Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T10:37:48.172Z Has data issue: false hasContentIssue false

13 - High altitude and pre-eclampsia

from Part I - Basic science

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Introduction

Most well-described risk factors for pre-eclampsia are constitutional maternal attributes, such as primiparity, obesity, ethnicity, chronic hypertension, renal disease, etc. (Eskenazi et al., 1991; Saftlas et al., 1990; Sibai et al., 1995; Stone et al., 1994), or behavioral attributes such as contraceptive practices or smoking (or the lack thereof) (Klonoff-Cohen et al., 1989, 1993; Sibai et al., 1995). Residence at high altitude (>2700 m) is the only external environmental factor that, to date, has been consistently linked with an increased incidence of pre-eclampsia (Keyes et al., 2003; Mahfouz et al., 1994; Moore et al., 1982; Palmer et al., 1999). Far from being a problem limited to only isolated human populations, more than 40 million people reside at elevations >2700 m, with their numbers increasing rapidly (Moore et al., 1998). The primary effect of high altitude is lowered arterial oxygen tension (PO2). Thus, of the several competing hypotheses concerning the etiology of pre-eclampsia, the data from high altitude support that hypoxia (presumably of the fetoplacental unit) is an underlying cause or at the very least contributes to the development of the syndrome. The high-altitude data additionally support altered immunological function, impaired placentation (shallow invasion) and ischemia or ischemia/reperfusion injury as possible etiological factors. This review considers the impact of lowered maternal arterial PO2 on pregnancy physiology and the development of pre-eclampsia.

High altitude and hypertension during pregnancy

The first published report indicating that residence at high altitude may be associated with an increased risk for pre-eclampsia was by Colorado researchers in 1982.

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 195 - 208
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aardema, M. W., Oosterhof, H., Timmer, A., Rooy, I. and Aarnoudse, J. G. (2001). Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta, 22, 405–11.CrossRefGoogle ScholarPubMed
Bailey, D. M., Kleger, G. R., Holzgraefe, M., Ballmer, P. E. and Bartsch, P. (2004). Pathophysiological significance of peroxidative stress, neuronal damage and membrane permeability in acute mountain sickness. J. Appl. Physiol., 96, 1459–63.CrossRefGoogle ScholarPubMed
Belfort, M. A., Anthony, J., Saade, G. R., et al. (1993). The oxygen consumption/oxygen delivery curve in severe preeclampsia: evidence for a fixed oxygen extraction state. Am. J. Obstet. Gynecol., 169, 1448–55.CrossRefGoogle ScholarPubMed
Bernstein, I. M., Meyer, M. C., Osol, G. and Ward, K. (1998a). Intolerance to volume expansion: a theorized mechanism for the development of preeclampsia. Obstet. Gynecol., 92, 306–8.Google Scholar
Bernstein, I. M., Ziegler, W., Stirewalt, W. S., Brumsted, J. and Ward, K. (1998b). Angiotensinogen genotype and plasma volume in nulligravid women. Obstet. Gynecol., 92, 171–3.Google Scholar
Caniggia, I., Wu, Y. Y. and Zamudio, S. (2002). Overexpression of HIF-1 alpha in placentas from high altitude pregnancies. Placenta, 23, A49.Google Scholar
Chapman, A. B., Abraham, W. T., Zamudio, S., et al. (1998). Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int., 54, 2056–63.CrossRefGoogle ScholarPubMed
Chesley, L. (1978). Hypertensive Disorders of Pregnancy. New York: Appleton-Century-Crofts.Google Scholar
Coussons-Read, M. E., Mazzeo, R. S., Whitford, M. H., Schmitt, M., Moore, L. G. and Zamudio, S. (2002). High altitude residence during pregnancy alters cytokine and catecholamine levels. Am. J. Reprod. Immunol., 48, 344–54.CrossRefGoogle ScholarPubMed
Crandall, M. E., Keve, T. M. and McLaughlin, M. K. (1990). Characterization of norepinephrine sensitivity in the maternal splanchnic circulation during pregnancy. Am. J. Obstet. Gynecol., 162, 1296–301.Google ScholarPubMed
Croall, J., Sherrif, S. and Matthews, J. (1978). Non-pregnant maternal plasma volume and fetal growth retardation. Br. J. Obstet. Gynaecol., 85, 90–5.CrossRefGoogle ScholarPubMed
Curran-Everett, D., Morris, K. G. Jr. and Moore, L. G. (1991). Regional circulatory contributions to increased systemic vascular conductance of pregnancy. Am. J. Physiol., 261, H1842–7.Google ScholarPubMed
Darmochwal-Kolarz, D., Rolinski, J., Leszczynska-Goarzelak, B. and Oleszczuk, J. (2002). The expressions of intracellular cytokines in the lymphocytes of preeclamptic patients. Am. J. Reprod. Immunol., 48, 381–6.CrossRefGoogle ScholarPubMed
Dogterom, J. and DeJong, W. (1973). Diminished pressor response to noradrenaline of the perfused tail artery of pregnant rats. Eur. J. Pharmacol., 25, 267–9.CrossRefGoogle Scholar
Dustan, H., Tarazi, R., Bravo, E. and Dart, R. (1973). Plasma and extracellular fluid volumes in hypertension. Circ. Res. Suppl., 1, I73–81.Google Scholar
Elenkov, I. J. and Chrousos, G. P. (1999). Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol. Metab., 10, 359–68.CrossRefGoogle ScholarPubMed
Elenkov, I. J. and Chrousos, G. P. (2002). Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann. N. Y. Acad. Sci., 966, 290–303.CrossRefGoogle ScholarPubMed
Eskenazi, B., Fenster, L. and Sidney, S. (1991). A multivariate analysis of risk factors for preeclampsia. J. Am. Med. Ass., 266, 237–41.CrossRefGoogle ScholarPubMed
Gant, N. F., Daley, G. L., Chand, S., Whalley, P. J. and MacDonald, P. C. (1973). A study of angiotensin II pressor response throughout primigravid pregnancy. J. Clin. Invest., 52, 2682–9.CrossRefGoogle ScholarPubMed
Gibson, H. (1973). Plasma volume and glomerular filtration rate in pregnancy and their relation to differences in fetal growth. J. Obstet. Gynaecol. Br. Com., 80, 1067–74.CrossRefGoogle ScholarPubMed
Goodlin, R., Quaife, M. and Dirksen, J. (1981). The significance, diagnosis and treatment of maternal hypovolemia as associated with fetal/maternal illness. Semin. Perinatol., 5, 163–74.Google ScholarPubMed
Greenwood, J. P., Stoker, J. B., Walker, J. J. and Mary, D. A. (1998). Sympathetic nerve discharge in normal pregnancy and pregnancy-induced hypertension. J. Hypertens., 16, 617–24.CrossRefGoogle ScholarPubMed
Greenwood, J. P., Scott, E. M., Stoker, J. B., Walker, J. J. and Mary, D. A. (2001). Sympathetic neural mechanisms in normal and hypertensive pregnancy in humans. Circulation, 104, 2200–4.CrossRefGoogle ScholarPubMed
Greenwood, J. P., Scott, E. M., Walker, J. J., Stoker, J. B. and Mary, D. A. (2003). The magnitude of sympathetic hyperactivity in pregnancy-induced hypertension and preeclampsia. Am. J. Hypertens., 16, 194–9.CrossRefGoogle ScholarPubMed
Greer, I. A., Lyall, F., Perera, T., Boswell, F. and Macara, L. M. (1994). Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction?Obstet. Gynecol., 84, 937–40.Google ScholarPubMed
Grover, R. F., Weil, J. V. and Reeves, J. T. (1986). Cardiovascular adaptations to hypoxia. In Exercise Sports Science Reviews, ed. Pandolf, K. B.. New York: Macmillan, pp. 269–302.Google Scholar
Harrison, G. L. and Moore, L. G. (1989). Blunted vasoreactivity in pregnant guinea pigs is not restored by meclofenamate. Am. J. Obstet. Gynecol., 160, 258–64.CrossRefGoogle Scholar
Harrison, G. L. and Moore, L. G. (1990). Systemic vascular reactivity during high-altitude pregnancy. J. Appl. Physiol., 69, 201–6.CrossRefGoogle ScholarPubMed
Harrison, G. L., McMurtry, I. F. and Moore, L. G. (1986). Meclofenamate potentiates vasoreactivity to alpha-adrenergic stimulation in chronically hypoxic guinea pigs. Am. J. Physiol., 251, H496–501.Google ScholarPubMed
Hohmann, M., Keve, T. M., Osol, G. and McLaughlin, M. K. (1990). Norepinephrine sensitivity of mesenteric veins in pregnant rats. Am. J. Physiol., 259, R753–9.Google ScholarPubMed
Hurtado, A., Merino, C. and Delgado, E. (1945). Influence of anoxemia on hematopoietic activity. Arch. Intern. Med., 75, 284–323.CrossRefGoogle Scholar
Jensen, G. M. and Moore, L. G. (1997). The effect of high altitude and other risk factors on birthweight: independent or interactive effects?Am. J. Public Health, 87, 1003–7.CrossRefGoogle ScholarPubMed
Kanayama, N., Tsujimura, R., She, L., Maehara, K. and Terao, T. (1997). Cold-induced stress stimulates the sympathetic nervous system, causing hypertension and proteinuria in rats. J. Hypertens., 15, 383–9.CrossRefGoogle ScholarPubMed
Keyes, L., Rodman, D. M., Curran-Everett, D., Morris, K. and Moore, L. G. (1998). Effect of K+ATP channel inhibition on total and regional vascular resistance in guinea pig pregnancy. Am. J. Physiol., 275, H680–8.Google ScholarPubMed
Keyes, L. E., Armaza, J. F., Niermeyer, S., Vargas, E., Young, D. A. and Moore, L. G. (2003). Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr. Res., 54, 20–5.CrossRefGoogle ScholarPubMed
Khatun, S., Kanayama, N., Belayet, H. M., et al. (2000). Increased concentrations of plasma neuropeptide Y in patients with eclampsia and preeclampsia. Am. J. Obstet. Gynecol., 182, 896–900.CrossRefGoogle ScholarPubMed
Kingdom, J. and Kaufmann, P. (1999). Oxygen and placental vascular development. Adv. Exp. Med. Biol., 474, 259–75.CrossRefGoogle ScholarPubMed
Kingdom, J. C. P. and Kaufmann, P. (1997). Oxygen and placental villous development. Placenta, 18, 613–21.CrossRefGoogle ScholarPubMed
Klonoff-Cohen, H., Edelstein, S. and Savitz, D. (1993). Cigarette smoking and preeclampsia. Obstet. Gynecol., 81, 541–4.Google ScholarPubMed
Klonoff-Cohen, H. S., Savitz, D. A., Cefalo, R. C. and McCann, M. F. (1989). An epidemiologic study of contraception and preeclampsia. Comments. J. Am. Med. Ass., 262, 3143–7.CrossRefGoogle ScholarPubMed
Kobayashi, T., Sugimura, M., Tokunaga, N., et al. (2002). Anticholinergics induce eclamptic seizures. Semin. Thromb. Hemost., 28, 511–14.CrossRefGoogle ScholarPubMed
Krampl, E. R., Espinoza-Dorado, J., Lees, C. C., Moscoso, G., Bland, J. M. and Campbell, S. (2001). Maternal uterine artery Doppler studies at high altitude and sea level. Ultrasound Obstet. Gynecol., 18, 578–82.CrossRefGoogle ScholarPubMed
Kreczy, A., Fusi, L. and Wigglesworth, J. S. (1995). Correlation between umbilical arterial flow and placental morphology. Int. J. Gynecol. Pathol., 14, 306–9.CrossRefGoogle ScholarPubMed
Kubo, K., Hanaoka, M., Hayano, T., et al. (1998). Inflammatory cytokines in BAL fluid and pulmonary hemodynamics in high-altitude pulmonary edema. Respir. Physiol., 111, 301–10.CrossRefGoogle ScholarPubMed
Kupferminc, M. J., Peaceman, A. M., Wigton, T. R., Rehnberg, K. A. and Socol, M. L. (1994). Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am. J. Obstet. Gynecol., 170, 1752–7; discussion 1757–9.CrossRefGoogle ScholarPubMed
Labarrere, C. A. and Faulk, W. P. (1994). Antigenic identification of cells in spiral artery trophoblastic invasion: validation of histologic studies by triple-antibody immunocytochemistry. Am. J. Obstet. Gynecol., 171, 165–71.CrossRefGoogle ScholarPubMed
Lewinsky, R. M. and Riskin-Mashiah, S. (1998). Autonomic imbalance in preeclampsia: evidence for increased sympathetic tone in response to the supine-pressor test. Obstet. Gynecol., 91, 935–9.Google ScholarPubMed
Lin, S., Shimizu, I., Suehara, N., Nakayama, M. and Aono, T. (1995). Uterine artery Doppler velocimetry in relation to trophoblast migration in to the myometrium of the placental bed. Obstet. Gynecol., 85, 760–5.CrossRefGoogle ScholarPubMed
Longo, L. and Hardesty, J. (1984). Maternal blood volume: measurement, hypothesis of control and clinical considerations. Rev. Perinat. Med., 5, 35–59.Google Scholar
Lunell, N., Nylund, L., Lewander, R., Sarby, B. and Thornstrom, S. (1982). Uteroplacental blood flow in pre-eclampsia measurements with indium-113m and a computer-linked gamma camera. Clin. Exp. Hypertens. Pregn., B1(1), 105–17.CrossRefGoogle Scholar
Lyall, F., Myatt, L., Cousins, F., Barber, A. and Zamudio, S. (2002). Abnormal expression of hemeoxygenase in placentae from high altitude pregnancies. J. Soc. Gynecol. Invest., 9, 223A.Google Scholar
Lyall, F., Cousins, F., Duffie, L. and Zamudio, S. (2003). VCAM-1 concentrations are reduced in the maternal circulation in high altitude pregnancies. J. Soc. Gynecol. Invest., 10, 308A.Google Scholar
Macara, L., Kingdom, J. C., Kaufmann, P.et al. (1996). Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta, 17, 37–48.CrossRefGoogle ScholarPubMed
Magness, R. R. and Rosenfeld, C. R. (1986). Systemic and uterine responses to alpha-adrenergic stimulation in pregnant and nonpregnant ewes. Am. J. Obstet. Gynecol., 155, 897–904.CrossRefGoogle ScholarPubMed
Mahfouz, A. A. R., El-Aid, M. M., Alakija, W. and Al-Erian, R. A. G. (1994). Altitude and socio-biological determinants of pregnancy-associated hypertension. Int. J. Obstet. Gynecol., 44, 135–8.CrossRefGoogle ScholarPubMed
Marks, L., Zamudio, S. and Lyall, F. (2002). MMP-9 expression is abnormal in placentae at high altitude: a link to chronic hypoxia. Hypertens. Pregn., 21, 111.Google Scholar
Marks, L., Zamudio, S., Cousins, F.. and Lyall, F. (2006). Endothelial activation and cell adhesion molecule concentrations in pregnant women living at high altitude. J. Soc. Gynecol. Invest., 13, 399–403.CrossRefGoogle ScholarPubMed
Mateev, S., Sillau, A. H., Mouser, R., et al. (2003). Chronic hypoxia opposes pregnancy-induced increase in uterine artery vasodilator response to flow. Am. J. Physiol. Heart Circ. Physiol., 284, H820–9.CrossRefGoogle Scholar
Mazzeo, R. S., Bender, P. R., Brooks, G. A., et al. (1991). Arterial catecholamine responses during exercise with acute and chronic high altitude exposure. Am. J. Physiol., 261, E419–24.Google ScholarPubMed
Mazzeo, R. S., Child, A., Butterfield, G. E., Mawson, J. T., Zamudio, S. and Moore, L. G. (1998). Catecholamine response during 12 days of high-altitude exposure (4300 m) in women. J. Appl. Physiol., 84, 1151–7.CrossRefGoogle ScholarPubMed
Mazzeo, R. S., Carroll, J. D., Butterfield, G. E., et al. (2001a). Catecholamine responses to alpha-adrenergic blockade during exercise in women acutely exposed to altitude. J. Appl. Physiol., 90, 121–6.CrossRefGoogle Scholar
Mazzeo, R. S., Donovan, D., Fleshner, M., et al. (2001b). Interleukin-6 response to exercise and high-altitude exposure: influence of alpha-adrenergic blockade. J. Appl. Physiol., 91, 2143–9.CrossRefGoogle Scholar
McLaughlin, M. K., Keve, T. M. and Cooke, R. (1989). Vascular catecholamine sensitivity during pregnancy in the ewe. Am. J. Obstet. Gynecol., 160, 47–53.CrossRefGoogle ScholarPubMed
Meekins, J. W., Pijnenborg, R., Hanssens, M., McFadyen, I. R. and Asshe, A. (1994). A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol., 101, 669–74.CrossRefGoogle ScholarPubMed
Minagawa, M., Narita, J., Tada, T., et al. (1999). Mechanisms underlying immunologic states during pregnancy: possible association of the sympathetic nervous system. Cell Immunol., 196, 1–13.CrossRefGoogle ScholarPubMed
Moore, L. G., Hershey, D. W., Jahnigen, D. and Bowes, W. Jr. (1982). The incidence of pregnancy-induced hypertension is increased among Colorado residents at high altitude. Am. J. Obstet. Gynecol., 144, 423–9.CrossRefGoogle ScholarPubMed
Moore, L. G., Brodeur, P., Chumbe, O., D'Brot, J., Hofmeister, S. and Monge, C. (1986). Maternal hypoxic ventilatory response, ventilation, and infant birth weight at 4,300 m. J. Appl. Physiol., 60, 1401–6.CrossRefGoogle ScholarPubMed
Moore, L. G., McCullough, R. E. and Weil, J. V. (1987). Increased HVR in pregnancy: relationship to hormonal and metabolic changes. J. Appl. Physiol., 62, 158–63.CrossRefGoogle ScholarPubMed
Moore, L. G., Niermeyer, S. and Zamudio, S. (1998). Human adaptation to high altitude: regional and life-cycle perspectives. Am. J. Phys. Anthropol. (Suppl.), 25–64.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Moutquin, J. M., Rainville, C., Giroux, L., et al. (1985). A prospective study of blood pressure in pregnancy: prediction of preeclampsia. Am. J. Obstet. Gynecol., 151, 191–6.CrossRefGoogle ScholarPubMed
Nisell, H. and Lunell, N. O. (1984). Sympatho-adrenal activity in different hypertensive disorders in pregnancy. A short review. Acta Obstet. Gynecol. Scand. Suppl., 118, 13–16.CrossRefGoogle ScholarPubMed
Nisell, H., Hjemdahl, P. and Linde, B. (1985a). Cardiovascular responses to circulating catecholamines in normal pregnancy and in pregnancy-induced hypertension. Clin. Physiol., 5, 479–93.CrossRefGoogle Scholar
Nisell, H., Hjemdahl, P., Linde, B. and Lunell, N. O. (1985b). Sympatho-adrenal and cardiovascular reactivity in pregnancy-induced hypertension. I. Responses to isometric exercise and a cold pressor test. Br. J. Obstet. Gynaecol., 92, 722–31.CrossRefGoogle Scholar
Nisell, H., Hjemdahl, P., Linde, B. and Lunell, N. O. (1985c). Sympathoadrenal and cardiovascular reactivity in pregnancy-induced hypertension. II. Responses to tilting. Am. J. Obstet. Gynecol., 152, 554–60.CrossRefGoogle Scholar
Nylund, L., Lunell, N., Lewander, R. and , Sarby B. (1983). Uteroplacental blood flow index in intrauterine growth retardation of fetal or maternal origin. Br. J. Obstet. Gynaecol., 90, 16–20.CrossRefGoogle ScholarPubMed
Oian, P., Kjeldsen, S. E., Eide, I. and Maltau, J. M. (1986). Increased arterial catecholamines in pre-eclampsia. Acta Obstet. Gynecol. Scand., 65, 613–16.CrossRefGoogle ScholarPubMed
Omu, A. E., Al-Qattan, F., Diejomaoh, M. E. and Al-Yatama, M. (1999). Differential levels of T helper cytokines in preeclampsia: pregnancy, labor and puerperium. Acta Obstet. Gynecol. Scand., 78, 675–80.CrossRefGoogle Scholar
Page, E. W. and Christianson, R. (1976). Influence of blood pressure changes with and without proteinuria upon outcome of pregnancy. Am. J. Obstet. Gynecol., 126, 821–33.CrossRefGoogle ScholarPubMed
Palmer, S. K., Zamudio, S., Coffin, C., Parker, S., Stamm, E. and Moore, L. G. (1992). Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet. Gynecol., 80, 1000–6.Google ScholarPubMed
Palmer, S. K., Moore, L. G., Young, D. A., Cregger, B., Berman, J. C. and Zamudio, S. (1999). Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado. Am. J. Obstet. Gynecol., 180, 1161–8.CrossRefGoogle Scholar
Parent, A., Schiffrin, E. L. and St-Louis, J. (1990). Role of the endothelium in adrenergic responses of mesenteric artery rings of pregnant rats. Am. J. Obstet. Gynecol., 163, 229–34.CrossRefGoogle ScholarPubMed
Pedersen, E. B., Rasmussen, A. B., Christensen, N. J., et al. (1982). Plasma noradrenaline and adrenaline in pre-eclampsia, essential hypertension in pregnancy and normotensive pregnant control subjects. Acta Endocrinol. (Copenh.), 99, 594–600.Google ScholarPubMed
Piccinni, M. P. and Romagnani, S. (1996). Regulation of fetal allograft survival by a hormone-controlled Th1- and Th2-type cytokines. Immunol. Res., 15, 141–50.CrossRefGoogle ScholarPubMed
Piccinni, M. P., Maggi, E. and Romagnani, S. (2000). Role of hormone-controlled T-cell cytokines in the maintenance of pregnancy. Biochem. Soc. Trans., 28, 212–15.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Anthony, J., Davey, D. A., et al. (1991). Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br. J. Obstet. Gynaecol., 98, 648–55.CrossRefGoogle ScholarPubMed
Raab, W., Schroeder, G., Wagner, R. and Gigee, W. (1956). Vascular reactivity and electrolytes in normal and toxemic pregnancy. J. Clin. Endocrinol., 16, 1196–213.CrossRefGoogle Scholar
Redman, C. W. (1991). Immunology of preeclampsia. Semin. Perinatol., 15, 257–62.Google ScholarPubMed
Reeves, J., Moore, L., Wolfel, E., Mazzeo, R., Cymerman, A. and Young, A. (1992). Activation of the sympathoadrenal system at high altitude. In High Altitude Medicine, ed. Ueda, G., Kusama, S. and Voelkel, N.. Matsumoto, Japan: Shinshu University Press, pp. 10–23.Google Scholar
Robertson, W., Brosens, I., DeWolf, F., Sheppard, B., Bonnar, J. and Khong, T. (1986). The placental bed biopsy: review from three European centers. Am. J. Obstet. Gynecol., 155, 401–12.CrossRefGoogle ScholarPubMed
Rockwell, L. C., Keyes, L. E. and Moore, L. G. (2000). Chronic hypoxia diminishes pregnancy-associated DNA synthesis in guinea pig uteroplacental arteries. Placenta, 21, 313–19.CrossRefGoogle ScholarPubMed
Saftlas, A. F., Olson, D. R., Franks, A. L., Atrash, H. K. and Pokras, R. (1990). Epidemiology of preeclampsia and eclampsia in the United States, 1979–1986. Am. J. Obstet. Gynecol., 163, 460–5.CrossRefGoogle ScholarPubMed
Saito, S. and Sakai, M. (2003). Th1/Th2 balance in preeclampsia. J. Reprod. Immunol., 59, 161–73.CrossRefGoogle ScholarPubMed
Saito, S., Sakai, M., Sasaki, Y., Tanebe, K., Tsuda, H. and Michimata, T. (1999a). Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin. Exp. Immunol., 117, 550–5.CrossRefGoogle Scholar
Saito, S., Umekage, H., Sakamoto, Y., et al. (1999b). Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am. J. Reprod. Immunol., 41, 297–306.CrossRefGoogle Scholar
Sanchez, C., Merino, C. and Figallo, M. (1970). Simultaneous measurement of plasma volume and red cell mass in polycythemia of high altitude. J. Appl. Physiol., 28, 776–8.CrossRefGoogle Scholar
Schobel, H. P., Fischer, T., Heuszer, K., Geiger, H. and Schmieder, R. E. (1996). Preeclampsia – a state of sympathetic overactivity. N. Engl. J. Med., 335, 1480–5.CrossRefGoogle ScholarPubMed
Shime, J., Mocarski, E. J., Hastings, D., Webb, G. D. and McLaughlin, P. R. (1987). Congenital heart disease in pregnancy: short- and long-term implications. Am. J. Obstet. Gynecol., 156, 313–22. Erratum appears in Am. J. Obstet. Gynecol. 1987, 156(5): 1361.CrossRefGoogle Scholar
Sibai, B. M., Gordon, T., Thom, E., et al. (1995). Risk factors for preeclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of Child Health and Human Development Network of Maternal–Fetal Medicine Units. Am. J. Obstet. Gynecol., 172, 642–8.CrossRefGoogle ScholarPubMed
Sillau, A. H., McCullough, R. E., Dyckes, R., White, M. M. and Moore, L. G. (2002). Chronic hypoxia increases MCA contractile response to U-46619 by reducing NO production and/or activity. J. Appl. Physiol., 92, 1859–64.CrossRefGoogle ScholarPubMed
Soleymanlou, N., Jurisica, I., Nevo, O., et al. (2005). Molecular evidence of placental hypoxia in preeclampsia. J. Clin. Endocrinol. Metab., 90, 4299–308.CrossRefGoogle ScholarPubMed
Starzyk, K. A., Salafia, C. M., Pezzullo, J. C., et al. (1997). Quantitative differences in arterial morphometry define the placental bed in preeclampsia. Hum. Pathol., 28, 353–8.CrossRefGoogle ScholarPubMed
Stokke, K. T., Rootwell, K., Wergeland, R. and Vale, J. R. (1986). Changes in plasma and red cell volume during exposure to high altitude. Scand. J. Clin. Lab. Invest., 46, 113–17.Google Scholar
Stone, J. L., Lockwood, C. J., Berkowitz, G. S., Alvarez, M., Lapinski, R. and Berkowitz, R. L. (1994). Risk factors for severe preeclampsia. Obstet. Gynecol., 83, 357–61.Google ScholarPubMed
Talledo, O. E., Chesley, L. C. and Zuspan, F. P. (1968). Renin–angiotensin system in normal and toxemic pregnancies. III. Differential sensitivity to angiotensin II and norepineprhine in toxemia of pregnancy. Am. J. Obstet. Gynecol., 100, 218–21.CrossRefGoogle Scholar
Tissot van Patot, M., Grilli, A., Chapman, P., et al. (2003). Remodelling of uteroplacental arteries is decreased in high altitude placentae. Placenta, 24, 326–35.CrossRefGoogle ScholarPubMed
Ulrych, M., Frolich, E., Tarazi, R. C., Dustan, H. P. and Page, I. H. (1969). Cardiac output and distribution of blood volume in central and peripheral circulations in hypertensive and normotensive man. Br. Heart J., 31, 570–4.CrossRefGoogle ScholarPubMed
Veith, G. L. and Rice, G. E. (1999). Interferon gamma expression during human pregnancy and in association with labour. Gynecol. Obstet. Invest., 48, 163–7.CrossRefGoogle ScholarPubMed
Villar, M. A. and Sibai, B. M. (1989). Clinical significance of elevated mean arterial blood pressure in second trimester and threshold increase in systolic or diastolic blood pressure during third trimester. Am. J. Obstet. Gynecol., 160, 419–23.CrossRefGoogle ScholarPubMed
Vives, A., Balasch, J., Yague, J., Quinto, L., Ordi, J. and Vanrell, J. A. (1999). Type-1 and type-2 cytokines in human decidual tissue and trophoblasts from normal and abnormal pregnancies detected by reverse transcriptase polymerase chain reaction (RT-PCR). Am. J. Reprod. Immunol., 42, 361–8.CrossRefGoogle Scholar
Weil, J., Byrne-Quinn, E., Battock, D., Grover, R. and Chidsey, C. (1971). Forearm circulation in man at high altitude. Clin. Sci., 40, 234–46.CrossRefGoogle ScholarPubMed
White, M. M. and Zhang, L. (2003). Effects of chronic hypoxia on maternal vasodilation and vascular reactivity in guinea pig and ovine pregnancy. High Alt. Med. Biol., 4, 157–69.CrossRefGoogle ScholarPubMed
White, M. M., Zamudio, S., Stevens, T., et al. (1995). Estrogen, progesterone, and vascular reactivity: potential cellular mechanisms. Endocrine Rev., 16, 739–51.Google ScholarPubMed
White, M. M., McCullough, R. E., Dyckes, R., Robertson, A. D. and Moore, L. G. (1998). Effects of pregnancy and chronic hypoxia on contractile responsiveness to alpha1-adrenergic stimulation. J. Appl. Physiol., 85, 2322–9.CrossRefGoogle ScholarPubMed
White, M. M., McCullough, R. E., Dyckes, R., Robertson, A. D. and Moore, L. G. (2000). Chronic hypoxia, pregnancy, and endothelium-mediated relaxation in guinea pig uterine and thoracic arteries. Am. J. Physiol. Heart Circ. Physiol., 278, H2069–75.CrossRefGoogle ScholarPubMed
Wolfel, E. E., Groves, B. M., Brooks, G. A., et al. (1991). Oxygen transport during steady-state submaximal exercise in chronic hypoxia. J. Appl. Physiol., 70, 1129–36.CrossRefGoogle ScholarPubMed
Zamudio, S. (2003). The placenta at high altitude. High Alt. Med. Biol., 4, 171–91.CrossRefGoogle ScholarPubMed
Zamudio, S., Palmer, S. K., Dahms, T. E., et al. (1993a). Blood volume expansion, preeclampsia, and infant birth weight at high altitude. J. Appl. Physiol., 74, 1566–73.CrossRefGoogle Scholar
Zamudio, S., Palmer, S., Droma, T., Stamm, E., Coffin, C. and Moore, L. (1995a). Effect of altitude on uterine artery blood flow during normal pregnancy. J. Appl. Physiol., 79, 7–14.CrossRefGoogle Scholar
Zamudio, S., Palmer, S. K., Dahms, T. E., Berman, J. C., Young, D. and Moore, L. G. (1995b). Alterations in uterine blood flow velocity and pelvic blood flow distribution precede the onset of of hypertension during pregnancy at high altitude. J. Appl. Physiol., 79, 15–22.CrossRefGoogle Scholar
Zamudio, S., Palmer, S. K., Regensteiner, J. G. and Moore, L. G. (1995e). High altitude and hypertension during pregnancy. Am. J. Human. Biol., 7, 182–93.CrossRefGoogle Scholar
Zamudio, S., Palmer, S. K., Stamm, E., Coffin, C. and Moore, L. G (1995f). Uterine blood flow at high altitude. In Hypoxia and the Brain, ed. Sutton, J. R. and Houston, C. S.. Burlington, VT: Queen City Press, pp. 112–24.Google Scholar
Zamudio, S., Douglas, M., Mazzeo, R. S., et al. (2001). Women at altitude: forearm hemodynamics during acclimatization to 4,300 m with alpha(1)-adrenergic blockade. Am. J. Physiol. Heart Circ. Physiol., 281, H2636–44.CrossRefGoogle ScholarPubMed
Zamudio, S., Wheeler, T., Anthony, F. and Moore, L. G. (2002). Vascular endothelial growth factor (VEGF), vascular resistance and villous angiogenesis at high altitude (3100 m). J. Soc. Gynecol. Invest., 9, 141A.Google Scholar
Zamudio, S., Kovalenko, O., Vanderlelie, J., et al. (2007). Chronic hypoxia in vivo reduces placental oxidative stress. Placenta, in press.Google Scholar
Zuspan, F. P. (1976). Urinary amine excretion in pregnancy-induced hypertension. In Hypertension in Pregnancy, ed. Lindheimer, M. D., Katz, A. I. and Zuspan, F. P.. New York: John Wiley and Sons, pp. 339–46.Google Scholar
Zuspan, F. P. (1977). Pregnancy induced hypertension. 1. Role of sympathetic nervous system and adrenal gland. Acta Obstet. Gynecol. Scand., 56, 283–6.CrossRefGoogle ScholarPubMed
Zuspan, F. P. (1979). Catecholamines. Their role in pregnancy and the development of pregnancy-induced hypertension. J. Reprod. Med., 23, 143–50.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×