Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T13:57:38.589Z Has data issue: false hasContentIssue false

Tuning the Acidity of Montmorillonite by H3PO4-Activation and Supporting WO3 for Catalytic Dehydration of Glycerol to Acrolein

Published online by Cambridge University Press:  01 January 2024

Wei Hua Yu
Affiliation:
Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Research Center for Clay Minerals, Breeding Base of State Key Laboratory of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
Bao Zhu
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Research Center for Clay Minerals, Breeding Base of State Key Laboratory of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
Dong Shen Tong
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Research Center for Clay Minerals, Breeding Base of State Key Laboratory of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
Kai Deng
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Research Center for Clay Minerals, Breeding Base of State Key Laboratory of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
Chao Peng Fu
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Research Center for Clay Minerals, Breeding Base of State Key Laboratory of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
Tian Hao Huang
Affiliation:
Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China
Chun Hui Zhou*
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Research Center for Clay Minerals, Breeding Base of State Key Laboratory of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resource, Hangzhou 310007, China Qing Yang Institute for Industrial Minerals, Youhua, Qingyang 242804, Anhui, China
*

Abstract

Montmorillonite (Mnt)-based solid acids have a wide range of applications in catalysis and adsorption of pollutants. For such solid acids, the acidic characteristic often plays a significant role in these applications. The objective of the current study was to examine the effects of H3PO4-activation and supporting WO3 on the textural structure and surface acidic properties of Mnt. The Mnt-based solid acid materials were prepared by H3PO4 treatment and an impregnation method with a solution of ammonium metatungstate (AMT) and were examined as catalysts in the dehydration of glycerol to acrolein. The catalysts were characterized by nitrogen adsorption-desorption, powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, temperature programmed desorption of NH3 (NH3-TPD), diffuse reflectance Fourier-transform infrared (DR FTIR) spectroscopy of adsorbed pyridine, and thermogravimetric (TG) analyses. The phosphoric acid treatment of Mnt created Brönsted and Lewis acid sites and led to increases in specific surface areas, porosity, and acidity. WO3 species influenced total acidity, acid strength, the numbers of Brönsted and Lewis acid sites, and catalytic performances. A high turnover frequency (TOF) value (31.2 h−1) based on a maximal 60.7% yield of acrolein was reached. The correlation of acrolein yield with acidic properties indicated that the cooperative role of Brönsted and Lewis acid sites was beneficial to the formation of acrolein and a little coke deposition (<3.3 wt.%). This work provides a new idea for the design of solid acid catalysts with cooperative Brönsted and Lewis acidity for the dehydration of glycerol.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, B., Lan, X. C., Arslan, M. T., Gilani, S. Z. A., Wang, H. J., & Wang, T. F. (2020). Controlling the selectivity and deactivation of H-ZSM-5 by tuning b-axis channel length for glycerol dehydration to acrolein. Journal of Industrial and Engineering Chemistry, 88, 127136.CrossRefGoogle Scholar
Baertsch, C. D., Soled, S. L., & Iglesia, E. (2001). Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia. Journal of Physical Chemistry B, 105(7), 13201330.CrossRefGoogle Scholar
Bokade, V. V., & Yadav, G. D. (2011). Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bioethanol. Applied Clay Science, 53, 263271.CrossRefGoogle Scholar
Carriço, C. S., Cruz, F. T., Santos, M. B., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2013). Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous Mesoporous Materials, 181, 7482.CrossRefGoogle Scholar
Catuzo, G. L., Possato, L. G., Sad, M. E., Padro, C., & Martins, L. (2021). Progress of the catalytic deactivation of H-ZSM-5 zeolite in glycerol dehydration. ChemCatChem, 13(20), 44194430.CrossRefGoogle Scholar
Chai, S. H., Wang, H. P., Liang, Y., & Xu, B. G. (2007). Sustainable production of acrolein: Investigation of solid acid–base catalysts for gas-phase dehydration of glycerol. Green Chemistry, 9, 11301136.CrossRefGoogle Scholar
Corà, F., Patel, A., Harrison, N. M., Dovesi, R., & Catlow, C. R. A. (1996). An ab initio Hartree-Fock study of the cubic and tetragonal phases of bulk tungsten trioxide. Journal of the American Chemical Society, 118, 1217412182.CrossRefGoogle Scholar
Corma, A., Huber, G. W., Sauvanaud, L., & O'Connor, P. (2008). Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. Journal of Catalysis, 257, 163171.CrossRefGoogle Scholar
Dalil, M., Carnevali, D., Dubois, J. L., & Patience, G. S. (2015). Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst. Chemical Engineering Journal, 270, 557563.CrossRefGoogle Scholar
Dalil, M., Carnevali, D., Edake, M., Auroux, A., Jean-Luc Dubois, J. L., & Patience, G. S. (2016). Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A: Chemical, 421, 146155.CrossRefGoogle Scholar
Deleplanque, J., Dubois, J. L., Devaux, J. F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157, 351358.CrossRefGoogle Scholar
Ding, J., Wang, L. H., Zhang, Z. Q., Zhao, S. F., Zhao, J. H., Lu, Y., & Huang, J. (2019). Microstructured ZSM-11 catalyst on stainless steel microfibers for improving glycerol dehydration to acrolein. ACS Sustainable Chemistry & Engineering, 7, 1622516232.CrossRefGoogle Scholar
García-Fernández, S., Gandarias, I., Requies, J., Güemez, M. B., Bennici, S., Auroux, A., & Arias, P. L. (2015). New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol. Journal of Catalysis, 323, 6575.CrossRefGoogle Scholar
Ginjupalli, S. R., Mugawar, S., Pethan, R. N., Balla, P. K., & Komandur, V. R. C. (2014). Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts. Applied Surface Science, 309, 153159.CrossRefGoogle Scholar
Ginjupalli, S., Balla, P., Shaik, H., Nekkala, N., Ponnala, B., & Mitta, H. (2019). Comparative study of vapour phase glycerol dehydration over different tungstated metal phosphate acid catalysts. New Journal of Chemistry, 43, 1686016869.CrossRefGoogle Scholar
Guo, C. S., Yin, S., Dong, Q., & Sato, T. (2012). Simple route to (NH4)xWO3 nanorods for near infrared absorption. Nanoscale, 4, 33943398.CrossRefGoogle Scholar
Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity (2nd ed.). Academic Press.Google Scholar
Huang, W. J., Liu, J. H., She, Q. M., Zhong, J. Q., Christidis, G. E., & Zhou, C. H. (2021). Recent advances in engineering montmorillonite into catalysts and related catalysis. Catalysis Reviews. https://doi.org/10.1080/01614940.2021.1995163CrossRefGoogle Scholar
Hunyadi, D., Sajó, I., & Szilágyi, I. M. (2014). Structure and thermal decomposition of ammonium metatungstate. Journal of Thermal Analysis Calorimetry, 116, 329337.CrossRefGoogle Scholar
Jiang, X. C., Zhou, C. H., Tesser, R., Serio, M. D., Tong, D. S., & Zhang, J. R. (2018). Coking of catalysts in catalytic glycerol dehydration to acrolein. Industrial Engineering Chemistry Research, 57, 1073610753.CrossRefGoogle Scholar
Kalpakli, A. O., Arabaci, A., Kahruman, C., & Yusufoglu, I. (2013). Thermal decomposition of ammonium paratungstate hydrate in air and inert gas atmospheres. International Journal of Refractory Metals & Hard Materials, 37, 106116.CrossRefGoogle Scholar
Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12, 20792098.CrossRefGoogle Scholar
Kim, T., Burrows, A., Kiely, C. J., & Wachs, I. E. (2007). Molecular/electronic structure-surface acidity relationships of model-supported tungsten oxide catalysts. Journal of Catalysis, 246, 370381.CrossRefGoogle Scholar
Kruk, M., & Jaroniec, M. (2001). Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chemistry of Materials, 13, 31693183.CrossRefGoogle Scholar
Kumar, J. P., Ramacharyulu, P. V. R. K., Prasad, G. K., & Singh, B. (2015). Montmorillonites supported with metal oxide nanoparticles for decontamination of sulfur mustard. Applied Clay Science, 116, 263272.CrossRefGoogle Scholar
Lauriol-Garbey, P., Postole, G., Loridant, S., Auroux, A., Belliere-Baca, V., Rey, P., & Millet, J. M. M. (2011). Acid-base properties of niobium-zirconium mixed oxide catalysts for glycerol dehydration by calorimetric and catalytic investigation. Applied Catalysis B: Environmental, 106, 94102.Google Scholar
Liu, D., Yuan, P., Liu, H. M., Tan, D. Y., He, H. P., Zhu, J. X., & Chen, T. H. (2013). Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system. Applied Clay Science, 80, 407412.CrossRefGoogle Scholar
Liu, H., Tao, K., Yu, H. B., Zhou, C., Ma, Z., Mao, D. S., & Zhou, S. H. (2015). Effect of pretreatment gases on the performance of WO3/SiO2 catalysts in the metathesis of 1-butene and ethene to propene. Comptes Rendus Chimie, 18, 644653.CrossRefGoogle Scholar
Liu, S., Yu, Z. Q., Wang, Y., Sun, Z. C., Liu, Y. Y., Shi, C., & Wang, A. J. (2021). Catalytic dehydration of glycerol to acrolein over unsupported MoP. Catalysis Today, 379, 132140.CrossRefGoogle Scholar
Lu, X., Cui, X., & Song, M. (2003). Study on the alteration of chemical composition and structural parameters of modified montmorillonite. Minerals Engineering, 16, 13031306.CrossRefGoogle Scholar
Madejová, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49(5), 410432.CrossRefGoogle Scholar
Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.CrossRefGoogle Scholar
Massa, M., Andersson, A., Finocchio, E., & Guido, B. (2013a). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170184.CrossRefGoogle Scholar
Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013b). Performance of ZrO2-supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93109.CrossRefGoogle Scholar
Mojović, Z., Banković, P., Milutinović-Nikolić, A., Nedić, B., & Jovanović, D. (2010). Co-aluminosilicate based electrodes. Applied Clay Science, 48, 179184.CrossRefGoogle Scholar
Nadji, L., Massó, A., Delgado, D., Issaadi, R., Rodriguez-Aguado, E., Rodriguez-Castellón, E., & LópezNieto, J. M. L. (2018). Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis. RSC Advances, 8, 1334413352.CrossRefGoogle Scholar
Palcheva, R., Spojakina, A., Tyuliev, G., Jiratova, K., & Petrov, L. (2007). The effect of nickel on the component state and HDS activity of alumina supported heteropolytungstates. Kinetics and Catalysis, 48(6), 847852.CrossRefGoogle Scholar
Pentrák, M., Hronský, V., Pálková, H., Uhlík, P., Komadel, P., & Madejová, J. (2018). Alteration of fine fraction of bentonite from Kopernica (Slovakia) under acid treatment: A combined XRD, FTIR, MAS NMR and AES study. Applied Clay Science, 163, 204213.CrossRefGoogle Scholar
Rao, G. S., Rajan, N. P., Sekhar, M. H., Ammaji, S., & Chary, K. V. R. (2014). Porous zirconium phosphate supported tungsten oxide solid acid catalysts for the vapour phase dehydration of glycerol. Journal of Molecular Catalysis A: Chemical, 395, 486493.Google Scholar
Ravindra Reddy, C., Bhat, Y. S., Nagendrappa, G., & Jai Prakash, B. S. (2009). Brønsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy. Catalysis Today, 141, 157160.CrossRefGoogle Scholar
Rožić, L., Novaković, T., & Petrović, S. (2010). Modeling and optimization process parameters of acid activation of bentonite by response surface methodology. Applied Clay Science, 48, 154158.CrossRefGoogle Scholar
Song, K. S., Zhang, H. B., Zhang, Y. H., Tang, Y., & Tang, K. J. (2013). Preparation and characterization of WOx/ZrO2 nanosized catalysts with high WOx dispersion threshold and acidity. Journal of Catalysis, 299, 119128.CrossRefGoogle Scholar
Song, C. W., Li, C., Yin, Y. Y., Xiao, J. K., Zhang, X. N., Song, M. Y., & Dong, W. (2015). Preparation and gas sensing properties of partially broken WO3 nanotubes. Vacuum, 114, 1316.CrossRefGoogle Scholar
Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13, 29542962.CrossRefGoogle Scholar
Szilágyi, I. M., Santala, E., Heikkilä, M., Kemell, M., Nikitin, T., Khriachtchev, L., Räsänen, M., Ritala, M., & Leskelä, M. (2011). Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: Optimising the annealing conditions for obtaining WO3 nanofibers. Journal of Thermal Analysis and Calorimetry, 105, 7381.CrossRefGoogle Scholar
Tong, D. S., Zheng, Y. M., Yu, W. H., Wu, L. M., & Zhou, C. H. (2014). Catalytic cracking of rosin over acid-activated montmorillonite catalysts. Applied Clay Science, 100, 123128.CrossRefGoogle Scholar
Ulgen, A., & Hoelderich, W. F. (2011). Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts. Applied Catalysis A: General, 400, 3438.Google Scholar
van Olphen, H. V. (1964). Internal mutual flocculation in clay suspensions. Journal of Colloid Science, 19, 313322.CrossRefGoogle Scholar
Varadwaj, G. B. B., Rana, S., & Parida, K. (2013). Cs salt of co substituted lacunary phosphotungstate supported K10 montmorillonite showing binary catalytic activity. Chemical Engineering Journal, 215–216, 849858.Google Scholar
Viswanadham, B., Vishwanathan, V., Chary, K. V. R., & Satyanarayana, Y. (2021). Catalytic dehydration of glycerol to acrolein over mesoporous MCM-41 supported heteropolyacid catalysts. Journal of Porous Materials, 28, 12691279.CrossRefGoogle Scholar
Wang, T. H., Liu, T. Y., Wu, D. C., Li, M. H., Chen, J. R., & Teng, S. P. (2010). Performance of phosphoric acid activated montmorillonite as buffer materials for radioactive waste repository. Journal of Hazardous Materials, 173, 335342.CrossRefGoogle ScholarPubMed
Wang, Z. H., & Liu, L. C. (2021). Mesoporous silica supported phosphotungstic acid catalyst for glycerol dehydration to acrolein. Catalysis Today, 376, 5564.CrossRefGoogle Scholar
Wang, Z. H., Lu, X. H., Liang, X., & Ji, J. B. (2020). Improving the stability and efficiency of dimeric fatty acids production by increasing the Brønsted acidity and basal spacing of montmorillonite. European Journal of Lipid Science and Technology, 122, 1900342.CrossRefGoogle Scholar
Wu, L. M., Tong, D. S., Zhao, L. Z., Yu, W. H., Zhou, C. H., & Wang, H. (2014). Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite. Applied Clay Science, 95, 7482.CrossRefGoogle Scholar
Wu, S. T., She, Q. M., Tesser, R., Serio, M. D., & Zhou, C. H. (2020). Catalytic glycerol dehydration-oxidation to acrylic acid. Catalysis Reviews-Science and Engineering, 62(4), 481523.CrossRefGoogle Scholar
Yadav, M. K., Chudasama, C. D., & Jasra, R. V. (2004). Isomerisation of α-pinene using modified montmorillonite clays. Journal of Molecular Catalysis A: Chemical, 216, 5159.CrossRefGoogle Scholar
Yu, W. H., Ren, Q. Q., Tong, D. S., Zhou, C. H., & Wang, H. (2014). Clean production of CTAB-montmorillonite: Formation mechanism and swelling behavior in xylene. Applied Clay Science, 97, 222234.CrossRefGoogle Scholar
Zatta, L., Ramos, L. P., & Wypych, F. (2013). Acid-activated montmorillonites as heterogeneous catalysts for the esterification of lauric acid with methanol. Applied Clay Science, 80–81, 236244.CrossRefGoogle Scholar
Zhou, C. H., Li, G. L., Zhuang, X. Y., Wang, P. P., Tong, D. S., Yang, H. M., Lin, C. X., Li, L., Zhang, H., Ji, S. F., & Yu, W. H. (2017). Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein. Molecular Catalysis, 434, 219231.CrossRefGoogle Scholar
Zhao, H., Zhou, C. H., Wu, L. M., Lou, J. Y., Li, N., Yang, H. M., Tong, D. S., & Yu, W. H. (2013). Catalytic dehydration of glycerol to acrolein over sulfuric acid-activated montmorillonite catalysts. Applied Clay Science, 74, 154162.CrossRefGoogle Scholar
Zhao, S. F., Wang, W. D., Wang, L. Z., Wang, W., & Huang, J. (2020). Cooperation of hierarchical pores with strong Brønsted acid sites on SAPO-34 catalysts for the glycerol dehydration to acrolein. Journal of Catalysis, 389, 166175.CrossRefGoogle Scholar
Zhao, Y. H., Wang, Y. J., Hao, Q. Q., Liu, Z. T., & Liu, Z. W. (2015). Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt. Fuel Processing Technology, 136, 8795.CrossRefGoogle Scholar
Zhu, R. L., Zhu, L. H., Zhu, J. X., & Xu, L. H. (2008). Structure of cetyltrimethylammonium intercalated hydrobiotite. Applied Clay Science, 42(1–2), 224231.CrossRefGoogle Scholar