensional analysis and non-dimensional parameter space
In 3-D simulations, the time-mean drag Fd,i and lift Fl,i forces on each cylinder are related
to both the flow and array characteristics, which can be described by a function of eight
dimensional variables as

Fd,i = 1
2 Cd,iρ dU2

∞ = f (G, d, D, α, θ, ρ, μ, U∞), (2.8)

Fl,i = 1
2 Cl,iρ dU2

∞ = f (G, d, D, α, θ, ρ, μ, U∞), (2.9)

where μ is the dynamic viscosity. The Buckingham π theorem suggests the drag
and lift coefficients in this system are governed by five independent non-dimensional
parameters as

Cd,i = f (G/d, D/d, θ, α, Red), (2.10)

Cl,i = f (G/d, D/d, θ, α, Red). (2.11)

Following (2.10), the average of drag coefficients of all cylinders within an array can be
expressed by

Cd = 1
N

N∑
i=1

Cd,i = f (G/d, D/d, θ, α, Red). (2.12)

From the momentum balance, the bleeding velocity ūp through a cylinder array with
regular arrangement is controlled by the flow blockage parameter, which can be expressed
in terms of these independent dimensionless parameters (He 2023) as

ūp

U∞
= f (Γ ′

D) = f

(
CdaD

(1 − φ)

)
= f

(
2Cd(D/d)

(G/d)2 tan α − π/4

)
. (2.13)

It appears that changes to independent arrangement parameters in (2.13) not only
mathematically alter Γ ′

D on the part of aD/(1 − φ), but also vary it through the
hydrodynamic response of Cd as described in (2.12). The latter is, however, missed in
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Obstacle arrangement can control flows

N = 109

N = 55

N = 31

N = 19

N = 7

Figure 4. The cylinder configuration for different numbers of cylinders (N = 7, 19, 31, 55, 109). The
dot-dashed lines represent the circumferences of arrays.

the geometric flow blockage parameter ΓD often used in previous studies (e.g. Zong &
Nepf 2012).

Similar relationships for the lift and drag coefficients with arrangement, as described in
(2.8)–(2.12), are expected for the 2-D simulations. However, there would be an additional
parameter Ω on the right-hand side of these equations in the 2-D analogue, which
would represent the influence of three-dimensionality associated with the spanwise flow
variation. This three-dimensionality influence Ω is quantified through the root mean
square error, which is defined as

RMSEΩ =
√∑M

k=1 (Πk·2-D − Πk·3-D)2

M
, (2.14)

where Πk·2-D and Πk·3-D are the corresponding variables (e.g. Cd) in 2-D and 3-D
simulations, respectively. In the comparison of global quantities (e.g. Cd, ūp, ū), M is
the total number of data points from either 2-D or 3-D simulations conducted in both the
present and previous studies; in the comparison of local quantities for individual cylinders
(e.g. Cd,i), M is the total number of cylinders within the array.

Using 3-D simulations with complementary 2-D simulations, arrangement effects are
systematically investigated by varying the values of G/d (in the range 1.2–18), D/d
(3.6–200) and θ (0°–30°). For a given G/d, varying D/d is achieved by changing the total
number of cylinders N. The geometries for arrays with different N are shown in figure 4.
In total, 20 3-D cases and 300 2-D cases are simulated to investigate the arrangements,
with testing conditions detailed in table 3 of Appendix B. The Reynolds number of
individual elements is fixed at Red = 200. A constant intrinsic angle α = 60° is used, which
is representative of a porous obstruction with isotropic configuration. Note that, for an
array with α = 60°, the flow field repeats after every θ interval of 30° such that numerical
results in the range θ = 0°–30° can be extended to flows with θ = 30°–360°.
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3. Results

3.1. Overview of flow through an array of cylinders
In this section, an overview of 3-D flow through an array of cylinders is presented for the
four wake regimes observed in He et al. (2022, 2024b). In presenting this, comparison
with results from 2-D simulations is made, which provides insights into the applicability
of 2-D DNS in modelling flow through an array of cylinders.

The four wake regimes are: (i) the coupled individual wake (CI), in which the array shear
layers are stabilised, and the array wake behind the array is dominated by the element-scale
wakes of individual cylinders (figure 5a,e); (ii) the Kelvin–Helmholtz instability wake
(KH), where the array shear layers are susceptible to Kelvin–Helmholtz instability and
form two rows of KH vortices (figure 5b, f ); (iii) the ‘steady + shedding’ wake (SS),
in which the two array shear layers remain independent in the steady region, before
interacting to result in a von Kármán vortex street downstream (figure 5c,g); and (iv) the
vortex street wake (VS), where a von Kármán vortex street forms immediately behind the
array (figure 5d,h). As the flow transitions from regime CI through to VS, the formation
of element-scale vortices in the wake of individual cylinders is progressively suppressed
within the array, coinciding with the increasingly dominant array-scale vortices developed
behind the array.

Figure 5 shows that the flow exhibits 3-D features and that 3-D flow structures can arise
behind individual cylinders or the array depending on the wake regime. For instance, in
regime CI (see figure 5a,e), it is seen that 3-D vortices develop in the wakes of cylinders
at either side of the array. These vortices will merge and be dissipated rapidly in the near
wake of the array as they are convected downstream. As the flow transitions into regime
KH (see figure 5b, f ), whilst there is no 3-D flow structures forming within the array, the
array-scale streamwise vortices form when the two rows of KH vortices, associated with
each array shear layer, interact with each other to form a vortex street further downstream.
In comparison to regimes CI and KH, the flow in regime SS exhibits relatively weak 3-D
flow features (figure 5c,g), occurring where the two array shear layers interact to form
vortex shedding. Finally, in regime VS, the porous array behaves similarly to an isolated
solid cylinder in terms of the formation of a 3-D von Kármán vortex street immediately
behind the array (figure 5d,h).

The distribution of three-dimensionality in the system can be further illustrated by
examining the time-mean spanwise kinetic energy, which is defined as

Ez = 1
T

∫ T

0

1
2

w2/U2
∞ dt, (3.1)

where T (5000 time units) is the sample duration associated with the fully developed flow
and w2/U2∞ is post-processed on a spanwise-averaged flow field. This quantity has been
used previously to check the three-dimensionality in the cylinder wake (e.g. Tong et al.
2014; Jiang et al. 2016).

Whilst in regime CI, non-zero Ez values are distributed behind the array and around a
few cylinders in the rear of the array (figure 6a). Alternatively, in regimes KH, SS and
VS non-zero Ez values are only observed behind the array (figure 6b–d). Clearly, the
flow exhibits 3-D features largely behind rather than within the array. This is consistent
with figure 5 where the three-dimensionality is visualised by isosurfaces of streamwise
vorticity.

Although 3-D structures form within the array in regime CI (figures 6a and 5a), the
three-dimensionality of the element-scale wakes is relatively weak at Red = 200, and this
is expected given that this Reynolds number is close to the critical Reynolds number
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Figure 5. For caption see next page. 992 A3-13
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z
y

x

z
y

x

(g)

(h)

Figure 5. Flow characteristics for four regimes of the array-scale wake. (a–d) Cross-sectional instantaneous
flow field (at z/D = 0) from 3-D DNS, visualised by spanwise vorticity ωzd/U∞ = [−0.4, 0.4] for (a) coupled
individual wake (CI), (b) Kelvin–Helmholtz instability wake (KH), (c) steady + shedding wake (SS) and (d)
vortex street wake (VS). Isosurfaces of ωxd/U∞ = ±0.5 (coloured by ωx) for (e) CI, ( f ) KH, (g) SS and (h) VS.
The four cases in regimes CI, KH, SS and VS have G/d = 8, 4.5, 2.5, 1.2 and N = 31, 109, 31, 31, respectively.
As the flow transitions from regime CI through to VS, the vortex structures behind the array progressively
evolve from the element scale to the array scale, and the flow exhibits 3-D features largely behind the array
rather than within the array.

(194) for onset of three dimensionality for an isolated cylinder (Williamson 1996; Jiang
et al. 2016). Furthermore, at Red = 200 the maximum difference in the average drag
coefficient Cd for two tandem cylinders across the range of G/d = 1.5–8 is only 1 % (Koda
& Lien 2013), which suggests limited influence of element-scale three-dimensionality on
the element drag. More importantly, studies have found that around 90 % of the total
mean drag is associated with the shear layers attached to the cylinder surface, with less
dependence on the flow structure in the far wake (e.g. Fiabane, Gohlke & Cadot 2011).
This suggests that the array-scale three-dimensionality behind the array, far from most of
element wakes, has limited influence on the element drag.

The influence of three-dimensionality on the drag of a single cylinder near a wall is
limited when Ez has magnitude less than or equal to 10−2 (Jiang et al. 2017). In the
present study, each cylinder is confined by surrounding cylinders. Figure 6 shows that
the magnitude of Ez within the array is between 10−3 and 10−2 for all the regimes. With
reference to Jiang et al. (2017), the three-dimensionality in the system should therefore
have limited influence on the total drag force of the array.

To further confirm the applicability of 2-D simulations, a comparison of velocity
profiles is made between 3-D and 2-D simulations in figure 7. In the streamwise direction
(figure 7a–d), for all the regimes, the streamwise velocity decreases with x/D in the
upstream of the array and then continuously decreases throughout the array though some
velocity fluctuations are observed due to the flow heterogeneity induced by individual
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Figure 6. Distribution of time-mean spanwise kinetic energy Ez (defined in (3.1)) for an array of 31 cylinders.
The four cases are the same as in figure 5: (a) CI, (b) KH, (c) SS and (d) VS. Non-zero Ez values are
mostly distributed behind rather than within the array, indicating the development of three-dimensionality
predominantly behind the array.

cylinders; downstream of the array, the velocity shows complex variation but eventually
increases towards the upstream velocity U∞. As the flow transitions from regime CI to
VS, the transverse profile indicates a larger wake deficit in the array wake (at x/D = 1)
(figure 7e–h).

Upstream of and within the array (x/D ≤ 0.5), there is a good agreement between
the streamwise velocity profiles (figure 7a–d), with RMSEΩ of ū/U∞ between 3-D and
2-D simulations of 0.2 %, 0.3 %, 0.8 % and 3.3 % for the four regimes, respectively. This
suggests that the flow upstream of and within the array modelled in the 2-D simulation is
representative of that in the 3-D simulation.

Downstream of the array (x/D > 0.5), the level of agreement between 3-D and 2-D
results depends on the wake regime. In regime CI, the profiles in 3-D and 2-D simulations
are in excellent agreement for both streamwise and transverse profiles (see figure 7a,e),
respectively with RMSEΩ = 1.8 % and 1.0 %. In regimes KH and SS, 3-D and 2-D
transverse profiles agree reasonably well (see figure 7f,g), both with RMSEΩ less than
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Figure 7. Profiles of time-mean streamwise velocity along y = 0 in 3-D simulations compared with 2-D
results: (a) CI, (b) KH, (c) SS and (d) VS. Profiles of time-mean streamwise velocity along x/D = 1:
(e) CI, ( f ) KH, (g) SS and (h) VS. Whilst there is good agreement of velocity profiles upstream of and within
the array, there are differences in the downstream velocity profiles due to the generation of 3-D flow structures.

3.0 %. However, the 3-D and 2-D streamwise profiles show a similar trend but start to
deviate in the KH and SS regimes, with higher RMSEΩ = 12.7 % and 31.3 %, respectively
(figure 7b,c). In regime VS (figure 7d,h), both the 3-D and 2-D streamwise and transverse
profiles start to deviate, with RMSEΩ = 33.4 % and 22.4 %, respectively.

The differences in values of ū/U∞ downstream of the array are generated due to the
following reasons. Firstly, due to missing turbulent diffusion in the 2-D simulation, the
2-D vortex structures in the array wake persist in strength as they travel downstream (not
shown) and hence cause stronger wake entrainment. The streamwise velocity is, in turn,
recovered in a faster rate relative to that in the 3-D simulation. This faster rate becomes
obvious when large-scale 3-D vortex structures are generated at the wake centreline
(comparing figures 7b–d and 5b–d). Furthermore, without vortex stretching 2-D array
shear layers are much stronger and interact to form vortex shedding closer to the array (not
shown), which hence induces wake entrainment earlier than in the 3-D simulation. This is
consistent with earlier recovery of ū/U∞ in the streamwise profile (see figure 7c,d).
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The focus of the present study is arrangement effects on the bulk flow through and bulk
drag on the array, which are associated with the variation of element-scale flow and drag
characteristics with arrangement (demonstrated later). Therefore, no further attempt was
made to demonstrate the differences in the array wake between 2-D and 3-D simulations.

The discussions based on figures 5–7 as a combination suggest that 2-D simulations
may be a reasonable tool that helps us increase the resolution of the parameter space
in investigating the arrangement effects on the drag on the array elements and the bulk
velocity through the array, though caution is needed in interpretation of 2-D array-scale
wake.

3.2. Arrangement effects: gap ratio and array-to-element diameter ratio
To interpret the arrangement effects at the element scale, a first step is to understand the
element-scale flow and drag characteristics within a finite circular array. Since the array is
a combination of multiple lines of cylinders, the scenario of flow past a line of cylinders
is studied first.

The key findings of flow past a single line of cylinders from existing literature (Hosseini
et al. 2020; Zhu et al. 2021; Eizadi et al. 2022) can be summarised as: (i) the flow evolution
along the line is chiefly controlled by G/d when Red ≤ 200 and N ≥ 3; (ii) the flow
transitions from shear layer reattachment (SLR) and two-row structure (TRS) occurring
at G/d ≈ 3.7; and (iii) SLR and TRS can cause significant drag reduction to the elements
covered by these characteristic flow structures.

Two typical cases at G/d = 2 and 4.5 with N = 11 from 3-D simulations are used to
illustrate the two characteristic flow structures and drag reduction mechanisms associated
with them (see cross-sectional flow fields in figure 8). The flow for G/d = 2 remains 2-D,
while the flow is 3-D for G/d = 4.5 (details are not shown). For G/d = 2 (see figure 8a)
the two (positive, negative) separated shear layers from the upstream cylinder reattach
on the downstream cylinder from C2 to C3 and SLR develops downstream into regular
vortex shedding; these vortices develop a unique pattern downstream where the positive
and negative vortices are separated into two parallel rows spanning from C8 to C11, i.e.
TRS. For G/d = 4.5 (figure 8b), von Kármán vortices develop from C1; these vortices
develop TRS downstream spanning from C2 to C4. Further downstream the flow becomes
chaotic.

In the wake of a single cylinder, the primary von Kármán vortices were found to develop
downstream into TRS when Ly/Lx > 0.365, where Ly is the cross-wake spacing between
centres of positive and negative wake vortices and Lx is the distance between centres of
adjacent vortices of the same sign (vortex centre is defined by the maximum of spanwise
vorticity ωzd/U∞). This threshold has been theoretically identified based on inviscid
theory and validated through both experiments (Durgin & Karlsson 1971; Karasudani
& Funakoshi 1994) and numerical simulations (Thompson et al. 2014). In the present
study, TRS is similarly developed from primary von Kármán vortices from C1 in a line.
Therefore, this threshold Ly/Lx > 0.365 is adopted here to quantitatively classify TRS, with
the two length scales Ly, Lx illustrated in figure 8(a).

The distribution of drag coefficient along the line for the two gap ratios are plotted in
figure 8(c). It is seen that the cylinders within either SLR (C2, C3, C8–C11 marked in dark
grey in figure 8a) or TRS (C2–C4 in figure 8b) have very small drag coefficients relative
to other cylinders without these typical flow structures.

Figure 9 illustrates how the characteristic element-scale wake varies with increasing G/d
(and hence D/d) for a circular array with a fixed total number of cylinders (N = 109) in 3-D
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Figure 8. Flow and drag characteristics of a single line of 11 cylinders for θ = 0° in 3-D DNS. Instantaneous
cross-sectional (z/D = 0) flow fields for G/d = 2 (a) and G/d = 4.5 (b). (c) Distribution of drag coefficient along
the line. Cylinders with TRS or SLR are marked in dark grey in (a–c).

DNS. The element-scale wake structure within a multiple-line array exhibits three flow
states: (i) SLR develops for a number of cylinders within an array; (ii) the element-scale
wake in the array is characterised by TRS, which covers at least two cylinders within a line;
and (iii) over the entire array no downstream cylinders are within a region of TRS or SLR
(termed ‘non-covered’, or NOC, here). Two cases with SLR are presented in figure 9(a,b).
For (G/d, D/d) = (2, 22.2) (figure 9a), SLR fully occupies the three lines of cylinders in
the middle of the array (lines 1−, 0, 1+). The SLR is progressively broken down as the
array edges are approached (figure 9a). The resultant wakes of individual cylinders remain
steady but form a staggered pattern. The formation of the staggered pattern is attributed
to flow diversion towards either side of the array, as indicated by diverging streamlines
(figure 9a). At larger G/d = 2.5, SLR can develop downstream into vortex shedding (lines
2−, 1−, 0, 1+, 2+ in figure 9b). With further increases in G/d, it is seen that TRS develops
for a number of cylinders (figure 9c). The TRS covers from C3 to C5 in four lines (the filled
circles in lines 2−, 1−, 1+, 2+) and up to C6 in the middle line (line 0). Finally, NOC is
observed for the array with the largest G/d = 8 (figure 9d), where TRS is confined between
C2 and C3 in the three lines (0, 1−, 2−) without covering any downstream cylinder in each
line. With increasing G/d, SLR or TRS covers a smaller number of cylinders within a line
(see figure 9a–d).

Flow transition processes similar to those of a single line of cylinders are observed in
multiple-line arrays. A transition from SLR to vortex shedding is seen in both a single
line and an array for small gap ratio (figures 8a and 9b); for large gap ratio, a downstream
transition from primary vortex to secondary vortex and eventually to a chaotic wake is
observed in both the single line and the array. Comparisons of spectra of lift coefficient
combined with the instantaneous flow field for the array (G/d = 8, N = 109) with those of
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Figure 9. Cross-sectional instantaneous flow field (at z/D = 0) for arrays of 109 cylinders with various gap
ratios in 3-D DNS. Cylinder lines are numbered, and the cylinders covered by TRS are marked in dark grey
in (c,d), which is classified based on the criterion Ly/Lx > 0.365. With increasing G/d, the extent of elements
covered by SLR or TRS over the array is reduced.

the counterpart single-line case are used to demonstrate this (see figure 10). The flow
and lift spectra for different lines within the array show similar evolution, such that
only lines 0 and 4− are presented for demonstration. The primary frequency dominates
the first two cylinders in each line within the array (figure 10a1,a2,c1,c2). This shows
that the von Kármán vortex shed from C1 governs the frequency of the TRS occurring
behind C2 (see figure 10b). The secondary frequency emerges on the spectrum of C2
and then becomes dominant over C3 to C6 (figure 10a3–a6,c3–c6). Further downstream,
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Figure 10. Similarity of downstream evolution of the lift coefficient spectrum and instantaneous flow between
an array of 109 cylinders and a single line of 11 cylinders (both at G/d = 8) in 3-D DNS. Here ‘P’ and ‘S’
represent primary and secondary frequencies, which are indicative of the element-scale primary vortex and
secondary vortex, respectively.

no dominant frequency is observed (figure 10a8,c8), which characterises the chaotic flow
(see figure 10b,d). Such downstream evolution of lift spectrum and vortex structures is
similar to that for the single line (see figure 10e1–e8, f ), demonstrating the similarity of
flow evolution within the array to that for a single line of cylinders.

Similarity is also seen in the distribution of drag coefficients of cylinders along the
line. This is demonstrated in figure 11 for an array of cylinders with N = 109, G/d = 4.5,
for which the instantaneous flow field is shown in figure 9(c). It is seen that the drag
distributions along lines of cylinders are very similar to that of the single line especially in
the middle of the array (comparing figure 11 with figure 8c), with a sharp decrease of Cd,i
through the first three cylinders, followed by an increase and a decrease over downstream
cylinders.

The variation of Cd,i along each row of cylinders within the array in 2-D simulations
follows the trend of that in 3-D simulations. Values of Cd,i for some cylinders in 3-D
simulations are slightly lower than those in 2-D simulations. For all the cases in the present
study, the RMSEΩ for Cd,i is less than 8 %. This level of discrepancy of Cd,i between 3-D
and 2-D simulations is comparable to that of flow past two tandem cylinders (e.g. Koda &
Lien 2013). This demonstrates the minor effect of using the 2-D assumption to simulate
the flow within the present scope.

Despite the similarity, the presence of the adjacent lines of cylinders in proximity in
arrays makes the flow evolution along a line within the array more complicated than that
along the single line. The adjacent lines have two effects on the flow: (i) adjacent lines
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Figure 11. Distribution of drag coefficient of cylinders within an array of cylinders with N = 109, G/d = 4.5 in
both 3-D and 2-D DNS. The cross-sectional instantaneous flow field for this case is shown in figure 9(c). The
distributions of Cd,i along the line of cylinders within the array in both 3-D and 2-D simulations are similar
to that of the single line of cylinders shown in figure 8(c), especially in the middle of the array, suggesting the
applicability of using 2-D DNS in characterising the element drag.

behave similarly to bounding walls (Zdravkovich 1997; Sahin & Owens 2004) to confine
the flow motions in the cross-flow dimension (referred to herein as a confinement effect),
and (ii) vortices shed from adjacent lines interact with each other (vortex interaction),
destroying the regular vortex structures. The confinement effect is illustrated by comparing
the instantaneous flow field between the single line and the lines within the array for the
same G/d = 2. For the single-line case (figure 8a), the flow develops downstream from
SLR to vortex shedding. In contrast, the flows along three lines within the array (1−, 0, 1+
in figure 9a) are stabilised with SLR persisting throughout the array due to the confinement
of adjacent lines of cylinders.

A consequence of adjacent lines is a more chaotic flow within the array, in comparison
with that along the single line of cylinders. For a single line of cylinders, a distinct
low frequency ( fd/U∞ = 0.035) is observed from C4 to C8 (see figure 10e4–e8). This
frequency corresponds to the large-scale tertiary vortex reported in Eizadi et al. (2022).
This is, however, absent for the array (figure 10a4–a8,c4–c8) where the flow exhibits a
chaotic shedding feature (see figure 10b,d).

In addition to the influence of adjacent lines, flow through an array is more complex still
than that of a single line due to the diversion of flow around the array. With this diverted
flow, element wakes (particularly near array edges) are directed laterally towards the edge
of the array, as shown by streamlines in figure 9(a). Hence typical flow structures such
as SLR and TRS, formed due to the alignment of element wakes with the incident flow,
progressively break down as array edges are approached (figure 9a–d). This is the reason
why the drag distribution along a line of cylinders in an array increasingly deviates from
that of a single line of cylinders when the line is closer to the edge of the array (comparing
figure 11 with figure 8c).
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The identified characteristic flow structures, SLR and TRS, play important roles in
determining Cd. A plot of Cd for arrays with N = 31 (figure 12a), combined with the
cross-sectional instantaneous flow fields in 3-D simulations for critical G/d (figure 12b–d),
is used to demonstrate this. It is seen that with increasing G/d, Cd generally increases
towards an asymptotic value of roughly 0.8 (figure 12a). The variation of Cd with G/d
in 3-D simulations is close to that in 2-D simulations. Therefore, 2-D simulations are
employed to increase the resolution with G/d and identify critical values (≈3.3, 7.8) for
the transition between different regimes. Despite the general increasing trend, the variation
of Cd with G/d depends on the element-scale flow structure. SLR remains dominant in
the range G/d = 1.8–2.7 (figure 12a), with a typical instantaneous flow field shown in
figure 12(b). There is therefore little variation of Cd in this range (figure 12a). Beyond
G/d = 2.7, SLR starts to break down. With diminished drag reduction in SLR, the Cd value
increases sharply above G/d = 2.7. With further increase in G/d, TRS begins to dominate
the element wake. The extent of cylinders covered by TRS is virtually unchanged over
the range G/d = 3.4–4.7, in which the instantaneous flow field is similar to that shown in
figure 12(c) and hence the Cd value stabilises around 0.55. There is a second sharp increase
of Cd from G/d = 4.7 to 8 where with increasing G/d the extent of cylinders covered by
TRS in a line is progressively reduced upstream and eventually to only C2 for lines in the
middle of the array (see figure 12d). The element wake is in NOC for G/d > 8, causing the
near-constant value of Cd for G/d > 8 (figure 12a). The above interpretation reveals the
underlying link between the characteristic flow structure (and its variation with G/d) and
the averaged element drag coefficient in finite arrays.

More arrays with N = 7, 19, 31, 55, 109 were simulated to demonstrate these three states
(SLR, TRS, NOC) in the (G/d, D/d) parameter space (figure 13). This figure includes 10
3-D cases, and 73 complementary 2-D cases due to the computational cost. It is seen from
figure 13 that the element-scale wake structures in 3-D and 2-D simulations are in the same
flow state for the same value of G/d and D/d. The element-scale wake structure is primarily
set by G/d in most cases. For small gap ratio, SLR dominates the element wake within an
array at G/d � 3, whose threshold is less than that for the single line (G/d � 3.7). For
intermediate gap ratio (3 � G/d � 8), the element-scale wake is characterised by TRS.
Cases with large gap ratio (G/d � 8) display NOC. With increasing G/d, the transition
from SLR into TRS coincides with the decrease in the extent of cylinders within an array
covered by SLR, as shown in figure 9(a–c). A similar decreasing trend is observed for the
extent of TRS as the flow transitions from TRS to NOC (figure 9c,d). The reduction in the
extent of these two characteristic flow structures in an array with increasing G/d is similar
to that observed for the single-line scenarios (e.g. Hosseini et al. 2020).

For a single line (e.g. Eizadi et al. 2022) and an infinite array (da Silva et al. 2019)
of cylinders, the formation of characteristic element-scale flow features is controlled by
the gap ratio when the cylinder Reynolds number is fixed. It appears that this is also
the case for a finite circular array when D/d > 10, as shown by the separation of three
characteristic element-scale wake states at two virtually invariant G/d values (3, 8) for
N � 31 in figure 13. This suggests that the array-scale (D/d) has secondary influence on
the formation of characteristic element-scale wake if the array has a sufficiently large
number of cylinders (N � 31) and large size (D/d � 10).

Figure 13 also illustrates that the averaged element drag coefficient Cd (the filled colour
in each symbol) increases with G/d but decreases with D/d, meaning that larger and denser
arrays have lower average drag coefficients. The Cd value varies significantly with G/d and
D/d by a factor of more than 4 (from 0.23 to 0.90) in the numerical runs of this study.
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Figure 12. Demonstration of the critical role of element-scale flow structures in determining the average
element drag coefficient in both 3-D and 2-D DNS. (a) Variation of Cd with G/d for arrays with N = 31.
Dashed lines represent the range of G/d where SLR, TRS or NOC become dominant. (b–d) Cross-sectional
instantaneous flow fields of N = 31 for critical gap ratios (G/d = 2.7, 4.5, 8) at z/D = 0 in 3-D simulations
marked in (a). In (c,d) cylinders covered by TRS are marked in dark grey. Despite the general increasing trend
of Cd , values of Cd are controlled by the characteristic flow structures and its variation with G/d.

3.3. Arrangement effects: incident flow angle
Varying the incident flow angle can generate a wide range of element-scale wake
structures, and hence drag distributions, over an array. This is demonstrated through 3-D
DNS by varying the incident flow angle for an array of cylinders with N = 31 and G/d = 4.5
in figure 14. For θ = 0°, the flow along each line of cylinders develops from von Kármán
vortices into TRS (figure 14a). Channelised flow with streamwise velocity higher than
the ambient velocity is formed between adjacent lines (figure 14b). In contrast, the mean
velocity in the gap between cylinders in each line is extremely low (figure 14b). The
formation of TRS coincides with suppression of lateral mixing (Durgin & Karlsson 1971),
which causes the persistence of channelised flow with high velocity throughout the array.
The suppression of lateral mixing is indicated by very low Reynolds shear stress magnitude
around covered cylinders (marked with dark grey circles in figure 14c). Accordingly, the
low gap velocity leads to very low drag force on the cylinders covered by TRS (figure 14d).

For the case with θ = 10°, TRS is identifiable in the lower half of the array but
completely disappears in the upper half of the array (figure 14e). In the lower half, the
flow diversion (towards the lower side) helps to direct the local flow along the geometric

992 A3-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

51
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.510


F. He and others

1 3 5 7 10 20

G/d

D/d

2

4

6

8

10

20

40

60

100

200

7

19

31
55

109

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
SLR(2-D)

TRS(2-D)

NOC(2-D)

SLR(3-D)

TRS(3-D)

NOC(3-D)

Cd

Figure 13. The element-scale wake structure and average drag coefficient Cd of an array of cylinders mapped
out in the parameter space of G/d and D/d for θ = 0° for both 3-D and 2-D DNS. Cases along each dashed
line have the same total number of cylinders in the array (N, marked on the right). Cases with the same flow
state cluster together, demonstrating dependence of characteristic element-scale flow feature on G/d and D/d.
The value of Cd varies significantly with G/d and D/d from 0.23 to 0.90, highlighting the significant impact of
cylinder arrangement.

channels resulting in the formation of channelised flow. The diverging flow, however, cuts
across the channel direction in the upper half and supresses channelised flow, such that
most cylinders in the upper half are no longer in the low-velocity wake regions of upstream
cylinders (figure 14f ). The forces on most of the cylinders are therefore increased and at a
significant angle to the primary axis of the line (figure 14h).

For θ = 30°, TRS and channelised flow completely disappear within the array
(figure 14i–k), which leads to a significant increase in mean drag coefficient (figure 14l).
The flow progressively develops downstream into a chaotic state, as evidenced by the
vorticity field in figure 14(i) and the absence of a dominant peak in spectra of lift
coefficient (not shown). These chaotic vortices cause stronger lateral mixing in comparison
with the other two flow angles (comparing Reynolds shear stress in figure 14c,g,k).
Accordingly, the wake deficit of each cylinder is recovered more rapidly than at smaller
θ (comparing figure 14b, f, j). Any downstream cylinder is in turn out of the low-velocity
region behind its upstream cylinder (figure 14j) and hence has large drag (figure 14l). The
resultant average drag coefficient Cd increases, more specifically by 42 %, compared with
that at θ = 0° (see the legends in figure 14d,l).

The incident flow angle becomes less important with increasing array diameter for a
fixed gap ratio. This is illustrated by two arrays with D/d = 24.8 (figure 14) and 48.6
(figure 15) but the same value of G/d (4.5). For θ = 0◦, the fraction of elements within
TRS decreases from 45 % (figure 14a) to only 14 % when doubling the array diameter
(figure 15a). Consistently, the channelised flow is eliminated near the back of the larger
array (figure 15a), in contrast to that persisting throughout the smaller array (figure 14b).
As indicated by the instantaneous and mean flow fields in figure 15, for the large array,
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Figure 14. The variation with incident flow angle of the fields of cross-sectional instantaneous spanwise
vorticity (first row) (at z/D = 0), time-averaged streamwise velocity (second row), Reynolds shear stress
(third row) and time-mean force and drag coefficient (fourth row) for an array of 31 cylinders with (G/d,
D/d) = (4.5, 24.8) in 3-D DNS. The fields of Reynolds stress and mean flow are post-processed on a time-mean
spanwise-average flow field. The first (a–d), second (e–h) and third (i–l) columns represent θ = 0°, 10° and 30°,
respectively. Cylinders within the TRS are marked in dark grey in (a,c,e,g). The arrow in the top-right corner
of (d,h,l) represents a unit time-mean force of 1. With increasing θ , the TRS in (a) and channelised flow in (b)
are progressively suppressed, which creates an increase in mean drag coefficient in (d,h,l).
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Figure 15. Cross-sectional instantaneous flow field (upper half) (at z/D = 0) and mean field of streamwise
velocity (bottom half) for (a) θ = 0° and (b) θ = 30° in an array of 109 cylinders (G/d, D/d) = (4.5, 48.6) in
3-D DNS. The mean flow is post-processed on a spanwise-average flow field. The colour bar (not shown) of
spanwise vorticity is the same as that used in figure 14. Cylinders within TRS are marked in dark grey. With
increasing θ from 0° to 30°, the breakdown of TRS and channelised flow impacts relatively fewer cylinders in
a large array relative to that in the smaller array in figure 14.

whilst no channelised flow is formed at θ = 30°, a large number of cylinders form chaotic
vortex shedding (∼39 %, identified from lift coefficient spectra) and are non-channelised
for θ = 0◦. Therefore, when increasing θ from 0° to 30°, the resultant breakdown of TRS
and channelised flow impacts fewer cylinders within the larger array.

With diminished dominance of TRS and channelised flow, the total drag on the larger
array becomes less sensitive to θ . This is best indicated by a transverse-averaged drag
coefficient 〈Cd〉x, in which the angled bracket represents the operation of averaging drag
coefficients Cd,i of elements with identical streamwise (x, denoted in the subscript) but
different transverse (y) locations. It is seen that for the smaller array (D/d = 24.8), 〈Cd〉x
for θ = 0° is largely lower than that for θ = 30° (figure 16a). A similar contrast in 〈Cd〉x
is seen in the larger array in the same region of 0 < (x − x0)/d < 25 (figure 16b), with x0
the coordinate of the front cylinder in the array. Lower values of 〈Cd〉x for θ = 0° in both
the small and large arrays are associated with the development of channelised flow in
the region 0 < (x − x0)/d < 25 (see figures 14b and 15a). The flow channelisation leads to
cylinders in each line largely behaving as a single bluff body and hence imposing smaller
drag forces. This difference in 〈Cd〉x between θ = 0° and 30° is dramatically diminished
(and reverses in sign) downstream of (x − x0)/d = 25 within the larger array (figure 16b).
This is because the channelised flow is progressively eliminated beyond (x − x0)/d = 25 in
the large array at θ = 0°, which coincides with cylinders in this region subject to higher
local velocity (figure 15a). Near either side of the array where flow diversion is strong, the
cylinders beyond (x − x0)/d = 25 at θ = 0° even experience higher velocity than at θ = 30°
(comparing figure 15a,b). This leads to greater Cd,i values for cylinders at (x − x0)/d > 25
than θ = 30°. This reversal of 〈Cd〉x at (x − x0)/d = 25 explains why the averaged drag
coefficient Cd for the larger array is much less dependent on incident flow angle (values
provided in figure 16 legends).
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Figure 16. Evolution of the transverse-averaged drag coefficient 〈Cd〉x along the two arrays for incident flow
angles θ = 0° and 30° in 3-D DNS. The two arrays shown in (a,b) have the same value of G/d (4.5) but different
values of D/d: (a) D/d = 24.8, N = 31; (b) D/d = 48.6, N = 109. Error bars represent the standard error of the
Cd,i values averaged in the transverse (y) direction. Both arrays have a dependence of 〈Cd〉x on θ in the region
0 < (x − x0)/d < 25. The larger array has minimal dependence on incident flow angle beyond (x − x0)/d = 25.

The incident flow angle effects are sensitive to the gap ratio. This is demonstrated
by comparing the case of G/d = 2.7 with that of G/d = 4.5 described above. At θ = 0°
instantaneous flow within the array is dominated by SLR (figure 17a) and channelised
flow develops throughout the array (figure 17b). All cylinders in turn have very low drag
except for the most upstream cylinder in each line (figure 17c). Shear-layer reattachment
breaks down into vortex shedding for some cylinders for θ = 10° (figure 17d), with incident
flow redirected to pass through the gap between adjacent lines of cylinders (figure 17e). For
θ = 30°, SLR is completely suppressed, and the flow is characterised by a staggered steady
wake pattern (figure 17g). Clearly, with increasing θ , the channel flow is progressively
broken down from the top of the array towards its bottom. The average drag coefficient is
increased by 15 % with an increase of θ from 0° to 30°, which is smaller than 42 % for the
case with G/d = 4.5 (comparing legends between figures 14d,l and 17c,i).

In combination, figures 14–17 indicate that the variation of Cd with θ is dependent on
both the gap ratio and array-to-element diameter ratio. This strong, nonlinear dependence
of Cd on θ is further demonstrated in figure 18 with a combination of 3-D and 2-D
simulations. Generally, the influence of incident flow angle on Cd become less significant
with decreasing G/d for a fixed total number of cylinders N. On varying θ from 0° to
30°, the averaged drag coefficient can vary in a wide range. For instance, the Cd value
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Figure 17. The variation of cross-sectional instantaneous flow field (first row) (at z/D = 0), time-averaged field
of streamwise velocity (second row) and the distribution of force and drag coefficient (third row) with incident
flow angle for an array of 31 cylinders with (G/d, D/d) = (2.7, 15.3) in 3-D DNS. The first (a–c), second (d–f )
and third (g–i) columns represent θ = 0°, 10° and 30°, respectively. The colour bar of spanwise vorticity omitted
in (a,d,g) is the same as in figure 14. With increasing θ , SLR in (a) and channelised flow in (b) within the array
are progressively suppressed, which coincides with an increase in drag on cylinders over the array in (c, f,i).

varies in the ranges of 0.90–1.30 and 0.55–0.78 for the arrays with (G/d, D/d) = (17, 35),
(4.5, 24.8), respectively (denoted in order ‘ ’, ‘�’ in figure 18). All arrays exhibit their
lowest value of Cd at θ = 0° due to the formation of channelised flow at this angle (e.g.
figures 14b, 15a and 17b). However, the highest value of Cd occurs at a range of angles
and the averaged drag coefficient does not necessarily increase with θ monotonically. It is
therefore insufficient to infer the variation of Cd with θ based purely on the positioning of
cylinders relative to incident flow or the projected area of cylinders normal to the incident
flow. The controlling mechanism for the dependence of Cd on θ is the complex variation
of element-scale wake interaction with the cylinder arrangement.

3.4. Universal descriptor of bulk flow through a porous array
In §§ 3.2 and 3.3, we have shown that the element-scale flow and drag characteristics
can vary widely with arrangement parameters G/d, D/d and θ . However, none of these
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Figure 18. The strong, nonlinear variation of Cd with θ across the range of arrays, demonstrating that the Cd
value is not only related to the array geometry but also depends on the orientation of the array. The symbols
with red and black edges represent 3-D and 2-D cases, respectively.

parameters independently control flow through the porous array. From the perspective
of momentum balance, the bulk flow through a porous array is controlled by the
array resistance, which is defined by the effective flow blockage parameter Γ ′

D (Chang
& Constantinescu 2015). It is therefore hypothesised that the effective flow blockage
parameter provides a universal description of bulk bleeding flow, which is demonstrated
in this section.

Figure 19 presents the variation of ūp/U∞ with ΓD and Γ ′
D, incorporating results from

both 3-D and 2-D simulations. The RMSEΩ of ūp/U∞ for the same values of ΓD between
3-D and 2-D simulations is 2 %. Given this small discrepancy, the following discussion is
based on a combination of 3-D and 2-D simulations.

First, the variation of bulk bleeding velocity ūp/U∞, defined in (2.7), with the geometric
flow blockage parameter ΓD (assuming Cd = 1) is examined as it has been commonly
used to describe the bleeding flow in previous studies (e.g. Rominger & Nepf 2011; Zong
& Nepf 2012). It is seen that the bleeding velocity generally decreases with increasing ΓD.
As per (2.13), this means that a denser (low G/d), larger (high D/d) array typically has a
lower bleeding velocity.

Despite the general decreasing trend, the bleeding velocity is not entirely controlled
by ΓD. Data from the same arrays (and thus the same value of ΓD) but with different
arrangements are highly scattered, especially in the intermediate range of ΓD. For instance,
figure 19(a) incorporates ten typical arrays with different θ from 0° to 30° with a constant
increment of 5°, spanning across the investigated ΓD range (see grey filled symbols). The
difference between the maximum and minimum of ūp/U∞ in the range of θ = 0°–30° is
only about 0.02 for a very small or large flow blockage parameter (e.g. ΓD = 0.3, 24.2). In
contrast, for a medium ΓD = 1.8, this difference can be up to 0.15, which is one order
of magnitude higher than that for very small or very large ΓD. By varying G/d, D/d
and θ (between 0°–30°) simultaneously but keeping ΓD = 1.8, the dimensionless velocity
difference between the maximal and minimal values can be even 0.28 and the relative
difference is 50 % (cases 8 and 33 in table 4 in Appendix B). These demonstrate that the
impact of the cylinder arrangement on bleeding flow is most critical in the intermediate
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Chang & Constantinescu (2015)
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A1 (N = 7) A22 (N = 31)
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A42 (N = 31)  A43 (N = 31)
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Figure 19. The relationship between the bleeding velocity ūp/U∞ and flow blockage parameters. Here Cd = 1
and direct measurement of Cd are used in (a) ΓD and (b) Γ ′

D. The filled grey symbols represent the cases varying
θ from 0° to 30° with an interval of 5° (see table 4 in Appendix B). The data points are scattered in (a) but
collapse well in (b), demonstrating that Γ ′

D controls the bulk bleeding flow.

range of ΓD, particularly in the range 1 � ΓD � 3 where the difference between the
minimum and maximum of ūp, associated with variation of θ from 0° to 30°, is greater than
10 % of U∞. The high scattering of data demonstrates that the cylinder arrangement can
impose a first-order influence on the bleeding flow. The incompleteness of ΓD in defining
bleeding flow is because this parameter only defines the geometric bulk blockage of an
array without fully incorporating information of arrangement.

The prevalence of the characteristic flow structures appears to be the underlying physical
mechanism for the most critical arrangement effects in the intermediate range of ΓD (1–3).
It is found that this range of ΓD corresponds to the intermediate range of G/d and D/d
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where TRS and SLR is the dominant flow feature within an array (see figure 13). With
small variation in θ , the extent of TRS or SLR within the array (and the associated
reduction in drag) can be greatly enhanced or suppressed. Accordingly, Cd (and thus
ūp/U∞) can be particularly sensitive to θ . Outside this range, the flow within the array
is characterised by either non-covered element-scale wake (NOC) (low ΓD) or very low
local velocity (hence low drag) (high ΓD); the bleeding flow is therefore less dependent
on the cylinder arrangement.

Contrastingly, there is excellent collapse of bleeding flow data with the effective flow
blockage parameter Γ ′

D using direct measurement of Cd (figure 19b). In fact, the scattered
data points in the critical range (1 � ΓD � 3) all collapse in the medium range of
0.5 � Γ ′

D � 1.5 where ūp/U∞ has higher gradient against Γ ′
D than at the two ends of Γ ′

D.
Any change to the cylinder arrangement in this range will alter Γ ′

D and hence dramatically
change ūp/U∞. The improved collapse of ūp/U∞ with Γ ′

D demonstrates the importance
of hydrodynamic response of Cd to the array arrangement in controlling the bulk bleeding
flow, which is, however, missed in geometric ΓD. The response is manifested by the
variation of element-scale flow and drag characteristics with arrangement as discussed
in §§ 3.2 and 3.3. By allowing the controlling influence of array arrangement on Cd, the
effective flow blockage parameter, i.e. Γ ′

D, not only controls the amount of flow passing
through a porous array but also determines when the arrangement effects are critical.

There is vast variability of element-scale flow characteristics in Γ ′
D. For instance,

the two 3-D cases 13* and 20* (marked in bold text in table 4) with Γ ′
D ≈ 1.5 have

different element-scale flow structures but almost identical values of ūp/U∞ ≈ 0.2. Vortex
shedding is formed within one array (G/d = 2.5, D/d = 27.5, N = 109) at θ = 0° but not in
the other array (G/d = 2.3, D/d = 13, N = 31) at θ = 30° (see figure 23a,b in Appendix B).
The effective flow blockage parameter basically characterises the net bulk resistance of
the array, which determines the bulk bleeding flow. The resistance can be broken down
into discrete point drag forces, which are physically modelled by individual cylinders in a
circular domain herein. Depending on the array and incident flow properties (defined by
G/d, D/d, α, θ , Red), the array can have various element-scale flow and drag characteristics
at fixed Γ ′

D.
Figure 19(b) demonstrates that the bulk bleeding velocity is a function of Γ ′

D.
Furthermore, this paper demonstrates the complex variation of Cd, a critical component of
Γ ′

D, with arrangement, by varying selected arrangement parameters (G/d, D/d, θ ) in §§ 3.2
and 3.3. As a combination, this shows how the arrangement changes the element-scale
flow and drag characteristics and eventually changes the bulk force on and the bulk flow
through the array. The relevance of Γ ′

D and coupling between element and array scales are
further explored in He et al. (2024a).

3.5. Variability of averaged drag coefficient
The scattering of data points in figure 19(a) is related to the variation of Cd for the
same ΓD (geometric flow blockage). By accounting for the Cd variation, figure 19(b)
presents a relation between ūp/U∞ and Γ ′

D. However, prediction of ūp/U∞ in reality still
requires quantitative information of Cd. Therefore, the variability of Cd in and with ΓD
is investigated in figure 20(a), which compiles data from this study and previous work
(listed in figure 20b). It is seen that the present data agree with existing data of various
arrangements and Red. The RMSEΩ of ūp/U∞ for the same values of ΓD between the
present 3-D and 2-D simulations is 8 %.
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Symbol Data source α θ Red D/d G/d Method

3-D simulations

Present study 60° 0° 200 6–181 1.2–17 Num.

Present study 60° 30° 200 7–79 1.2–17 Num. 

Chang & Constantinescu (2015) Random – 480 10.4, 21 2.8–8.1 Num.

Chang et al. (2017) Random –
1125–

4020
33.3 – Num.

Takemura & Tanaka (2007) 60° 0° 4000 3.6–13 1.5–6 Exp.

Takemura & Tanaka (2007) 60° 30° 4000 3.6–13 1.5–6 Exp.

2-D simulations

Filled in
grey

(e.g. )
Present study 60° 0°–30° 200 6–181 1.2–17 Num. 

Present study 60° 0° 200 7–79 1.2–17 Num. 
Present study 60° 30° 200 7–79 1.2–17 Num. 

Nicolle & Eames (2011) Concentric ring 0° 100 21 - Num. 

Zhao et al. (2015) 90° 45° 100 8.5–26 1.5–5 Num. 

Zhao et al. (2015) 63° 0° 100 8.5–26 1.5–5 Num. 

0.1 10.2 0.5 102 5 30 50
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C–d  = 1.3∗(1 + ΓD)–0.61, R2 = 0.86

C–d

ΓD
(b)

(a)

Figure 20. (a) An integration of data of Cd against ΓD from previous studies and the present work. (b) List of
references shown in (a). The symbols from the present study represent the same cases as shown in the legend in
figure 19(a). Note: Exp, laboratory experiment; Num, numerical simulation. The plot in (a) demonstrates that
there is clear variability of Cd with ΓD, but also scatter across systems.

With increasing ΓD the averaged drag coefficient generally decreases and variability of
Cd in ΓD reduces. The averaged drag coefficient varies from minimum to maximum by up
to 50 % at low ΓD = 0.5, but only by 17 % at ΓD = 24 in the range θ = 0°–30°. For large
ΓD, the array can be either very densely packed or very large, which respectively reduces
the freedom of altering arrangement and limits the impact of typical flow structures in
changing arrangement. The overall drag force in turn becomes much less dependent on
arrangement. Instead, it is more dependent on the extremely low bleeding velocity. This
leads to convergence of Cd at high ΓD.

Most data in figure 20(a) have Cd values much lower than unity, the value adopted in
previous studies (e.g. Zong & Nepf 2012). While Cd = 1 was assumed with reference
to a single solid cylinder in steady flow, the averaged drag coefficient for a porous
array is normally lower than that for a single cylinder due to arrangement effects.
The complex variation of element-scale flow characteristics with independent variables

992 A3-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

51
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.510


Obstacle arrangement can control flows

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

C
l, 

rm
s

C
d,

 rm
s

ΓD
′ ΓD

′

(b)(a)

Figure 21. The variations of average root mean square lift and drag coefficients with the effective flow
blockage parameter. The symbols represent the same cases as shown in the legend in figure 19(a). Note that
the dashed ellipses mark the cases 12* and 19* (table 3 in Appendix B), which have different arrangements but
the same value of ΓD = 3. The Cd,rms and Cl,rms values show a different variation with Γ ′

D on either side of
Γ ′

D ≈ 1.5.

(G/d, D/d, θ , α, Red) makes it difficult to collapse those independent parameters
down to a single parameter to accurately characterise Cd. Nevertheless, figure 20(a)
enables a rough estimation of Cd for real systems, with uncertainty range for given ΓD.
When combined with figure 19(b), it provides predictive capacity for the bulk bleeding
velocity.

3.6. Fluctuating force characteristics
In previous sections, force characteristics of individual elements have been discussed
through time-mean quantities (e.g. Cd). To show the whole picture of element-scale
hydrodynamic features, in this section, the fluctuating components of lift and drag forces
are explored. These two components are quantified by the average root mean squares of lift
and drag coefficients of individual elements, as defined in (2.5). The RMSEΩ of Cd,rms
and Cl,rms for the same values of Γ ′

D between the present 3-D and 2-D simulations are 4 %
and 10 %, respectively.

The variations of Cd,rms and Cl,rms with Γ ′
D are associated with both element-scale

and array-scale wake structures (figure 21). With an increase of Γ ′
D from 0, the Cd,rms

and Cl,rms values increase and peak at Γ ′
D ≈ 1 and then decrease sharply to approach

zero at Γ ′
D ≈ 1.5. This increasing trend is due to the transition of element-scale wake

structure from NOC to TRS state with stronger flow fluctuations within the array. In
contrast, beyond Γ ′

D ≈ 1, the number of cylinders with element-scale vortex shedding
is reduced with the increase of Γ ′

D due to lower bleeding velocity and smaller gaps
between individual elements. This is responsible for the decrease of Cd,rms and Cl,rms
to 0.

In comparison with this decrease, the Cd,rms and Cl,rms values start to increase when
Γ ′

D � 1.5. Whilst the element-scale vortex shedding is completely suppressed in this Γ ′
D

range, the fluctuations of lift and drag forces are driven by flow oscillations induced by
the array-scale vortex structures behind the array. The bleeding velocity is reduced with
the increase of Γ ′

D such that the array shear layers become much stronger and the location
of generating stronger large-scale vortex structures shifts towards the array. This causes
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stronger oscillations to the flow within the array by changing the pressure in the near
wake of the array, which leads to larger fluctuations of lift and drag forces on individual
cylinders.

Similar to Cd and ūp/U∞, the Cd,rms and Cl,rms values can also vary widely with the
cylinder arrangement, especially in the range of Γ ′

D � 1.5. For instance, through changing
the cylinder arrangement (G/d, D/d, θ ) but keeping ΓD = 3, both Cd,rms and Cl,rms values
can vary by two orders of magnitude (see 3-D data points denoted by dashed ellipses in
figure 21a,b). Even considering the same value of Γ ′

D = 1.2, the value of Cl,rms can vary by
a factor of two (from 0.3 up to 0.6). The effective flow blockage parameter Γ ′

D controls the
time-mean bulk flow through the array ūp/U∞ but not for the instantaneous flow within
the array (hence Cd,rms and Cl,rms).

4. Discussion

Three-dimensional DNS is used to set the benchmark for this work. Limited by high
computational costs, 2-D DNS served as complement to further resolve the parameter
space. Using 2-D simulations with removing the complexity of spanwise flow variation
allows important element-scale wake interaction patterns on the x–y plane to be identified
that are the key for arrangement effects. Although reasonable agreement is seen between
2-D and 3-D results (see figures 7, 11–13, 19–21), 3-D effects exist in most of the cases,
mostly in the array wake behind the array (as demonstrated in figures 5 and 6). Therefore,
2-D simulations will not be able to fully characterise wakes of these porous arrays. Since
the 3-D effect and turbulence influence will increase with Reynolds number, 2-D DNS
is only valid in modelling flow through an array of cylinders at relatively low Reynolds
number.

The identification of the controlling influence of arrangement is of practical importance,
as real systems, such as aquatic vegetation, foundation piles and offshore structures,
typically span the most critical range of 1 � ΓD � 3. For instance, kelp forests, seagrasses
and emergent marsh grasses have values of ΓD ∼ O(0.1–10) (Rominger & Nepf 2011).
The demonstration of arrangement effects represents a transformation of how to consider
the interaction between flow and a porous obstruction with a large number of elements.
To understand flow through any given porous obstruction, the orientation of its geometry
relative to the incident flow must be known first.

Data from existing literature suggest that arrangement effects are not limited to the range
of Reynolds number and array geometry (regular, isotropic configuration of cylinders)
investigated in this study. For example, the data in Takemura & Tanaka (2007) showed
that the averaged drag coefficient can be increased by 60 % when varying θ from 0° to 45°
for an array with α = 63.4° and Red = 4000. Similar increasing trend of Cd is seen in the
data in Zhao et al. (2015) with much lower Red = 100. In comparison with these regular
arrays, the total drag on a random array can vary by a factor of more than 3, through
changing the element arrangement in an array with fixed array diameter (Nair et al. 2023).
All these published results collectively suggest that the arrangement effects still exist for
other values of α, Red and random arrays. However, since real systems such as aquatic
vegetation can span a wide range of α and Red ∼ O(0–10 000) (e.g. Koch et al. 2007;
Tanino & Nepf 2008) and elements within it can be randomly distributed, further work is
recommended to quantitatively explore the arrangement effects over a wider range of Red
and array geometries.
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5. Conclusion

This study investigates and confirms the controlling influence of cylinder (element)
arrangement on flow through a circular array of cylinders with DNS, by varying
independent dimensionless arrangement parameters, i.e. gap ratio G/d (in the range
1.2–18), array-to-cylinder diameter ratio D/d (3.6–200) and incident flow angle θ (0°–30°)
at constant cylinder Reynolds number Red = 200. The geometric flow blockage parameter
ΓD, combining the influence of G/d and D/d, spans across the range 0–30. In the
parameter space considered here, 3-D DNS results show that the flow exhibits 3-D features
largely in the array wake behind the array rather than in element wakes within the
array.

We have demonstrated that the complex variation in local flow and drag characteristics
of individual cylinders within an array is the mechanism for the arrangement effects
on the bulk flow through the array. Element-scale flow structure within an array is
therefore characterised across the full range of G/d and D/d. It is found that at fixed θ

the element-scale flow structure is chiefly controlled by G/d and the influence of the array
scale (D/d) on the formation of characteristic element-scale wake within an array becomes
negligible when the array has enough cylinders (N � 31) and large size (D/d � 10).
Specifically, the element wakes over an array are dominated by SLR and TRS for G/d � 3
and for 3 � G/d � 8, respectively. The flow can transition downstream either from SLR to
vortex shedding or from primary vortex (including von Kármán vortex, TRS) to secondary
vortex and eventually to chaotic wake. These flow transition processes are similar to those
observed in flow past a single line of cylinders but with additional complexity due to the
influence of adjacent lines of cylinders within the array and flow diversion towards either
side of the array. This paper contributes towards linking an understanding of flow through
a large array of cylinders with understanding of the flow interaction with a smaller number
of cylinders or a single line of cylinders.

For the same ΓD, with varying the cylinder arrangement (by changing G/d, D/d, θ ),
the averaged drag coefficient Cd can vary by up to 52 %, the fluctuating components of
lift and drag coefficients Cd,rms and Cl,rms can vary by one order of magnitude and the
bulk flow velocity ūp through an array can be increased by up to a factor of 2 and 30 %
of ambient velocity. The arrangement effects on ūp are most critical at the intermediate
range of ΓD (1–3). Particularly, in this range, the difference between the minimum and
maximum of ūp, associated with variation of θ in the range 0°−30°, is greater than 10 %
of U∞. The reason for the critical range is that the extent of TRS or SLR within the array
(and the associated reduction in element drag) can be greatly enhanced or suppressed even
with slight change in arrangement (e.g. θ ) in this range. It has been demonstrated that
the effective flow blockage parameter Γ ′

D using direct measurement of Cd controls the
bulk velocity ūp across the full range of cylinder arrangements as it allows the controlling
influence of array arrangement on Cd. The arrays with the same Γ ′

D can have very different
element-scale flow structures within an array but the same ūp. The critical ΓD range
(1–3) falls into the intermediate range of Γ ′

D (0.5–1.5) where the arrangement effects are
critical.

This paper demonstrates that the modification of bleeding velocity and element-scale
wake interaction can be effectively achieved by altering the element arrangement within
a porous circular array. Arranging elements within the array to θ = 0° leads to the
lowest drag on the array and hence the highest amount of bulk flow passing through
it. At this typical θ , the lateral mixing around elements covered by characteristic flow
structures (SLR, TRS) is almost fully suppressed. On varying θ to a non-zero degree,
the array drag is increased and hence the bulk flow velocity is reduced. However, the
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maximum drag and the minimum bulk flow velocity can occur at a range of θ between
0° and 30°, depending on the element-scale wake interaction within the array. This
provides guidance for the design of engineered structures to maximise or minimise the
bulk velocity through them. Furthermore, the demonstration of controlling influence of
arrangement in the intermediate range of Γ ′

D is of practical importance as real systems,
such as aquatic vegetation, offshore structures and foundation piles, typically span this
range. Finally, the relation of Cd with ΓD is presented, and it improves our predictive
capacity for the bulk bleeding velocity when combined with the universal relation of ūp
with Γ ′

D.
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Appendix A. Numerical validations

A.1. Numerical validation for the case of an isolated cylinder
The numerical scheme was validated by comparing the results of flow past an isolated
cylinder in both 2-D and 3-D simulations with those of existing studies (Norberg 2002;
Qu et al. 2013; Jiang & Cheng 2021). Figure 22 compares the distribution of pressure
coefficient Cp around the cylinder surface, where Cp is defined as Cp = 2( p − p∞)/U∞
in which p is the time-averaged kinematic pressure around the cylinder surface and p∞ is
the reference kinematic pressure at the inlet boundary. Flow past an isolated cylinder was
modelled at two Reynolds numbers, 200 and 1500. Whilst 200 is equal to the cylinder
Reynolds number Red defined based on cylinder diameter, 1500 is equal to the array
Reynolds number ReD defined by array diameter when the array approaches a solid body.
The pressure coefficient distributions from the present 3-D and 2-D simulations are in
excellent agreement with existing studies.

A.2. Mesh dependence for an array of 31 cylinders
The mesh dependence was checked by quantifying the influence of mesh resolution on
the statistical parameters, i.e. the mean drag coefficient of the entire array (Cd) and of the
centre cylinder (Cd,16 and Clrms,16) at (x/D, y/D) = (0, 0) in table 2. The results calculated
using meshes 2–4 (with varying Np from 3 to 7 or halving time step 	tU∞/d) are in
excellent agreement with the corresponding values obtained using the reference mesh 1.

992 A3-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

51
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-7364-5641
https://orcid.org/0000-0001-7364-5641
https://orcid.org/0000-0002-9082-1405
https://orcid.org/0000-0002-9082-1405
https://orcid.org/0000-0002-6690-8922
https://orcid.org/0000-0002-6690-8922
https://orcid.org/0000-0002-4185-0111
https://orcid.org/0000-0002-4185-0111
https://orcid.org/0000-0001-8342-6522
https://orcid.org/0000-0001-8342-6522
https://orcid.org/0000-0002-3825-9873
https://orcid.org/0000-0002-3825-9873
https://orcid.org/0000-0002-1640-542X
https://orcid.org/0000-0002-1640-542X
https://doi.org/10.1017/jfm.2024.510


Obstacle arrangement can control flows

–1.5

–1.0

–0.5

0

0.5

1.0

0 20 40 60 80 100 120 140 160 1800 20 40 60 80 100 120 140 160 180
–1.5

–1.0

–0.5

0

0.5

1.0

Cp

Norberg (2002), Exp.

Qu et al. (2013), 2-D simulation

Qu et al. (2013), 3-D simulation

Present 2-D DNS

Present 3-D DNS

 Jiang & Cheng (2021), 3-D DNS

 Present 3-D DNS

ββ

(b)(a)

Figure 22. Comparison of distributions of pressure coefficient between the present 2-D and 3-D simulations
and previous studies. Whilst agreement in (a) validates the resolution of element-scale flow around the
individual cylinders, (b) validates the accuracy of resolving the array-scale flow behind the array. (a) Red = 200
and (b) ReD = 1500.

Mesh Parameters Hydrodynamic force coefficients

Np 	tU∞/d Cd,16 Clrms,16 Cd

Mesh 1 (reference) 5 0.002 0.1805 0.7104 0.5542
Mesh 2 3 0.002 0.1890 (+4.69 %) 0.7201 (+1.37 %) 0.5564 (+0.39 %)
Mesh 3 7 0.002 0.1879 (+4.06 %) 0.7218 (+1.61 %) 0.5536 (−0.11 %)
Mesh 4 5 0.001 0.1811 (+0.31 %) 0.7123 (+0.28 %) 0.5539 (−0.07 %)

Table 2. Influence of mesh resolution on force coefficients for N = 31, G/d = 4.5, D/d = 24.8.

This suggests that the reference mesh is adequate for the numerical simulations of the
present study.

Appendix B

Tables 3 and 4 summarise the testing cases.

3-D simulations
Array N G/d D/d ΓD θ Array N G/d D/d ΓD θ

1* 31 14.7 79.0 0.50 0° 11* 31 2.7 15.3 2.98 10°
2* 31 14.7 79.0 0.50 30° 12* 31 2.7 15.3 2.98 30°
3* 31 8.0 43.3 0.93 0° 13* 31 2.3 13.0 3.72 30°
4* 31 6.0 32.7 1.24 0° 14* 31 1.9 11.0 4.83 30°
5* 31 6.0 32.7 1.24 30° 15* 31 1.2 7.3 12.61 0°
6* 31 4.5 24.8 1.68 0° 16* 31 1.2 7.3 12.61 30°
7* 31 4.5 24.8 1.68 10° 17* 109 8.0 85.7 1.65 0°

Table 3. For caption see next page.
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Array N G/d D/d ΓD θ Array N G/d D/d ΓD θ

8* 31 4.5 24.8 1.68 30° 18* 109 4.5 48.6 2.99 0°
9* 31 3.8 21.1 2.01 0° 19* 109 4.5 48.6 2.99 30°
10* 31 2.7 15.3 2.98 0° 20* 109 2.5 27.5 5.91 0°

2-D simulations
1 7 17.0 35.0 0.26 0°–30° 40 31 2.5 14.2 3.29 0°–30°
2 7 11.0 23.0 0.39 0°–30° 41 31 2.3 13.0 3.04 30°
3 7 7.5 16.0 0.57 0°, 30° 42 31 2.08 12.0 4.19 0°–30°
4 7 4.5 10.0 0.96 0°–30° 43 31 1.89 11.0 4.83 0°–30°
5 7 3.6 8.2 1.21 0° 44 31 1.64 9.7 6.07 0°–30°
6 7 3.0 7.0 1.49 0°–30° 45 31 1.51 9.0 7.11 0°–30°
7 7 2.7 6.4 1.68 0° 46 31 1.5 8.9 7.29 0°–30°
8 7 2.5 6.0 1.84 0°–30° 47 31 1.4 8.4 8.39 0°–30°
9 7 2.0 5.0 2.48 0° 48 31 1.2 7.3 12.93 30°
10 7 1.7 4.4 3.17 0° 49 55 15.0 109.2 0.64 0°, 30°
11 19 15.0 61.0 0.40 0° 50 55 11.0 80.3 0.88 0°, 30°
12 19 11.0 45.0 0.54 0° 51 55 8.0 58.7 1.21 0°, 30°
13 19 8.0 33.0 0.75 0° 52 55 6.5 47.9 1.50 0°
14 19 7.0 29.0 0.85 0° 53 55 6.0 44.3 1.63 0°, 30°
15 19 5.3 22.2 1.13 0°, 30° 54 55 4.5 33.4 2.21 0°
16 19 4.5 19.0 1.34 0° 55 55 4.0 29.8 2.51 0°, 30°
17 19 4.0 17.0 1.52 0° 56 55 3.6 26.9 2.82 0°
18 19 3.4 14.6 1.82 0° 57 55 3.0 22.6 3.47 0°, 30°
19 19 3.0 13.0 2.10 0° 58 55 2.5 19.0 4.35 0°, 30°
20 19 2.7 11.8 2.38 0° 59 55 2.0 15.4 5.92 0°, 30°
21 19 2.5 11.0 2.61 0° 60 55 1.6 12.5 8.60 30°
22 31 14.7 79.0 0.50 0°–30° 61 109 17.0 180.9 0.77 0°–30°
23 31 13.0 69.8 0.57 0°–30° 62 109 11.0 117.4 1.19 0°, 30°
24 31 11.0 59.2 0.67 0°–30° 63 109 9.0 96.0 1.46 0°–30°
25 31 9.3 50.0 0.80 0°–30° 64 109 8.0 85.7 1.64 0°–30°
26 31 8.0 43.3 0.93 0°–30° 65 109 7.5 80.4 1.76 0°, 30°
27 31 7.5 40.7 0.99 0°, 30° 66 109 7.0 75.1 1.89 0°–30°
28 31 7.0 38.0 1.06 0°, 30° 67 109 5.0 53.9 2.68 0°, 30°
29 31 6.0 32.7 1.24 0°–30° 68 109 4.5 48.6 3.00 0°–30°
30 31 5.29 29.0 1.41 0°–30° 69 109 3.6 39.1 3.82 0°, 30°
31 31 4.5 24.8 1.68 0°–30° 70 109 3.2 34.9 4.37 30°
32 31 4.35 24.0 1.74 0°, 30° 71 109 3.0 32.7 4.73 0°
33 31 4.16 23.0 1.82 0°–30° 72 109 2.7 29.6 5.36 0°, 30°
34 31 4.0 22.2 1.90 0°–30° 73 109 2.5 27.5 5.90 0°, 30°
35 31 3.8 21.1 2.01 0°, 30° 74 109 2.3 25.3 6.61 0°
36 31 3.4 19.0 2.27 0°–30° 75 109 2.0 22.2 8.05 0°
37 31 3.0 16.9 2.62 0°–30° 76 109 1.5 16.9 13.33 0°–30°
38 31 2.7 15.3 2.98 0°–30° 77 109 1.2 13.7 24.20 0°–30°
39 31 2.65 15.0 3.05 0°–30°

Table 3. Summary of testing cases. The cases with and without asterisk represent 3-D and 2-D numerical
simulations, respectively. Cases simulated with θ = 0°, 5°, 10°, 15°, 20°, 25° and 30° are denoted ‘0°−30°’.
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(b)(a)

Figure 23. Comparison of instantaneous flow fields between two cases with Γ ′
D = 1.5 but different

arrangements. Vortex shedding is observed within the large array in (a) but not for the small array in (b).
(a) (G/d, D/d, N, θ ) = (2.5, 27.5, 109, 0°) and (b) (G/d, D/d, N, θ ) = (2.3, 13, 31, 30°).
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