Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T19:28:39.174Z Has data issue: false hasContentIssue false

8 - The role of oxidative stress in pre-eclampsia

from Part I - Basic science

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 121 - 137
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, S., Green, P., Claxton, R., et al. (2001). Reactive carbonyl formation by oxidative and non-oxidative pathways. Front Biosci., 6, A17–24.CrossRefGoogle ScholarPubMed
Arthur, J. R. (2000). The glutathione peroxidases. Cell Mol. Life Sci., 57(13–14), 1825–35.CrossRefGoogle ScholarPubMed
Azzi, A., Ricciarelli, R. and Zingg, J. M. (2002). Non-antioxidant molecular functions of alpha-tocopherol (vitamin E). FEBS Lett., 519(1–3), 8–10.CrossRefGoogle Scholar
Barden, A., Ritchie, J., Walters, B., et al. (2001). Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension, 38(4), 803–8.CrossRefGoogle ScholarPubMed
Bayhan, G., Atamer, Y., Atamer, A., Yokus, B. and Baylan, Y. (2000). Significance of changes in lipid peroxides and antioxidant enzyme activities in pregnant women with preeclampsia and eclampsia. Clin. Exp. Obstet. Gynecol., 27(2), 142–6.Google ScholarPubMed
Berliner, L. J., Khramtsov, V., Fujii, H. and Clanton, T. L. (2001). Unique in vivo applications of spin traps. Free Rad. Biol. Med., 30(5), 489–99.CrossRefGoogle ScholarPubMed
Branch, D. W., Mitchell, M. D., Miller, E., Palinski, W. and Witztum, J. L. (1994). Pre-eclampsia and serum antibodies to oxidised low-density lipoprotein. Lancet, 343(8898), 645–6.CrossRefGoogle ScholarPubMed
Brigelius-Flohe, R., Kelly, F. J., Salonen, J. T., Neuzil, J., Zingg, J. M. and Azzi, A. (2002). The European perspective on vitamin E: current knowledge and future research. Am. J. Clin. Nutr., 76(4), 703–16.CrossRefGoogle ScholarPubMed
Burton, G. J. and Hung, T. H. (2003). Hypoxia-reoxygenation; a potential source of placental oxidatives stress in normal pregnancy and preeclampsia. Fetal Maternal Med. Rev., 14(2), 97–117.CrossRefGoogle Scholar
Cao, G. and Prior, R. L. (1998). Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem., 44(6)(Pt. 1), 1309–15.Google ScholarPubMed
Chappell, L. C., Seed, P. T., Briley, A. L., et al. (1999). Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet, 345, 810–16.CrossRefGoogle Scholar
Chappell, L. C., Seed, P. T., Briley, A., et al. (2002). A longitudinal study of biochemical variables in women at risk of preeclampsia. Am. J. Obstet. Gynecol., 187(1), 127–36.CrossRefGoogle ScholarPubMed
Chen, G., Wilson, R., Cumming, G., Walker, J. J., Smith, W. E. and McKillop, J. H. (1994). Intracellular and extracellular antioxidant buffering levels in erythrocytes from pregnancy-induced hypertension. J. Hum. Hypertens., 8(1), 37–42.Google ScholarPubMed
Cikot, R. J. L. M., Steegers Theunissen, R. P. M., Thomas, C. M. G., Boo, T. M., Merkus, H. M. W. M. and Steegers, E. A. P. (2001). Longitudinal vitamin and homocysteine levels in normal pregnancy. Br. J. Nutr., 85(1), 49–58.CrossRefGoogle ScholarPubMed
Conti, M., Morand, P. C., Levillain, P. and Lemonnier, A. (1991). Improved fluorometric determination of malonaldehyde. Clin. Chem., 37(7), 1273–5.Google ScholarPubMed
Coomarasamy, A., Honest, H., Papaioannou, S., Gee, H. and Khan, K. S. (2003). Aspirin for prevention of preeclampsia in women with historical risk factors: a systematic review. Obstet. Gynecol., 101(6), 1319–32.Google ScholarPubMed
Cracowski, J. L., Durand, T. and Bessard, G. (2002). Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol. Sci., 23(8), 360–6.CrossRefGoogle ScholarPubMed
Crocker, I. P., Cooper, S., Ong, S. C. and Baker, P. N. (2003). Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am. J. Pathol., 162(2), 637–43.CrossRefGoogle ScholarPubMed
Davidge, S. T. (1998). Oxidative stress and altered endothelial cell function in preeclampsia. Semin. Reprod. Endocrinol., 16(1), 65–73.CrossRefGoogle ScholarPubMed
Davidge, S. T., Hubel, C. A., Brayden, R. D., Capeless, E. C. and McLaughlin, M. K. (1992). Sera antioxidant activity in uncomplicated and preeclamptic pregnancies. Obstet. Gynecol., 79(6), 897–901.Google ScholarPubMed
Dechend, R., Viedt, C., Muller, D. N., et al. (2003). AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation, 107(12), 1632–9.CrossRefGoogle ScholarPubMed
Diedrich, F., Renner, A., Rath, W., Kuhn, W. and Wieland, E. (2001). Lipid hydroperoxides and free radical scavenging enzyme activities in preeclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome: no evidence for circulating primary products of lipid peroxidation. Am. J. Obstet. Gynecol., 185(1), 166–72.CrossRefGoogle ScholarPubMed
Garzetti, G. G., Tranquilli, A. L., Cugini, A. M., Mazzanti, L., Cester, N. and Romanini, C. (1993). Altered lipid composition, increased lipid peroxidation, and altered fluidity of the membrane as evidence of platelet damage in preeclampsia. Obstet. Gynecol., 81(3), 337–40.Google ScholarPubMed
Griendling, K. K., Sorescu, D., Lassegue, B. and Ushio-Fukai, M. (2000a). Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol., 20(10), 2175–83.CrossRefGoogle Scholar
Griendling, K. K., Sorescu, D. and Ushio-Fukai, M. (2000b). NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res., 86(5), 494–501.CrossRefGoogle Scholar
Gülmezoglu, A. M., Oosthuizen, M. M. J. and Hofmeyr, G. J. (1996). Placental malondialdehyde and glutathione levels in a controlled trial of antioxidant treatment in severe preeclampsia. Hypertens. Pregn., 15(3), 287–95.CrossRefGoogle Scholar
Gülmezoglu, A. M., Hofmeyr, G. J. and Oosthuizen, M. M. J. (1997). Antioxidants in the treatment of severe pre-eclampsia: an explanatory randomised controlled trial. Br. J. Obstet. Gynaecol., 104, 689–96.CrossRefGoogle ScholarPubMed
Halliwell, B. (1997). Antioxidants and human disease: a general introduction. Nutr. Rev., 55(1)(Pt. 2), S44–9.CrossRefGoogle ScholarPubMed
Harrison, R. (2002). Structure and function of xanthine oxidoreductase: where are we now?Free Rad. Biol. Med., 33(6), 774–97.CrossRefGoogle ScholarPubMed
Hayes, J. D. and Pulford, D. J. (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol., 30(6), 445–600.CrossRefGoogle ScholarPubMed
Hayes, J. D. and McLellan, L. I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Rad. Res., 31(4), 273–300.CrossRefGoogle ScholarPubMed
Holmgren, A. and Bjornstedt, M. (1995). Thioredoxin and thioredoxin reductase. Meth. Enzymol., 252, 199–208.CrossRefGoogle ScholarPubMed
Hong, Y. C., Lee, K. H., Yi, C. H., Ha, E. H. and Christiani, D. C. (2002). Genetic susceptibility of term pregnant women to oxidative damage. Toxicol. Lett., 129(3), 255–62.CrossRefGoogle ScholarPubMed
Houston, M., Estevez, A., Chumley, P., et al. (1999). Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J. Biol. Chem., 274(8), 4985–94.CrossRefGoogle ScholarPubMed
Hubel, C. A. (1999). Oxidative stress in the pathogenesis of preeclampsia. Proc. Soc. Exp. Biol. Med., 222(3), 222–35.CrossRefGoogle ScholarPubMed
Hubel, C. A., Roberts, J. M., Taylor, R. N., Musci, T. J., Rogers, G. M. and McLaughlin, M. K. (1989). Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am. J. Obstet. Gynecol., 161(4), 1025–34.CrossRefGoogle ScholarPubMed
Hubel, C. A., Kozlov, A. V., Kagan, V. E., et al. (1996a). Decreased transferrin and increased transferrin saturation in sera of women with preeclampsia: implications for oxidative stress. Am. J. Obstet. Gynecol., 175(3)(Pt. 1), 692–700.CrossRefGoogle Scholar
Hubel, C. A., McLaughlin, M. K., Evans, R. W., Hauth, B. A., Sims, C. J. and Roberts, J. M. (1996b). Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am. J. Obstet. Gynecol., 174(3), 975–82.CrossRefGoogle Scholar
Hubel, C. A., Kagan, V. E., Kisin, E. R., McLaughlin, M. K. and Roberts, J. M. (1997). Increased ascorbate radical formation and ascorbate depletion in plasma from women with preeclampsia: implications for oxidative stress. Free Rad. Biol. Med., 23(4), 597–609.CrossRefGoogle ScholarPubMed
Hubel, C. A., Shakir, Y., Gallaher, M. J., McLaughlin, M. K. and Roberts, J. M. (1998). Low-density lipoprotein particle size decreases during normal pregnancy in association with triglyceride increases. J. Soc. Gynecol. Invest., 5(5), 244–50.Google ScholarPubMed
Hung, T. H., Skepper, J. N., Charnock-Jones, D. S. and Burton, G. J. (2002). Hypoxia-reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ. Res., 90(12), 1274–81.CrossRefGoogle ScholarPubMed
Irani, K. (2000). Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ. Res., 87(3), 179–83.CrossRefGoogle ScholarPubMed
Ishihara, M. (1978). Studies on lipoperoxide of normal pregant women and of patients with toxemia of pregnancy. Clin. Chim. Acta, 84, 1–9.Google Scholar
Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y. P., Skepper, J. N. and Burton, G. J. (2000). Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am. J. Pathol., 157(6), 2111–22.CrossRefGoogle ScholarPubMed
Jauniaux, E., Hempstock, J., Greenwold, N. and Burton, G. J. (2003). Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am. J. Pathol., 162(1), 115–25.CrossRefGoogle ScholarPubMed
Karsdorp, V. H. M., Dekker, G. A., Bast, A., et al. (1998). Maternal and fetal plasma concentrations of endothelin, lipidhydroperoxides, glutathione peroxidase and fibronectin in relation to abnormal umbilical artery velocimetry. Eur. J. Obstet. Gynecol. Reprod. Biol., 80(1), 39–44.CrossRefGoogle ScholarPubMed
Kharb, S. (2000a). Altered thiol status in preeclampsia. Gynecol. Obstet. Invest., 50(1), 36–8.CrossRefGoogle Scholar
Kharb, S. (2000b). Low whole blood glutathione levels in pregnancies complicated by preeclampsia and diabetes. Clin. Chim. Acta, 294(1–2), 179–83.CrossRefGoogle Scholar
Kharb, S. (2000c). Total free radical trapping antioxidant potential in pre-eclampsia. Int. J. Gynaecol. Obstet., 69(1), 23–6.CrossRefGoogle Scholar
Knapen, M. F. C. M., Mulder, T. P. J., Rooij, I. A. L. M., Peters, W. H. M. and Steegers, E. A. P. (1998). Low whole blood glutathione levels in pregnancies complicated by preeclampsia or the hemolysis, elevated liver enzymes, low platelets syndrome. Obstet. Gynecol., 92, 1012–15.Google ScholarPubMed
Knapen, M. F. C. M., Peters, W. H. M., Mulder, T. P. J., Merkus, H. M. W. M., Jansen, J. B. M. J. and Steegers, E. A. P. (1999). Glutathione and glutathione-related enzymes in decidua and placenta of controls and women with pre-eclampsia. Placenta, 20(7), 541–6.CrossRefGoogle ScholarPubMed
Krinsky, N. I. (1998). The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci., 854, 443–7.CrossRefGoogle ScholarPubMed
Langlois, M. R. and Delanghe, J. R. (1996). Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem., 42(10), 1589–600.Google ScholarPubMed
Lee, V. M., Quinn, P. A., Jennings, S. C. and Ng, L. L. (2003). Neutrophil activation and production of reactive oxygen species in pre-eclampsia. J. Hypertens., 21(2), 395–402.CrossRefGoogle ScholarPubMed
Lenaz, G., Bovina, C., D'Aurelio, M., et al. (2002). Role of mitochondria in oxidative stress and ageing. Ann. N. Y. Acad. Sci., 959, 199–213.CrossRefGoogle Scholar
Little, R. E. and Gladen, B. C. (1999). Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod. Toxicol., 13(5), 347–52.CrossRefGoogle ScholarPubMed
Luppi, P., Haluszczak, C., Trucco, M. and DeLoia, J. A. (2002). Normal pregnancy is associated with peripheral leukocyte activation. Am. J. Reprod. Immunol., 47(2), 72–81.CrossRefGoogle ScholarPubMed
Madazli, R., Benian, A., Gumustas, K., Uzun, H., Ocak, V. and Aksu, F. (1999). Lipid peroxidation and antioxidants in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 85(2), 205–8.CrossRefGoogle ScholarPubMed
Many, A., Hubel, C. A. and Roberts, J. M. (1996). Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am. J. Obstet. Gynecol., 174(1)(Pt. 1), 288–91.CrossRefGoogle ScholarPubMed
Many, A., Hubel, C. A., Fisher, S. J., Roberts, J. M. and Zhou, Y. (2000). Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am. J. Pathol., 156(1), 321–31.CrossRefGoogle ScholarPubMed
Mates, J. M., Perez-Gomez, C. and Nunez, d. C. (1999). Antioxidant enzymes and human diseases. Clin. Biochem., 32(8), 595–603.CrossRefGoogle ScholarPubMed
Meister, A. (1988). Glutathione metabolism and its selective modification. J. Biol. Chem., 263(33), 17,205–8.Google ScholarPubMed
Mikhail, M. S., Anyaegbunam, A., Garfinkel, D., Palan, P. R., Basu, J. and Romney, S. L. (1994). Preeclampsia and antioxidant nutrients: decreased plasma levels of reduced ascorbic acid, alpha-tocopherol, and beta-carotene in women with preeclampsia. Am. J. Obstet. Gynecol., 171(1), 150–7.CrossRefGoogle ScholarPubMed
Morris, C. D., Jacobson, S. L., Anand, R., et al. (2001). Nutrient intake and hypertensive disorders of pregnancy: evidence from a large prospective cohort. Am. J. Obstet. Gynecol., 184(4), 643–51.CrossRefGoogle ScholarPubMed
Morris, J. M., Gopaul, N. K., Endresen, M. J. R., et al. (1998). Circulating markers of oxidative stress are raised in normal pregnancy and pre-eclampsia. Br. J. Obstet. Gynaecol., 105(11), 1195–9.CrossRefGoogle ScholarPubMed
Myatt, L., Rosenfield, R. B., Eis, A. L., Brockman, D. E., Greer, I. and Lyall, F. (1996). Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension, 28(3), 488–93.CrossRefGoogle ScholarPubMed
Nemeth, I., Talosi, G., Papp, A. and Boda, D. (2002). Xanthine oxidase activation in mild gestational hypertension. Hypertens. Pregn., 21(1), 1–11.CrossRefGoogle ScholarPubMed
Nohl, H., Gille, L. and Staniek, K. (1998). The biochemical, pathophysiological, and medical aspects of ubiquinone function. Ann. N. Y. Acad. Sci., 854, 394–409.CrossRefGoogle ScholarPubMed
Nordberg, J. and Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Rad. Biol. Med., 31(11), 1287–312.CrossRefGoogle ScholarPubMed
Palan, P. R., Mikhail, M. S. and Romney, S. L. (2001). Placental and serum levels of carotenoids in preeclampsia. Obstet. Gynecol., 98(3), 459–62.Google ScholarPubMed
Pierucci, F., Piazze Garnica, J. J., Cosmi, E. V. and Anceschi, M. M. (1996). Oxidability of low density lipoproteins in pregnancy-induced hypertension. Br. J. Obstet. Gynaecol., 103(11), 1159–61.CrossRefGoogle ScholarPubMed
Pritsos, C. A. (2000). Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. Chem. Biol. Interact., 129(1–2), 195–208.CrossRefGoogle ScholarPubMed
Qanungo, S., Sen, A. and Mukherjea, M. (1999). Antioxidant status and lipid peroxidation in human feto- placental unit. Clin. Chim. Acta, 285(1–2), 1–12.CrossRefGoogle ScholarPubMed
Raijmakers, M. T. M., Steegers, E. A. P. and Peters, W. H. M. (2001a). Glutathione S-transferases and thiol concentrations in embryonic and early fetal tissues. Hum. Reprod., 16(11), 2445–50.CrossRefGoogle Scholar
Raijmakers, M. T. M., Zusterzeel, P. L. M., Roes, E. M., Steegers, E. A. P., Mulder, T. P. J. and Peters, W. H. M. (2001b). Oxidized and total whole blood thiols in women with preeclampsia. Obstet. Gynecol., 97, 272–6.Google Scholar
Raijmakers, M. T. M., Bruggeman, S. W. M., Steegers, E. A. P. and Peters, W. H. M. (2002). Distribution of components of the glutathione detoxification system across the human placenta after uncomplicated vaginal deliveries. Placenta, 23(6), 490–6.CrossRefGoogle ScholarPubMed
Raijmakers, M. T. M., Peters, W. H. M., Steegers, E. A. P. and Poston, L. (2005). Amino thiols, detoxification and oxidative stress in pre-eclampsia and other disorders of pregnancy. Curr. Pharmaceut. Design, 11(6), 711–34.CrossRefGoogle ScholarPubMed
Raijmakers, M. T. M., Peters, W. H. M., Steegers, E. A. P. and Poston, L. (2004a). NAD(P)H oxidase associated superoxide production in human placenta from normotensive and pre-eclamptic women. Placenta, 25S, S85–9.CrossRefGoogle Scholar
Raijmakers, M. T. M., Roes, E. M., Zusterzeel, P. L. M., Steegers, E. A. P. and Peters, W. H. M. (2004b). Thiol status and antioxidant capacity in women with a history of severe pre-eclampsia. Br. J. Obstet. Gynaecol., 11(3), 207–12.CrossRefGoogle Scholar
Rayman, M. P., Barlis, J., Evans, R. W., Redman, C. W. and King, L. J. (2002). Abnormal iron parameters in the pregnancy syndrome preeclampsia. Am. J. Obstet. Gynecol., 187(2), 412–18.CrossRefGoogle ScholarPubMed
Redegeld, F. A. M., Koster, A. S. and van Bennekom, W. P. (1998). Determination of tissue glutathione. In Glutathione: Metabolism and Physiological function, ed. Vina, J.. Boca Raton, FL, CRC Press, pp. 11–20.Google Scholar
Redman, C. W. G. and Sargent, I. L. (2000). Placental debris, oxidative stress and pre-eclampsia. Placenta, 21(7), 597–602.CrossRefGoogle ScholarPubMed
Regan, C. L., Levine, R. J., Baird, D. D., et al. (2001). No evidence for lipid peroxidation in severe preeclampsia. Am. J. Obstet. Gynecol., 185(3), 572–8.CrossRefGoogle ScholarPubMed
Richie, J. P. Jr., Skowronski, L., Abraham, P. and Leutzinger, Y. (1996). Blood glutathione concentrations in a large-scale human study. Clin. Chem., 42(1), 64–70.Google Scholar
Rimbach, G., Minihane, A. M., Majewicz, J., et al. (2002). Regulation of cell signalling by vitamin E. Proc. Nutr. Soc., 61(4), 415–25.CrossRefGoogle ScholarPubMed
Roberts, L. J. and Morrow, J. D. (2000). Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Rad. Biol. Med., 28(4), 505–13.CrossRefGoogle ScholarPubMed
Roggensack, A. M., Zhang, Y. and Davidge, S. T. (1999). Evidence for peroxynitrite formation in the vasculature of women with preeclampsia. Hypertension, 33(1), 83–9.CrossRefGoogle ScholarPubMed
Rossig, L., Hoffmann, J., Hugel, B., et al. (2001). Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation, 104(18), 2182–7.CrossRefGoogle ScholarPubMed
Sagol, S., Ozkinay, E. and Ozsener, S. (1999). Impaired antioxidant activity in women with pre-eclampsia. Int. J. Gynaecol. Obstet., 64(2), 121–7.CrossRefGoogle ScholarPubMed
Sattar, N., Clark, P., Greer, I. A., Shepherd, J. and Packard, C. J. (2000). Lipoprotein (a) levels in normal pregnancy and in pregnancy complicated with pre-eclampsia. Atherosclerosis, 148(2), 407–11.CrossRefGoogle ScholarPubMed
Schiff, E., Friedman, S. A., Stampfer, M., Kao, L., Barrett, P. H. and Sibai, B. M. (1996). Dietary consumption and plasma concentrations of vitamin E in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol., 175(4)(Pt. 1), 1024–8.CrossRefGoogle ScholarPubMed
Sevanian, A., Davies, K. J. and Hochstein, P. (1991). Serum urate as an antioxidant for ascorbic acid. Am. J. Clin. Nutr., 54(6, Suppl.), 1129S–34S.CrossRefGoogle ScholarPubMed
Sikkema, J. M., Rijn, B. B., Franx, A., et al. (2001). Placental superoxide is increased in pre-eclampsia. Placenta, 22(4), 304–8.CrossRefGoogle ScholarPubMed
Slowinski, T., Neumayer, H. H., Stolze, T., Gossing, G., Halle, H. and Hocher, B. (2002). Endothelin system in normal and hypertensive pregnancy. Clin. Sci. (Lond.), 103(Suppl. 48), 446S–9S.CrossRefGoogle ScholarPubMed
Spickett, C. M., Reglinski, J., Smith, W. E., Wilson, R., Walker, J. J. and McKillop, J. (1998). Erythrocyte glutathione balance and membrane stability during preeclampsia. Free Rad. Biol. Med., 24(6), 1049–55.CrossRefGoogle ScholarPubMed
Staff, A. C., Ranheim, T., Henriksen, T. and Halvorsen, B. (2000). 8-Iso-prostaglandin f(2alpha) reduces trophoblast invasion and matrix metalloproteinase activity. Hypertension, 35(6), 1307–13.CrossRefGoogle ScholarPubMed
Stamler, J. S. and Slivka, A. (1996). Biological chemistry of thiols in the vasculature and in vascular-related disease. Nutr. Rev., 54(1), 1–30.CrossRefGoogle ScholarPubMed
Stratta, P., Canavese, C., Porcu, M., et al. (1994). Vitamin E supplementation in preeclampsia. Gynecol. Obstet. Invest., 37(4), 246–9.CrossRefGoogle ScholarPubMed
Takacs, P., Kauma, S. W., Sholley, M. M., Walsh, S. W., Dinsmoor, M. J. and Green, K. (2001). Increased circulating lipid peroxides in severe pre-eclampsia activate NF-kappaB and upregulate ICAM-1 in vascular endothelial cells. FASEB J., 15(2), 279–81.CrossRefGoogle ScholarPubMed
Taylor, R. N., Groot, C. J. M., Cho, Y. K. and Lim, K.-H. (1998). Circulating factors as markers and mediators of endothelial cell dysfunction in preeclampsia. Semin. Reprod. Endocrinol., 16(1), 17–31.CrossRefGoogle ScholarPubMed
Tomaro, M. L. and Batlle, A. M. (2002). Bilirubin: its role in cytoprotection against oxidative stress. Int. J. Biochem. Cell Biol., 34(3), 216–20.CrossRefGoogle ScholarPubMed
Tsukimori, K., Maeda, H., Ishida, K., Nagata, H., Koyanagi, T. and Nakano, H. (1993). The superoxide generation of neutrophils in normal and preeclamptic pregnancies. Obstet. Gynecol., 81(4), 536–40.Google ScholarPubMed
Ueland, P. M., Mansoor, M. A., Guttormsen, A. B., et al. (1996). Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status – a possible element of the extracellular antioxidant defense system. J. Nutr., 126(4, Suppl.), 1281S–4S.CrossRefGoogle ScholarPubMed
Uotila, J., Solakivi, T., Jaakkola, O., Tuimala, R. and Lehtimaki, T. (1998). Antibodies against copper-oxidised and malondialdehyde-modified low density lipoproteins in pre-eclampsia pregnancies. Br. J. Obstet. Gynaecol., 105(10), 1113–17.CrossRefGoogle ScholarPubMed
Uotila, J., Tuimala, R., Aarnio, T., Pyykko, K. and Ahotupa, M. (1991). Lipid peroxidation products, selenium-dependent glutathione peroxidase and vitamin E in normal pregnancy. Eur. J. Obstet. Gynaecol. Reprod. Biol., 42(2), 95–100.CrossRefGoogle ScholarPubMed
Uotila, J. T., Kirkkola, A. L., Rorarius, M., Tuimala, R. J. and Metsa-Ketela, T. (1994). The total peroxyl radical-trapping ability of plasma and cerebrospinal fluid in normal and preeclamptic parturients. Free Rad. Biol. Med., 16(5), 581–90.CrossRefGoogle ScholarPubMed
Uotila, J. T., Tuimala, R. J., Aarnio, T. M., Pyykko, K. A. and Ahotupa, M. O. (1993). Findings on lipid peroxidation and antioxidant function in hypertensive complications of pregnancy. Br. J. Obstet. Gynaecol., 100(3), 270–6.CrossRefGoogle ScholarPubMed
Valsecchi, L., Cairone, R., Castiglioni, M. T., Almirante, G. M. and Ferrari, A. (1999). Serum levels of alpha-tocopherol in hypertensive pregnancies. Hypertens. Pregn., 18(3), 189–95.CrossRefGoogle ScholarPubMed
Wakatsuki, A., Ikenoue, N., Okatani, Y., Shinohara, K. and Fukaya, T. (2000). Lipoprotein particles in preeclampsia: susceptibility to oxidative modification. Obstet. Gynecol., 96(1), 55–9.Google ScholarPubMed
Walsh, S. W. (1998). Maternal–placental interactions of oxidative stress and antioxidants in preeclampsia. Semin. Reprod. Endocrinol., 16(1), 93–104.CrossRefGoogle ScholarPubMed
Walsh, S. W., Vaughan, J. E., Wang, Y. and Roberts, L. J. (2000). Placental isoprostane is significantly increased in preeclampsia. FASEB J., 14(10), 1289–96.CrossRefGoogle ScholarPubMed
Wang, Y. and Walsh, S. W. (1996). Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas. J. Soc. Gynecol. Invest., 3(4), 179–84.CrossRefGoogle ScholarPubMed
Wang, Y. and Walsh, S. W. (1998). Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta, 19(8), 581–6.CrossRefGoogle ScholarPubMed
Wang, Y. and Walsh, S. W. (2001). Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta, 22(2–3), 206–12.CrossRefGoogle ScholarPubMed
Weber, C., Erl, W., Pietsch, A., Strobel, M., Ziegler-Heitbrock, H. W. and Weber, P. C. (1994). Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arterioscler. Thromb., 14(10), 1665–73.CrossRefGoogle ScholarPubMed
Zelko, I. N., Mariani, T. J. and Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Rad. Biol. Med., 33(3), 337–49.CrossRefGoogle ScholarPubMed
Zhang, C., Williams, M. A., Sanchez, S. E., et al. (2001). Plasma concentrations of carotenoids, retinol, and tocopherols in preeclamptic and normotensive pregnant women. Am. J. Epidemiol., 153(6), 572–80.CrossRefGoogle ScholarPubMed
Zhang, C., Williams, M. A., King, I. B., et al. (2002a). Vitamin C and the risk of preeclampsia – results from dietary questionnaire and plasma assay. Epidemiology, 13(4), 409–16.CrossRefGoogle Scholar
Zhang, C., Williams, M. A., King, I. B., et al. (2002b). Vitamin C and the risk of preeclampsia – results from dietary questionnaire and plasma assay. Epidemiology, 13(4), 409–16.CrossRefGoogle Scholar
Zhang, C., Williams, M. A., King, I. B., et al. (2002c). Vitamin C and the risk of preeclampsia – results from dietary questionnaire and plasma assay. Epidemiology, 13(4), 409–16.CrossRefGoogle Scholar
Zusterzeel, P. L. M., Peters, W. H. M., Bruyn, M. A., Knapen, M. F. C. M., Merkus, H. W. J. M. and Steegers, E. A. P. (1999). Glutathione S-transferase isoenzymes in decidua and placenta of preeclamptic pregnancies. Obstet. Gynecol., 94(6), 1033–8.Google ScholarPubMed
Zusterzeel, P. L. M., Mulder, T. P. J., Peters, W. H. M., Wiseman, S. A. and Steegers, E. A. P. (2000). Plasma protein carbonyls in nonpregnant, healthy pregnant and preeclamptic women. Free Rad. Res., 33(5), 471–6.CrossRefGoogle ScholarPubMed
Zusterzeel, P. L. M., Rutten, H., Roelofs, H. M. J., Peters, W. H. M. and Steegers, E. A. P. (2001). Protein carbonyls in decidua and placenta of pre-eclamptic women as markers for oxidative stress. Placenta, 22(2–3), 213–19.CrossRefGoogle ScholarPubMed
Zusterzeel, P. L. M., Steegers Theunissen, R. P. M., Harren, F. J. M., et al. (2002). Ethene and other biomarkers of oxidative stress in hypertensive disorders of pregnancy. Hypertens. Pregn., 21, 39–49.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×