Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-17T10:26:45.733Z Has data issue: true hasContentIssue false

Design of a robotic gripper for casting sorting robots with rigid–flexible coupling structures

Published online by Cambridge University Press:  13 September 2024

Cheng-jun Wang
Affiliation:
Department of Artificial Intelligence, Anhui University of Science and Technology, Huainan, China
Biao Cheng*
Affiliation:
Department of Artificial Intelligence, Anhui University of Science and Technology, Huainan, China
*
Corresponding author: Biao Cheng; Email: 2022201870@aust.edu.cn

Abstract

In order to solve the problem of the insufficient adaptability of the current small- and medium-sized casting sorting robot gripper, we have designed a casting sorting robot bionic gripper with rigid–flexible coupling structures based on the robot topology theory. The second-order Yeoh model was used to statically model the clamping belt in the gripper to derive the relationship between the external input air pressure and the bending angle of the driving layer, and the feasibility of multiangle bending of the driving layer was verified by finite element analysis. The maximum gripping diameter of the gripper is 140 mm, and in order to test the adaptive gripping ability of the gripper, a prototype of the casting sorting robot gripper is prepared, and the pneumatic control system and human–machine interface of the gripper are designed. After several experimental analyses, the designed casting sorting robot gripper is characterized by strong adaptability and high robustness, with a maximum load capacity of 930 g and a maximum wrap angle of 296°, which can complete the gripping operation within 1 s, and the comprehensive gripping success rate reaches 96.4%. The casting sorting robot gripper designed in the paper can provide a reference for the design and optimization of various types of shaped workpiece gripping manipulators.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

China Foundry Association, ”Foundry industry 14th five-year development plan,” Found Eng 45(4), 114 (2021).Google Scholar
Liu, J.-G., Zhao, G., Wang, D.-S., Zhang, Z.-Y., Ma, H.-R., Gao, W., Li, H.-Z. and Wu, R.-G., “14th five-year plan planning period of China’s foundry industry development analysis,” Cast 72(08), 947–695 (2023).Google Scholar
Sivčev, S., Coleman, J., Omerdić, E., Dooly, G. and Toal, D., “Underwater manipulators: A review,” Ocean Eng 163, 431450 (2018).Google Scholar
Tinoco, V., Silva, M.-F., Santos, F.-N., Valente, A., Rocha, L.-F., Magalhães, S.-A. and Santos, L.-C., “An overview of pruning and harvesting manipulators,” Ind Robot: Int J Robot Res Appl 49(4), 688695 (2022).Google Scholar
Meng, X., He, Y. and Han, J., “Survey on aerial manipulator: System, modeling, and control,” Robotica 38(7), 12881317 (2020).Google Scholar
Nasab, A.-M., Sabzehzar, A., Tatari, M., Majidi, C. and Shan, W., “A soft gripper with rigidity tunable elastomer strips as ligaments,” Soft Robot 4(4), 411420 (2017).Google Scholar
Ahmed, F., Waqas, M., Jawed, B., Soomro, A. M., Kumar, S., Hina, A., Khan, U., Kim, K. H. and Choi, K. H., “Decade of bio-inspired soft robots: A review,” Smart Mat Struc 31(7), 073002 (2022).Google Scholar
Chen, X., Zhang, X., Huang, Y., Cao, L. and Liu, J., “A review of soft manipulator research, applications, and opportunities,” J Field Robot 39(3), 281311 (2022).Google Scholar
Jiang, Q. and Xu, F., “Design and motion analysis of adjustable pneumatic soft manipulator for grasping objects,” IEEE Access 8, 191920191929 (2020).,191920-9Google Scholar
Zhu, Y., Feng, K., Hua, C., Wang, X., Hu, Z., Wang, H. and Su, H., “Model analysis and experimental investigation of soft pneumatic manipulator for fruit grasping,” Sensors 22(12), 4532 (2022).Google Scholar
Meng, C., Xu, W., Li, H., Zhang, H. and Xu, D., “A new design of cellular soft continuum manipulator based on beehive-inspired modular structure,” Int J Adv Robot Syst 14(3), 172988141770738 (2017).Google Scholar
Dou, W., Zhong, G., Cao, J., Shi, Z., Peng, B. and Jiang, L., “Soft robotic manipulators: Designs, actuation, stiffness tuning, and sensing,” Adv Mater Technol 6(9), 2100018 (2021).Google Scholar
Yoon, C. K., “Advances in biomimetic stimuli responsive soft grippers,” Nano Convergence 6(1), 20 (2019).Google Scholar
Ren, T., Li, Y., Liu, Q., Chen, Y., Yang, S. X., Yuan, H., Li, Y. and Yang, Y., “Novel bionic soft robotic hand with dexterous deformation and reliable grasping,” IEEE Trans Instru Measure 72, 110 (2023).Google Scholar
Liu, W., Jing, Z., Huang, J., Dun, X., Qiao, L., Leung, H. and Chen, W., “An inchworm-snake inspired flexible robotic manipulator with multi-section SMA actuators for object grasping,” IEEE Trans Indus Electro 70(12), 1261612625 (2023).Google Scholar
Lloyd, P., Thomas, T. L., Venkiteswaran, V. K., Pittiglio, G., Chandler, J. H., Valdastri, P. and Misra, S., “A magnetically-actuated coiling soft robot with variable stiffness,” IEEE Robot Automa Lett 8(6), 32623269 (2023).Google Scholar
Yang, Y., Zhu, H., Liu, J., Wei, Z., Li, Y. and Zhou, J., “A novel variable stiffness and tunable bending shape soft robotic finger based on thermoresponsive polymers,” IEEE Trans Instru Measure 72, 113 (2023).Google Scholar
Ji, H., Lan, Y., Nie, S., Huo, L., Yin, F. and Hong, R., “Development of an anthropomorphic soft manipulator with rigid-flexible coupling for underwater adaptive grasping,” Soft Robot 10(6), 10701082 (2023).Google Scholar
Su, C., Wang, R., Lu, T. and Wang, S., “SAU-RFC hand: A novel self-adaptive underactuated robot hand with rigid-flexible coupling fingers,” Robotica 41(2), 511529 (2023).Google Scholar
Chen, C., Sun, J., Wang, L., Chen, G., Xu, M., Ni, J., Ramli, R., Su, S. and Chu, C., “Pneumatic bionic hand with rigid-flexible coupling structure,” Materials 15(4), 1358 (2022).Google Scholar
Zheng, Y., Pi, J., Guo, T., Xu, L., Liu, J. and Kong, J., “Design and simulation of a gripper structure of cluster tomato based on manual picking behavior,” Front Plant Sci 13, 974456 (2022).Google Scholar
Zhang, Z., Zhang, Y., Ning, M., Zhou, Z., Wu, Z., Zhao, J., Li, X. and Liu, W., “One-DOF six-bar space gripper with multiple operation modes and force adaptability,” Aerospace Sci Technol 123, 107485 (2022).Google Scholar
Wen, Q., He, J. and Gao, F., “Kinematic design of a novel multi-legged robot with rigid-flexible coupling grippers for asteroid exploration,” Robotica 40(10), 36993725 (2022).Google Scholar
Ouyang, F., Guan, Y., Yu, C., Yang, X., Cheng, Q., Chen, J., Zhao, J., Zhang, Q. and Guo, Y., “An optimization design method of rigid-flexible soft fingers based on dielectric elastomer actuators,” Micromachines 13(11), 2030 (2022).Google Scholar
He, Z., Lian, B. and Song, Y., “Rigid-soft coupled robotic gripper for adaptable grasping,” J Bionic Eng 20(6), 26012618 (2023).Google Scholar
Li, H., Li, X., Wang, B., Shang, X. and Yao, J., “A fault-tolerant soft swallowing robot capable of grasping delicate structures underwater,” IEEE Robot Autom Lett 8(6), 33023309 (2023).Google Scholar
Phodapol, S., Harnkhamen, A., Asawalertsak, N., Gorb, S. N. and Manoonpong, P., “Insect tarsus-inspired compliant robotic gripper with soft adhesive pads for versatile and stable object grasping,” IEEE Robot Autom Lett 8(5), 24862493 (2023).Google Scholar
Ansary, S. I., Deb, S. and Deb, A. K., “Design and development of an adaptive robotic gripper,” J Intell Robot Syst 109(1), 132023 (2023).Google Scholar
Jiang, Z. and Zhang, K., “Force analysis of a soft-rigid hybrid pneumatic actuator and its application in a bipedal inchworm robot,” Robotica 8(5), 14361452 (2024).Google Scholar
Wang, L., Fang, Y., Zhang, D. and Yang, Y., “Kinematics and optimization of a novel 4-DOF two-limb gripper mechanism,” Robotica 41(12), 36493671 (2023).Google Scholar
Raha, B., “Useful steps recommended for the production of thick-walled duplex stainless steel casting,” Int J Metalcast 18(1), 505511 (2024).Google Scholar
Xiao, Z., Lv, Z., Zhou, X., Liu, J., Ma, Z., Nie, S. and Dong, S., “Numerical simulation and optimization of investment casting for complex thin-walled castings,” Int J Metalcast 18(1), 159179 (2024).Google Scholar
Erber, M., Rosnitschek, T., Hartmann, C., Alber-Laukant, B., Tremmel, S. and Volk, W., “Geometry-based assurance of directional solidification for complex topology-optimized castings using the medial axis transform,” Comp-Aid Design 152, 103394 (2022).Google Scholar
Liu, L.-M., Shan, Z.-D., Liu, F. and Lan, D., “High-quality manufacturing method of complicated castings based on multi-material hybrid moulding process,” China Found 15(5), 343350 (2018).Google Scholar
Molnar, J., Esteve-Altava, B., Rolian, C. and Diogo, R., “Comparison of musculoskeletal networks of the primate forelimb,” Sci Rep 7(1), 10520 (2017).Google Scholar
Olikkal, P., Pei, D., Adali, T., Banerjee, N. and Vinjamuri, R., “Data fusion-based musculoskeletal synergies in the grasping hand,” Sensors 22(19), 7417 (2022).Google Scholar
Peng, Z., Liu, D., Song, X., Wang, M., Rao, Y., Guo, Y. and Peng, J., “The enhanced adaptive grasping of a soft robotic gripper using rigid supports,” Appl Syst Innov 7(1), 15 (2024).Google Scholar
Park, W., Seo, S. and Bae, J., “A hybrid gripper with soft material and rigid structures,” IEEE Robot Automa Lett 4(1), 6572 (2018).Google Scholar
Jain, S., Dontu, S., Teoh, J. E. M. and Alvarado, P. V. Y., “A multimodal, reconfigurable workspace soft gripper for advanced grasping tasks,” Soft Robot 10(3), 527544 (2023).Google Scholar
Cao, M., Sun, Y., Zhang, J. and Ying, Z., “A novel pneumatic gripper driven by combination of soft fingers and bellows actuator for flexible grasping,” Sensor Actuat A: Phys 355, 114335 (2023).Google Scholar
Liu, C.-H., Chen, L.-J., Chi, J.-C. and Wu, J.-Y., “Topology optimization design and experiment of a soft pneumatic bending actuator for grasping applications,” IEEE Robot Automa Lett 7(2), 20862093 (2022).Google Scholar
Supplementary material: File

Wang and Cheng supplementary material

Wang and Cheng supplementary material
Download Wang and Cheng supplementary material(File)
File 7.4 MB