We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report that vertical vibration with small amplitude and high frequency can tame convective heat transport in Rayleigh–Bénard convection in a turbulent regime. When vertical vibration is applied, a dynamically averaged ‘anti-gravity’ results that stabilizes the thermal boundary layer and inhibits the eruption of thermal plumes. This eventually leads to the attenuation of the intensity of large-scale mean flow and a significant suppression of turbulent heat transport. Accounting for both the thermally led buoyancy and the vibration-induced anti-gravitational effects, we propose an effective Rayleigh number that helps to extend the Grossmann–Lohse theory to thermal vibrational turbulence. The prediction of the reduction on both the Nusselt and Reynolds numbers obtained by the extended model is found to agree well with the numerical data. In addition, vibrational influences on the mean flow structure and the temporal evolution of Nusselt and Reynolds numbers are investigated. The non-uniform characteristic of vibration-induced ‘anti-gravity’ is discussed. The present findings provide a powerful basis for studying thermal vibrational turbulence and put forward a novel strategy for actively controlling thermal turbulence.
Oblique breakdown in a Mach 2.0 supersonic boundary layer controlled by a local cooling strip with a temperature jump is investigated using direct numerical simulations and linear stability theory. The effect of temperature on the stability of the fundamental oblique waves is first studied by linear stability theory. It is shown that the growth rate of fundamental oblique waves will decrease monotonically as the temperature decreases. However, the results of the direct numerical simulations indicate that transition reversal will occur as the growth rate of the fundamental oblique waves of cooled case becomes faster compared with that of baseline case downstream of the cooling strip. When the cooling strip is in the linear region, the transition is delayed due to the suppression effect of the cooling strip on the fundamental oblique waves. When the cooling strip is located in the early nonlinear region, the fundamental oblique waves will be suppressed by higher spanwise wavenumber steady modes generated by the mutual and self-interaction between the fundamental oblique waves and harmonic modes, which is first called the self-suppression effect (SSE) in the present study. Further research indicated that the meanflow distortion generated by steady modes plays an important role in the SSE. Compared with the stabilization effect of the cooling strip, the SSE is more effective. Moreover, the SSE might provide a new idea on the instability control, as it is observed that the SSE works three times leading to the growth rate of fundamental oblique waves slowing down at three different regions, respectively.
This study analyzes the degree of language balance in three groups of bilingual speakers of Portuguese and German: a group of Portuguese heritage speakers (HSs) living in Germany, another who returned to Portugal, and Portuguese late learners of German L2. Based on the DIALANG vocabulary size placement test, applied in German and in Portuguese, and on extralinguistic variables extracted from a background questionnaire, the results confirm high degrees of unbalanced language dominance favoring the societal language (SL) in HSs without the experience of return, and a leveling of language dominance in returnees. Language balance in returnees is the consequence of some loss of proficiency in the former SL (German) and reactivation of the heritage language (Portuguese). Current relative amount of contact with the two languages is correlated with language dominance only in the HSs and the late L2 speaker groups, whereas age of return and length of residence in Portugal explain language dominance in returnees. Self-reported proficiency is also predictive of language dominance and may be taken as complementary indicator.
In this paper, we report that reversals of the large-scale circulation in two-dimensional Rayleigh–Bénard (RB) convection can be suppressed by imposing sinusoidally distributed heating to the bottom plate. We examine how the frequency of flow reversals depends on the dimensionless wavenumber $k$ of the spatial temperature modulation with various modulation amplitude $A$. For sufficiently large $k$, the flow reversal frequency is close to that in the standard RB convection under uniform heating. However, when $k$ decreases, the frequency of flow reversal gradually becomes lower and can even be largely reduced. Furthermore, we examine the growth of the corner roll and the global flow structure based on Fourier mode decomposition, and reveal that the size of the corner roll diminishes as the wavenumber decreases. The reason is that the regions occupied by the cold phase can absorb heat from the hot plumes and thus lower their temperature, which reduces the corner roll's kinetic energy input provided by the buoyancy force, and weakens the feeding process of the corner rolls. This results in the locking of the corner roll into a smaller region near the corner, making it harder for a reversal to occur. Using the concept of horizontal convection caused by non-uniform heating, we find a relevant parameter $k/A$ to describe briefly how the reversal frequency depends on wavenumber and modulation amplitude. The present work provides a new way to control the flow reversals in RB convection through modifying temperature boundary conditions.
The molecular properties of the circulating causative agents of hand, foot and mouth disease (HFMD) in Wuxi remain unclear, posing diagnostic and prevention challenges. Additionally, in several regions of mainland China, the EV71 immunisation drastically reduced related cases and altered the HFMD pathogen spectrum, while the precise situation in Wuxi remained unknown. To address these issues, paediatric HFMD cases diagnosed in the clinic were enrolled and anal swabs were acquired in the spring of 2019. The 5′-UTR and VP1 genes were interpreted using RT-nPCR with degenerate primers to confirm their genotypes. Following that, the entire genome sequences of each viral type were recovered, allowing for the interpretation of several molecular properties. A total of 249 clinically confirmed HFMD cases had their anal swabs taken for viral identification, from which the genome sequences of seven genotypes were recovered. Coxsackievirus A16 is the most prevalent type, followed by Coxsackievirus A6, A10, A2, A4, A5 and Echovirus 11, all of which were genetically determined for the first time in Wuxi. Phylogenetic and recombination analyses were used to evaluate their evolutionary relationships with other strains found in other regions. Noticeably, a CVA16 subtype, responsible for a large proportion of the observed cases, phylogenetically clustered within clade B1a along with some strains from other countries, was the first one to be reported in China. Furthermore, some recombination events were inferred from strains detected in sporadic cases, particularly the recombination between CVA2 and CVA5 strains. Our investigation elucidated the multiple molecular characteristics of the HFMD causal enterovirus strains in Wuxi, underlining the potential hazards associated with these circulating viral types in the population and aiding in future surveillance and prevention of this disease.
The mechanisms of leading-edge vortex (LEV) formation and its stable attachment to revolving wings depend highly on Reynolds number ($\textit {Re}$). In this study, using numerical methods, we examined the $\textit {Re}$ dependence of LEV formation dynamics and stability on revolving wings with $\textit {Re}$ ranging from 10 to 5000. Our results show that the duration of the LEV formation period and its steady-state intensity both reduce significantly as $\textit {Re}$ decreases from 1000 to 10. Moreover, the primary mechanisms contributing to LEV stability can vary at different $\textit {Re}$ levels. At $\textit {Re} <200$, the LEV stability is mainly driven by viscous diffusion. At $200<\textit {Re} <1000$, the LEV is maintained by two distinct vortex-tilting-based mechanisms, i.e. the planetary vorticity tilting and the radial–tangential vorticity balance. At $\textit {Re}>1000$, the radial–tangential vorticity balance becomes the primary contributor to LEV stability, in addition to secondary contributions from tip-ward vorticity convection, vortex compression and planetary vorticity tilting. It is further shown that the regions of tip-ward vorticity convection and tip-ward pressure gradient almost overlap at high $\textit {Re}$. In addition, the contribution of planetary vorticity tilting in LEV stability is $\textit {Re}$-independent. This work provides novel insights into the various mechanisms, in particular those of vortex tilting, in driving the LEV formation and stability on low-$\textit {Re}$ revolving wings.
Patients with geriatric depression exhibit a spectrum of symptoms ranging from mild to severe cognitive impairment which could potentially lead to the development of Alzheimer’s disease (AD). The aim of the study is to assess the alterations of the default mode network (DMN) in remitted geriatric depression (RGD) patients and whether it could serve as an underlying neuropathological mechanism associated with the risk of progression of AD.
Design:
Cross-sectional study.
Participants:
A total of 154 participants, comprising 66 RGD subjects (which included 27 patients with comorbid amnestic mild cognitive impairment [aMCI] and 39 without aMCI [RGD]), 45 aMCI subjects without a history of depression (aMCI), and 43 matched healthy comparisons (HC), were recruited.
Measurements:
All participants completed neuropsychological tests and underwent resting-state functional magnetic resonance imaging (fMRI). Posterior cingulate cortex (PCC)-seeded DMN functional connectivity (FC) along with cognitive function were compared among the four groups, and correlation analyses were conducted.
Results:
In contrast to HC, RGD, aMCI, and RGD-aMCI subjects showed significant impairment across all domains of cognitive functions except for attention. Furthermore, compared with HC, there was a similar and significant decrease in PCC-seed FC in the bilateral medial superior frontal gyrus (M-SFG) in the RGD, aMCI, and RGD-aMCI groups.
Conclusions:
The aberrations in rsFC of the DMN were associated with cognitive deficits in RGD patients and might potentially reflect an underlying neuropathological mechanism for the increased risk of developing AD. Therefore, altered connectivity in the DMN could serve as a potential neural marker for the conversion of geriatric depression to AD.
Throughout the Ediacaran Period, variable water-column redox conditions persisted along productive ocean margins due to a complex interplay between nutrient supply and oceanographic restriction. These changing conditions are considered to have influenced early faunal evolution, with marine anoxia potentially inhibiting the development of the ecological niches necessary for aerobic life forms. To understand this link between oxygenation and evolution, the combined geochemical and palaeontological study of marine sediments is preferable. Located in the Yangtze Gorges region of southern China, lagoonal black shales at Miaohe preserve alga and putative metazoans, including Eoandromeda, a candidate total-group ctenophore, thereby providing one example of where integrated study is possible. We present a multi-proxy investigation into water-column redox variability during deposition of these shales (c. 560–551 Ma). For this interval, reactive iron partitioning indicates persistent water-column anoxia, while trace metal enrichments and other geochemical data suggest temporal fluctuations between ferruginous, euxinic and rare suboxic conditions. Although trace metal and total organic carbon values imply extensive basin restriction, sustained trace metal enrichment and δ15Nsed data indicate periodic access to open-ocean inventories across a shallow-marine sill. Lastly, δ13Corg values of between −35‰ and −40‰ allow at least partial correlation of the shales at Miaohe with Member IV of the Doushantuo Formation. This study provides evidence for fluctuating redox conditions in the lagoonal area of the Yangtze platform during late Ediacaran time. If these low-oxygen environments were regionally characteristic, then the restriction of aerobic fauna to isolated environments can be inferred.
The aim of this study was to assess the current status of disease-related knowledge and to analyze the relationship among the general condition, illness perception, and psychological status of patients with coronavirus disease 2019 (COVID-19).
Methods:
A hospital-based cross-sectional study was conducted on 118 patients using convenience sampling. The general questionnaire, disease-related knowledge questionnaire of COVID-19, Illness Perception Questionnaire (IPQ), and Profile of Mood States (POMS) were used to measure the current status of participants.
Results:
The overall average score of the disease-related knowledge of patients with COVID-19 was (79.19 ± 14.25), the self-care situation was positively correlated with knowledge of prevention and control (r = 0.265; P = 0.004) and total score of disease-related knowledge (r = 0.206; P = 0.025); the degree of anxiety was negatively correlated with the knowledge of diagnosis and treatment (r = −0.182; P = 0.049). The score of disease-related knowledge was negatively correlated with negative cognition (volatility, consequences, emotional statements) and negative emotions (tension, fatigue, depression) (P < 0.05); positively correlated with positive cognition (disease coherence) and positive emotion (self-esteem) (P < 0.05).
Conclusions:
It was recommended that we should pay more attention to the elderly and low-income groups, and increase the knowledge about diagnosis and treatment of COVID-19 and self-care in the future health education for patients.
We aim to determine the correlation between parental rearing, personality traits, and obsessive–compulsive disorder (OCD) in different quantiles. In particular, we created an intermediary effect model in which parental rearing affects OCD through personality traits. All predictors were measured at the time of the survey, comprising parental rearing (paternal rearing and maternal rearing), demographics (grade and gender), and personality traits (neuroticism, extroversion, and psychoticism). These results suggest that (a) paternal emotional warmth was negatively correlated with OCD at the 0.40–0.80 quantile, while maternal emotional warmth was positively correlated with the OCD at the 0.45–0.69 quantile. (b) The correlation between negative parental rearing and OCD ranged from the 0.67 to 0.95 quantile for paternal punishment, 0.14–0.82 quantile for paternal overprotection, 0.05–0.36 and >0.50 quantile for maternal over-intervention and overprotection, and 0.08–0.88 quantile for maternal rejection. (c) Extroversion, neuroticism, and psychoticism were not only associated with OCD in a particular quantile but also mediated between parental rearing (namely parental emotional warmth, paternal punishment, paternal overprotection, maternal rejection, maternal over-intervention, and overprotection) and OCD. These findings provide targets for early interventions of OCD to improve the form of family education and personality traits and warrant validation.
Guiding and motivating doctors' attitudes and behaviors in the public welfare of public hospitals is the key to promoting medical reform. This study explored the correlation between the hospital responsibilities perceived by physicians and their medical professionalism practices in Chinese public hospitals, and the moderating effects of variables such as sex, hospital level, working period, department, and reason for career choice on the correlation model.
Methods
A pre-developed, reliable, and valid scale for the physicians’ psychological contract was developed. Survey data from 123 public hospitals in three provinces in the east, central, and west areas of China were analyzed. The authors constructed and tested the correlation mechanism model and then analyzed the effects of particular variables.
Results
The fulfillment of hospital ideological responsibility has a significant positive effect on physicians' medical professionalism practices, with occupational satisfaction mediating the effect. In addition, hospital transactional, developmental, and relational responsibility can improve physicians’ medical professionalism practices through fairness perception and work pleasure. Hospital level, working period, department, and reason for career choice had a moderating effect on the correlation mechanism model, with the effects varying between different paths.
Conclusions
The fulfillment of hospital responsibilities can have a positive effect on physicians’ practices of medical professionalism, especially in the domain of ideological responsibility where the largest and most direct impact was observed. Furthermore, the results suggested that hospital administrators need to consider the differences between various types of physicians in order to improve the effects of guidance and motivation in these health professionals.
Guiding and motivating doctors' attitudes and behaviors in the public welfare of public hospitals is the key to promoting medical reform. This study explored the correlation between the hospital responsibilities perceived by physicians and their turnover intention in Chinese public hospitals, as well as the moderating effects of variables such as sex, hospital level, working period, department, and reason for career choice on the correlation models.
Methods
A pre-developed, reliable, and valid scale for the physicians’ psychological contract was developed. Survey data from 123 public hospitals in three provinces in the east, central, and west areas of China were analyzed. The authors constructed and tested the correlation mechanism model and then analyzed the effects of particular variables.
Results
The fulfillment of hospital transactional and developmental responsibility had a significant negative effect on the intent of physicians to leave the hospital and front-line clinical practice, respectively. Working pleasure, fairness perception, and occupational satisfaction were mediator variables in the impact. In addition, hospital level, working period, department, and reason for career choice had a moderating effect on the correlation mechanism model, with the effects varying between different paths.
Conclusions
The fulfillment of hospital transactional responsibility had a more negative effect on the intent of physicians to leave the hospital than other responsibilities, whereas fulfillment of hospital developmental responsibility had a more negative impact on the intent of physicians to leave front-line clinical practice. Furthermore, the results suggested that hospital administrators need to consider the differences between various types of physicians in order to improve the effects of guidance and motivation in these health professionals.
Although the progression of invasive aspergillosis (IA) shares some risk factors in the development of active pulmonary tuberculosis (PTB), however, the prevalence of IA in suspected PTB remains unclear. During a period of 1 year (from January 2016 to December 2016), consecutive patients with suspected PTB were included in a referral TB hospital. Data, including demographic information and underlying diseases, were collected from medical records. PTB were all confirmed by mycobacterial culture (Lowenstein–Jensen medium). IA were diagnosed as proven or probable according to the criteria of the 2008 EORTC/MSG definitions. A descriptive analysis was performed to estimate the corresponding prevalence. During the study year, 1507 patients have a positive mycobacterial culture, with a mean age of 45.6 (s.d. 19.9) years old and a female:male ratio of 1:4. Among the 82 patients with non-tuberculous mycobacterial diseases, two patients (2.44%, 95% CI 0.67–8.46%) were diagnosed as IA (one proven and one probable); two probable IA patients (0.15%, 95% CI 0.04–0.55%) were diagnosed in PTB patients (n = 1315), and all were retreatment cases. In addition, all four IA patients (100%) exhibited cavities in both lobes on radiograph. In China, the prevalence of IA is low in active PTB patients. However, when high-risk factors for IA are encountered in PTB patients, further investigations are required and empirically treatment for IA might be warranted.
Rosa x odorata (sect. Chinenses, Rosaceae) is an important species distributed only in Yunnan Province, China. There is an abundance of wild variation within the species. Using 22 germplasm resources collected from the wild, as well as R. chinensis var. spontanea, R. chinensis ‘Old Blush’ and R. lucidissima, this study involved morphological variation analysis, inter-trait correlation analysis, principal component analysis and clustering analysis based on 16 morphological traits. This study identified a high degree of morphological diversity in R. x odorata germplasm resources and the variation coefficients had a distribution range from 18.00 to 184.04%. The flower colour had the highest degree of variation, while leaflet length/width had the lowest degree of variation. Inter-trait correlation analysis revealed that there was an extremely significant positive correlation between leaflet length and leaflet width. There was also a significant positive correlation between the number of petals and duration of blooming, and the L* and a* values of flower colour were significantly negatively correlated. Principal component analysis screened five principal components with the highest cumulative contribution rate (81.679%) to population variance. Among the 16 morphological traits, style length, sepal width, flower diameter, flower colour, leaflet length and leaflet width were important indices that influenced the morphology of R. x odorata. This study offers guidance for the further development and utilization of R. x odorata germplasm resources.
Six acidic dykes were discovered surrounding the Laiziling pluton, Xianghualing area, in the western Cathaysia Block, South China. A number of captured zircons are found in two of these acidic dykes. By detailed U–Pb dating, Lu–Hf isotopes and trace-element analysis, we find that these zircons have ages clustered at c. 2.5 Ga. Two acidic dyke samples yielded upper intersection point 206U/238Pb ages of 2505 ± 42 Ma and 2533 ± 22 Ma, and weighted mean 207Pb/206Pb ages of 2500 ± 30 Ma and 2535 ± 16 Ma. The majority of these zircons have high (Sm/La)N, Th/U and low Ce/Ce* ratios, indicating a magmatic origin, but some grains were altered by later hydrothermal fluid. Additionally, the magmatic zircons have high Y, U, heavy rare earth element, Nb and Ta contents, indicating that their host rocks were mainly mafic rocks or trondhjemite–tonalite–granodiorite rock series. Equally, their moderate Y, Yb, Th, Gd and Er contents also indicate that a mafic source formed in a continental volcanic-arc environment. These zircons have positive ϵHf(t) values (2.5–6.9) close to zircons from the depleted mantle, with TDM (2565–2741 Ma) and TDM2 (2608–2864 Ma) ages close to their formation ages, indicating that these zircons originated directly from depleted mantle magma, or juvenile crust derived from the depleted mantle in a very short period. We therefore infer that the Cathaysia Block experienced a crustal growth event at c. 2.5 Ga.
Witherite originates from the biochemical sedimentation of barium in sea water. Due to the complexity of the metallogenic environment, witherite appears in many morphologies. However, the relationship between its diverse morphologies and its mineralisation environment is not well understood. In this paper, Ca2+, a common substitute for Ba2+, and mixed protein (egg white) were used to simulate the inorganic and organic environments of witherite mineralisation, respectively. Comparison of samples prepared under different conditions showed that Ca2+ and egg white have relatively independent regulatory effects on the mineralisation of witherite particles. Egg white primarily limits the growth of the nanocrystals, while Ca2+ directs their non-isodiametric growth. Results shows that Ca2+ is distributed along a gradient in nanocrystalline witherite particles, with the Ca2+ content being proportional to the diameter of the nanocrystals. The results of this study shed light on the different roles of organic matter and inorganic ions in the formation of witherite and offer insight into the genesis of its various morphologies.
The sedimentologic fingerprinting in detrital deposit is vital to reconstruct sedimentary environments and discriminate sources. In this study, grain size and microtextural characteristics of quartz from the late Pleistocene hard clay in the Yangtze River delta (YRD) were analyzed by using a laser particle size analyzer and a scanning electron microscope. Subaqueous quartz from the Yangtze River and Yellow River sediments and eolian quartz from the Chinese Loess Plateau loess were also analyzed by scanning electron microscopy to obtain the microtextural characteristics. Quartz grains of the hard clay were characterized by poor sorting, fine skew, bimodal grain-size distributions, and numerous eolian microtextures. The comparison of the quartz grain characteristics of the hard clay with these in eolian loess indicated that the hard clay belonged to an eolian deposition. Moreover, the fine quartz grains of the hard clay were dominated by eolian microtextural characteristics, representing long-distance transportation. The coarse quartz grains of the hard clay exhibited more subaqueous microtextural characteristics, which indicated that the coarse fraction of the hard clay was derived from the proximal source regions in the YRD. The determination of buried eolian deposition with multiple sources in the YRD implies a southward westerly jet stream, strengthened eolian dust transportation, and extensive aridification in the YRD due to the increased Northern Hemisphere ice sheets in Marine Oxygen Isotope Stage 2.
Meditation is a type of mental training commonly applied in clinical settings and also practiced for general well-being. Brain functional connectivity (FC) patterns associated with meditation have revealed its brain mechanisms. However, the variety of FC methods applied has made it difficult to identify brain communication patterns associated with meditation. Here we carried out a coordinate-based meta-analysis to get preliminary evidence of meditation effects on changing brain network interactions. Fourteen seed-based, voxel-wise FC studies reported in 13 publications were reviewed; 10 studies with seeds in the default mode network (DMN) were meta-analyzed. Seed coordinates and the effect sizes in statistically significant regions were extracted, based on 170 subjects in meditation groups and 163 subjects in control groups. Seed-based d-mapping was used to analyze meditation versus control FC differences with DMN seeds. Meditation was associated with increased connectivity within DMN and between DMN and somatomotor network and with decreased connectivity between DMN and frontoparietal network (FPN) as well as ventral attention network (VAN). The pattern of decreased within-DMN FC and increased between-network FC (FPN and DAN with DMN) was more robust in highly experienced meditators compared to less experienced individuals. The identified neural network interactions may also promote meditation’s effectiveness in clinical interventions for treating physical and mental disorders.
We report an experimental study of turbulent Rayleigh–Bénard (RB) convection in an annular cell of water (Prandtl number $Pr=4.3$) with a radius ratio $\unicode[STIX]{x1D702}\simeq 0.5$. Global quantities, such as the Nusselt number $Nu$ and the Reynolds number $Re$, and local temperatures were measured over the Rayleigh range $4.2\times 10^{9}\leqslant Ra\leqslant 4.5\times 10^{10}$. It is found that the scaling behaviours of $Nu(Ra)$, $Re(Ra)$ and the temperature fluctuations remain the same as those in the traditional cylindrical cells; both the global and local properties of turbulent RB convection are insensitive to the change of cell geometry. A visualization study, as well as local temperature measurements, shows that in spite of the lack of the cylindrical core, there also exists a large-scale circulation (LSC) in the annular system: thermal plumes organize themselves with the ascending hot plumes on one side and the descending cold plumes on the opposite side. Near the upper and lower plates, the mean flow moves along the two circular branches. Our results further reveal that the dynamics of the LSC in this annular geometry is different from that in the traditional cylindrical cell, i.e. the orientation of the LSC oscillates in a narrow azimuthal angle range, and no cessations, reversals or net rotation were detected.