Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T17:52:10.236Z Has data issue: false hasContentIssue false

11 - Dyslipidemia and pre-eclampsia

from Part I - Basic science

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Introduction

The causes of the pregnancy syndrome pre-eclampsia are multifactorial and poorly understood. According to current concepts, the disorder has two principal stages (Redman et al., 1999; Roberts and Hubel, 1999). The first stage is reduced placental perfusion, frequently secondary to abnormal implantation and insufficient remodeling of spiral arteries feeding the intervillous space. The second stage is the maternal response to this condition, modulated by maternal constitution and heredity, and characterized by widespread inflammation and endothelial cell dysfunction. The link between the two stages is an area of intense investigation. It is clear that placental factors are not solely accountable for the maternal manifestations of pre-eclampsia. Intrauterine growth restriction and preterm birth are commonly associated with abnormalities in Stage 1 but without the occurrence of a maternal syndrome. Maternal factors, including pre-pregnancy obesity and insulin resistance, predispose to development of pre-eclampsia. Evidence is accumulating that maternal constitutional predisposition to cardiovascular disease, unmasked or accentuated during the stress of pregnancy, is a key component in the development of pre-eclampsia. Data also suggest that women with a history of pre-eclampsia are at increased risk of cardiovascular disease in later life. Dyslipidemia may play an important role in these interrelationships. This chapter reviews the changes in lipid metabolism that occur with normal pregnancy and pre-eclampsia, and develops the hypothesis that dyslipidemia contributes to both the pathogenesis of preeclampsia and risk of later-life cardiovascular disease.

Pregnancy-induced changes in lipid metabolism

The diverse effects of pregnancy include a profound impact upon lipid metabolism.

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 164 - 182
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agatisa, P., Ness, R., Roberts, J., Costantino, J., Kuller, L. and McLaughlin, M. (2004). Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk. Am. J. Physiol., 286, 1389–93.Google ScholarPubMed
Alvarez, J. J., Montelongo, A., Iglesias, A., Lasuncion, M. A. and Herrera, E. (1996). Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J. Lipid Res., 37, 299–308.Google ScholarPubMed
Arbogast, B. W., Leeper, S. C., Merrick, R. D., Olive, K. E. and Taylor, R. N. (1996). Plasma factors that determine endothelial cell lipid toxicity in vitro correctly identify women with preeclampsia in early and late pregnancy. Hypertens. Pregn., 15, 263–79.CrossRefGoogle Scholar
Barden, A., Ritchie, J., Walters, B., et al. (2001). Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension, 38, 803–8.CrossRefGoogle ScholarPubMed
Barden, A. E., Beilin, L. J., Ritchie, J., Walters, B. N. and Michael, C. (1999). Does a predisposition to the metabolic syndrome sensitize women to develop pre-eclampsia?J. Hypertens., 17, 1307–15.CrossRefGoogle ScholarPubMed
Belo, L., Caslake, M., Gaffney, D., et al. (2002). Changes in LDL size and HDL concentration in normal and preeclamptic pregnancies. Atherosclerosis, 162, 425–32.CrossRefGoogle ScholarPubMed
Bilodeau, J.-F. and Hubel, C. (2003). Current concepts in the use of antioxidants for the treatment of preeclampsia. J. Obstet. Gynecol. Can., 25, 742–50.CrossRefGoogle ScholarPubMed
Bonet, B., Brunzell, J. D., Gown, A. M. and Knopp, R. H. (1992). Metabolism of very-low-density lipoprotein triglyceride by human placental cells: the role of lipoprotein lipase. Metabolism, 41, 596–603.CrossRefGoogle ScholarPubMed
Bourdon, E., Loreau, N. and Blache, D. (1999). Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J., 13, 233–44.CrossRefGoogle ScholarPubMed
Branch, D. W., Mitchell, M. D., Miller, E., Palinski, W. and Witztum, J. L. (1994). Pre-eclampsia and serum antibodies to oxidised low-density lipoprotein. Lancet, 343, 645–6.CrossRefGoogle ScholarPubMed
Catalano, P., Tyzbir, E., Roman, N., Amini, S. and Sims, E. (1991). Longitudinal changes in insulin release and insulin resistance in non-obese pregnant women. Am. J. Obstet. Gynecol., 165, 1667–72.CrossRefGoogle Scholar
Chambers, J., Fusi, L., Malik, I., Haskard, D., Swiet, M. and Kooner, J. (2001). Association of maternal endothelial dysfunction with preeclampsia. J. Am. Med. Ass., 285, 1607–12.CrossRefGoogle ScholarPubMed
Chappell, L., Seed, P., Briley, A., et al. (2002). A longitudinal study of biochemical variables in women at risk of pre-eclampsia. Am. J. Obstet. Gynecol., 187, 127–36.CrossRefGoogle Scholar
Chesley, L. C. (1978). Eclampsia: the remote prognosis. Semin. Perinatol., 2, 99–111.Google ScholarPubMed
Clausen, T., Djurovic, S. and Henriksen, T. (2001). Dyslipidemia in early second trimester is mainly a feature of women with early onset pre-eclampsia. Br. J. Obstet. Gynaecol., 108, 1081–7.Google ScholarPubMed
Coleman, R. A. (1989). The role of the placenta in lipid metabolism and transport. Semin. Perinatol., 13, 180–91.Google ScholarPubMed
Davda, R., Stepniakowski, K. T., Lu, G., Ullian, M. E., Goodfriend, T. L. and Egan, B. M. (1995). Oleic acid inhibits nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension, 26, 764–70.CrossRefGoogle ScholarPubMed
Dewolf, F., Robertson, W. B. and Brosens, I. (1975). The ultrastructure of acute atherosis in hypertensive pregnancy. Am. J. Obstet. Gynecol., 123(2), 164–74.CrossRefGoogle Scholar
Elzen, H. v. d., Waldimiroff, J., Cohen-Overbeek, T., Bruijn, A. d. and Grobbee, D. (1996). Serum lipids in early pregnancy and risk of preeclampsia. Br. J. Obstet. Gynaecol., 103, 117–22.CrossRefGoogle Scholar
Endresen, M. J., Lorentzen, B. and Henriksen, T. (1992). Increased lipolytic activity and high ratio of free fatty acids to albumin in sera from women with preeclampsia leads to triglyceride accumulation in cultured endothelial cells. Am. J. Obstet. Gynecol., 167, 440–7.CrossRefGoogle ScholarPubMed
Endresen, M. J., Tosti, E., Heimli, H., Lorentzen, B. and Henriksen, T. (1994). Effects of free fatty acids found increased in women who develop pre-eclampsia on the ability of endothelial cells to produce prostacyclin, cGMP and inhibit platelet aggregation. Scand. J. Clin. Lab. Invest., 54, 549–57.CrossRefGoogle ScholarPubMed
Fisher, K. A., Lluger, A., Spargo, B. H. and Lindheimer, M. D. (1981). Hypertension in pregnancy: clinical–pathological correlations and remote prognosis. Medicine, 60, 267–76.CrossRefGoogle ScholarPubMed
Fukumura, D., Ushiyama, A., Duda, D., et al. (2003). Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ. Res., 93, e88–e97.CrossRefGoogle ScholarPubMed
Gardner, C. D., Fortmann, S. P. and Krauss, R. M. (1996). Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. J. Am. Med. Ass., 276, 875–81.CrossRefGoogle ScholarPubMed
Gratacos, E., Casals, E., Sanllehy, C., Cararach, V., Alonso, P. L. and Fortuny, A. (1996). Variation in lipid levels during pregnancy in women with different types of hypertension. Acta Obstet. Gynecol. Scand., 75, 896–901.CrossRefGoogle ScholarPubMed
Gratacos, E., Casals, E., Gomez, O., et al. (2003). Increased susceptibility to low density lipoprotein oxidation in women with a history of pre-eclampsia. Br. J. Obstet. Gynaecol., 110, 400–4.CrossRefGoogle ScholarPubMed
Gregory, K., Kjos, S. and Peters, R. (1993). Cost of non-insulin-dependent diabetes in women with a history of gestational diabetes: implications for prevention. Obstet. Gynecol., 81, 782–6.Google Scholar
Griendling, K. K., Sorescu, D. and Ushio-Fukai, M. (2000). NAD(P)H oxidase – role in cardiovascular biology and disease. Circ. Res., 86, 494–501.CrossRefGoogle ScholarPubMed
Hannaford, P., Ferry, S. and Hirsch, S. (1997). Cardiovascular sequelae of toxaemia of pregnancy. Heart, 77, 154–8.CrossRefGoogle ScholarPubMed
He, S., Silveira, A., Hamsten, A., Blomback, M. and Bremme, K. (1999). Haemostatic, endothelial and lipoprotein parameters and blood pressure levels in women with a history of preeclampsia. Thromb. Haemost., 81, 538–42.Google ScholarPubMed
Henriksen, T. (2000). The role of lipid oxidation and oxidative lipid derivatives in the development of preeclampsia. Semin. Perinatol., 24, 29–32.CrossRefGoogle ScholarPubMed
Herrera, E. (2002). Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine, 19, 43–55.CrossRefGoogle Scholar
Herrera, G., Lasuncion, M. A., Coronado, D. G., Aranda, P., Lona, P. L. and Maier, I. (1988). Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy. Am. J. Obstet. Gynecol., 158, 1575–83.CrossRefGoogle ScholarPubMed
Hill, J., Zalos, G., Hacox, J., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med., 348, 593–600.CrossRefGoogle ScholarPubMed
Hubel, C. (1999). Oxidative stress in the pathogenesis of preeclampsia. Proc. Soc. Exp. Biol. Med., 222, 222–35.CrossRefGoogle ScholarPubMed
Hubel, C. A. (1998). Dyslipidemia, iron, and oxidative stress in preeclampsia: assessment of maternal and feto-placental interactions. Semin. Reprod. Endocrinol., 16, 75–92.CrossRefGoogle ScholarPubMed
Hubel, C. A. and Roberts, J. M. (1999). Lipid metabolism and oxidative stress. In Chesley's Hypertensive Disorders in Pregnancy, ed. Lindheimer, M. D., Roberts, J. M. and Cunningham, F. G.. Stamford, CT: Appleton & Lange, pp. 453–86.Google Scholar
Hubel, C. A., McLaughlin, M. K., Evans, R. W., Hauth, B. A., Sims, C. J. and Roberts, J. M. (1996). Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am. J. Obstet. Gynecol., 174, 975–82.CrossRefGoogle ScholarPubMed
Hubel, C. A., Lyall, F., Weissfeld, L., Gandley, R. E. and Roberts, J. M. (1998a). Small low-density lipoproteins and vascular cell adhesion molecule (VCAM-1) are increased in association with hyperlipidemia in preeclampsia. Metabolism, 47, 1281–8.CrossRefGoogle Scholar
Hubel, C. A., Shakir, Y., Gallaher, M. J., McLaughlin, M. K. and Roberts, J. M. (1998b). Low-density lipoprotein particle size decreases during normal pregnancy in association with triglyceride increases. J. Soc. Gynecol. Invest., 5, 244–50.Google Scholar
Hubel, C. A., Roberts, J. M. and Ferrell, R. E. (1999). Association of pre-eclampsia with common coding sequence variations in the lipoprotein lipase gene. Clin. Genet., 56, 289–96.CrossRefGoogle ScholarPubMed
Hubel, C. A., Snaedal, S., Ness, R. B., et al. (2000). Dyslipoproteinemia in postmenopausal women with a history of eclampsia. Br. J. Obstet. Gynaecol., 107, 776–84.CrossRefGoogle ScholarPubMed
Jonsdottir, L. S., Arngrimsson, R., Geirsson, R. T., Sigvaldason, H. and Sigfusson, N. (1995). Death rates from ischemic heart disease in women with a history of hypertension in pregnancy. Acta Obstet. Gynecol. Scand., 74, 772–6.CrossRefGoogle ScholarPubMed
Kaaja, R. (1998). Insulin resistance syndrome in preeclampsia. Semin. Reprod. Endocrinol., 16, 41–6.CrossRefGoogle ScholarPubMed
Kaaja, R., Tikkanen, M. J., Viinikka, L. and Ylikorkala, O. (1995). Serum lipoproteins, insulin, and urinary prostanoid metabolites in normal and hypertensive pregnant women. Obstet. Gynecol., 85, 353–6.CrossRefGoogle ScholarPubMed
Kaaja, R., Laivuori, H., Laakso, M., Tikkanen, M. J. and Ylikorkala, O. (1999). Evidence of a state of increased insulin resistance in preeclampsia. Metabolism, 48, 892–6.CrossRefGoogle ScholarPubMed
Kagan, V., Tyurin, V., Borisenko, G., et al. (2001). Mishandling of copper by albumin: role in redox-cycling and oxidative stress in preeclampsia plasma. Hypertens. Pregn., 20, 221–42.CrossRefGoogle ScholarPubMed
Kahn, B. B. and Flier, J. S. (2000). Obesity and insulin resistance. J. Clin. Invest., 106, 473–81.CrossRefGoogle ScholarPubMed
Kim, Y. J., Williamson, R. A., Chen, K., Smith, J. L., Murray, J. C. and Merrill, D. C. (2001). Lipoprotein lipase gene mutations and the genetic susceptibility of preeclampsia. Hypertension, 38, 992–6.CrossRefGoogle ScholarPubMed
Kirwan, J., Hauguel-Demouzon, S., Leqercq, J., et al. (2002). TNFα is a predictor of insulin resistance in human pregnancy. Diabetes, 51, 2207–13.CrossRefGoogle ScholarPubMed
Krauss, R. M. (1991). The tangled web of coronary risk factors. Am. J. Med., 90, 2a–36s.CrossRefGoogle ScholarPubMed
Krauss, R. M. (1997). Genetic, metabolic, and dietary influences on the atherogenic lipoprotein phenotype. In Genetic Variation and Dietary Response. World Rev. Nutr. Diet, vol. 80, ed. Simopoulos, A. P. and Nestel, P. J.. Basel: Karger, pp. 2–43.CrossRefGoogle Scholar
Kuhl, C. (1991). Insulin secretion and insulin resistance in pregnancy and GDM. Implications for diagnosis and management. Diabetes, 40, 18–24.CrossRefGoogle ScholarPubMed
Laivuori, H., Tikkanen, M. J. and Ylikorkala, O. (1996). Hyperinsulinemia 17 years after preeclamptic first pregnancy. J. Clin. Endocrinol. Metab., 81, 2908–11.Google ScholarPubMed
Lamarche, B. and Lewis, G. (1998). Atherosclerosis prevention for the next decade: risk assessment beyond low density lipoprotein cholesterol. Can. J. Cardiol., 14, 841–51.Google ScholarPubMed
Lamarche, B., Tchernof, A., Moorjani, S., et al. (1997). Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Circulation, 95, 69–75.CrossRefGoogle ScholarPubMed
Lamarche, B., Tchernof, A., Mauriege, P., et al. (1998). Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease. J. Am. Med. Ass., 279, 1955–61.CrossRefGoogle ScholarPubMed
Lamarche, B., Rashid, S. and Lewis, G. F. (1999). HDL metabolism in hypertriglyceridemic states: an overview. Clin. Chim. Acta, 286, 145–61.CrossRefGoogle ScholarPubMed
Lewis, G. F. and Steiner, G. (1996). Hypertriglyceridemia and its metabolic consequences as a risk factor for atherosclerotic cardiovascular disease in non-insulin-dependent diabetes mellitus. Diabetes Metab. Rev., 12, 37–56.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Lorentzen, B. and Henriksen, T. (1998). Plasma lipids and vascular dysfunction in preeclampsia. Semin. Reprod. Endocrinol., 16, 33–9.CrossRefGoogle ScholarPubMed
Lorentzen, B., Endresen, M. J., Clausen, T. and Henriksen, T. (1994). Fasting serum free fatty acids and triglycerides are increased before 20 weeks of gestation in women who later develop preeclampsia. Hypertens. Pregn., 13, 103–9.CrossRefGoogle Scholar
Lorentzen, B., Drevon, C. A., Endressen, M. J. and Henriksen, T. (1995). Fatty acid pattern of esterfied and free fatty acids in sera of women with normal and pre-eclamptic pregnancy. Br. J. Obstet. Gynaecol., 102, 530–7.CrossRefGoogle Scholar
Lorentzen, B., Birkeland, K. I., Endresen, M. J. and Henriksen, T. (1998). Glucose intolerance in women with preeclampsia. Acta Obstet. Gynecol. Scand., 77, 22–7.CrossRefGoogle ScholarPubMed
Ma, Y., Ooi, T. C., Liu, M. S., et al. (1994). High frequency of mutations in the human lipoprotein lipase gene in pregnancy-induced chylomicronemia: possible association with apolipoprotein E2 isoform. J. Lipid. Res., 35, 1066–75.Google ScholarPubMed
Martin, U., Davies, C., Hayavi, S., Hartland, A. and Dunne, F. (1999). Is normal pregnancy atherogenic?Clin. Sci., 96, 421–5.CrossRefGoogle ScholarPubMed
Montelongo, A., Lasuncion, M. A., Pallardo, L. F. and Herrera, E. (1992). Longitudinal study of plasma lipoproteins and hormones during pregnancy in normal and diabetic women. Diabetes, 41, 1651–9.CrossRefGoogle ScholarPubMed
Montes, A., Walden, C. E., Knopp, R. H., Cheung, M., Chapman, M. B. and Albers, J. J. (1984). Physiologic and supraphysiologic increases in lipoprotein lipids and apoproteins in late pregnancy and postpartum. Possible markers for the diagnosis of “prelipemia”. Arteriosclerosis, 4, 407–17.CrossRefGoogle Scholar
Murai, J. T., Muzykanskiy, E. and Taylor, R. N. (1997). Maternal and fetal modulators of lipid metabolism correlate with the development of preeclampsia. Metabolism, 46, 963–7.Google ScholarPubMed
Murata, M., Kodama, H., Goto, K., Hirano, H. and Tanaka, T. (1996). Decreased very-low-density lipoprotein and low-density lipoprotein receptor messenger ribonucleic acid expression in placentas from preeclamptic pregnancies. Am. J. Obstet. Gynecol., 175, 1551–6.CrossRefGoogle ScholarPubMed
Ness, R. B. and Roberts, J. M. (1996). Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am. J. Obstet. Gynecol., 175, 1365–70.CrossRefGoogle ScholarPubMed
Ness, R., Markovic, N., Bass, D., Harger, G. and Roberts, J. (2003). Family history of hypertension, heart disease, and stroke among women who develop hypertension in pregnancy. Obstet. Gynecol., 102, 1366–71.Google ScholarPubMed
Nisell, H., Erikssen, C., Persson, B. and Carlstrom, K. (1999). Is carbohydrate metabolism altered among women who have undergone a preeclamptic pregnancy?Gynecol. Obstet. Invest., 48, 241–6.CrossRefGoogle ScholarPubMed
O'Brien, S. F. O., Watts, G. F., Playford, D. A., Burke, V., O'Neal, D. N. and Best, J. D. (1997). Low-density lipoprotein size, high density lipoprotein-concentration, and endothelial dysfunction in non-insulin-dependent diabetes. Diabetic Med., 14, 974–8.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Ogura, K., Miyatake, T., Fukui, O., Nakamura, T., Kameda, T. and Yoshino, G. (2002). Low-density lipoprotein particle diameter in normal pregnancy and preeclampsia. J. Atheroscler. Thromb., 9, 42–7.CrossRefGoogle ScholarPubMed
Pleiner, J., Schaller, G., Mittermayer, F., Bayerle-Eder, M., Roden, M. and Wolzt, M. (2002). FFA-induced endothelial dysfunction can be corrected by vitamin C. J. Clin. Endocrinol. Metab., 87, 2913–17.CrossRefGoogle ScholarPubMed
Plotnick, G. D., Corretti, M. C. and Vogel, R. A. (1997). Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. J. Am. Med. Ass., 278, 1682–6.CrossRefGoogle ScholarPubMed
Potter, J. M. and Nestle, P. J. (1979). The hyperlipidemia of pregnancy in normal and complicated pregnancies. Am. J. Obstet. Gynecol., 133, 165–70.CrossRefGoogle ScholarPubMed
Ramirez, R. J., Novak, J., Johnston, T. P., Gandley, R. E., McLaughlin, M. K. and Hubel, C. A. (2001). Endothelial function and myogenic reactivity in small mesenteric arteries of hyperlipidemic pregnant rats. Am. J. Physiol., 281, R1330–7.Google ScholarPubMed
Reaven, G. M. (1994). Syndrome X: 6 years later. J. Internal. Med., 236, 13–22.Google Scholar
Redman, C. W. G., Sacks, G. P. and Sargent, I. L. (1999). Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol., 180, 499–506.CrossRefGoogle Scholar
Roberts, J. M. and Hubel, C. A. (1999). Is oxidative stress the link in the two-stage model of pre-eclampsia?Lancet, 354, 788–9.CrossRefGoogle ScholarPubMed
Ross, R. (1999). Atherosclerosis – an inflammatory disease. N. Engl. J. Med., 340, 115–26.CrossRefGoogle ScholarPubMed
Sacks, G. P., Studena, K., Sargent, I. I. and Redman, C. W. G. (1998). Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am. J. Obstet. Gynecol., 179, 80–6.CrossRefGoogle ScholarPubMed
Sacks, G., Sargent, I. and Redman, C. (1999). An innate view of human pregnancy. Immunol. Today, 20, 114–18.CrossRefGoogle ScholarPubMed
Sattar, N. and Greer, I. A. (2002). Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening?Br. Med. J., 325, 157–60.CrossRefGoogle ScholarPubMed
Sattar, N., Bedomir, A., Berry, C., Shepherd, J., Greer, I. A. and Packard, C. J. (1997a). Lipoprotein subfraction concentrations in preeclampsia: pathogenic parallels to atherosclerosis. Obstet. Gynecol., 89, 403–8.CrossRefGoogle Scholar
Sattar, N., Greer, I. A., Louden, J., Lindsay, G., McConnell, M., Shepherd, J. and Packard, C. J. (1997b). Lipoprotein subfraction changes in normal pregnancy: threshold effect of plasma triglyceride on appearance of small, dense low density lipoprotein. J. Clin. Endocrinol. Metab., 82, 2483–91.Google Scholar
Sattar, N., Petrie, J. R. and Jaap, A. J. (1998). The atherogenic lipoprotein phenotype and vascular endothelial dysfunction. Atherosclerosis, 138, 229–35.CrossRefGoogle ScholarPubMed
Sattar, N., Greer, I. A., Galloway, P. J., et al. (1999). Lipid and lipoprotein concentrations in pregnancies complicated by intrauterine growth restriction. J. Clin. Endocrinol. Metab., 84, 128–30.Google ScholarPubMed
Sheppard, B. L. and Bonnar, J. (1981). An ultrastructural study of utero-placental spiral arteries in hypertensive and normotensive pregnancy and fetal growth retardation. Br. J. Obstet. Gynaecol., 88, 695–705.CrossRefGoogle ScholarPubMed
Sibai, B., El-Nazer, A. and Gonzalez-Ruiz, A. (1986). Severe preeclampsia–eclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis. Am. J. Obstet. Gynecol., 155, 1011–16.CrossRefGoogle ScholarPubMed
Sibai, B. M., Ewell, M., Levine, R. J., et al. (1997). Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol., 177, 1003–10.CrossRefGoogle ScholarPubMed
Silliman, K., Shore, V. and Forte, T. M. (1994). Hypertriglyceridemia during late pregnancy is associated with the formation of small dense low-density lipoproteins and the presence of large buoyant high-density lipoproteins. Metabolism, 43, 1035–41.CrossRefGoogle ScholarPubMed
Sivan, E., Homko, C. J., Whittaker, P. G., Reece, E. A., Chen, X. and Boden, G. (1998). Free fatty acids and insulin resistance during pregnancy. J. Clin. Endocrinol. Metab., 83, 2338–42.Google ScholarPubMed
Solomon, C., Carroll, J., Okamura, K., Graves, S. and Seeley, E. (1999). Higher cholesterol and insulin levels in pregnancy are associated with increased risk for pregnancy-induced hypertension. Am. J. Hypertens., 12, 276–82.CrossRefGoogle ScholarPubMed
Solomon, C. G., Graves, S. W., Greene, M. F. and Seely, E. W. (1994). Glucose intolerance as a predictor of hypertension in pregnancy. Hypertension, 23, 717–21.CrossRefGoogle ScholarPubMed
Sowers, J. R., Saleh, A. A. and Sokol, R. J. (1995). Hyperinsulinemia and insulin resistance are associated with preeclampsia in African-Americans. Am. J. Hypertens., 8, 1–4.CrossRefGoogle ScholarPubMed
Staff, A. C., Halvorsen, B., Ranheim, T. and Henriksen, T. (1999a). Free 8-iso-prostaglandin F2α is elevated in decidua basalis in women with preeclampsia. Am. J. Obstet. Gynecol., 181, 1211–15.CrossRefGoogle Scholar
Staff, A. C., Ranheim, T., Khoury, J. and Henriksen, T. (1999b). Increased contents of phospholipids, cholesterol, and lipid peroxides in decidua basalis in women with preeclampsia. Am. J. Obstet. Gynecol., 180, 587–92.CrossRefGoogle Scholar
Stampfer, M. J., Krauss, R. M., Ma, J., et al. (1996). A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. J. Am. Med. Ass., 276, 882–8.CrossRefGoogle ScholarPubMed
Steinberg, H. O., Chaker, H., Leaming, R., Johnson, A., Brechtel, G. and Baron, A. D. (1996). Obesity/insulin resistance is associated with endothelial dysfunction. J. Clin. Invest., 97, 2601–10.CrossRefGoogle ScholarPubMed
Steinberg, H. O., Paradisi, G., Hook, G., Crowder, K., Cronin, J. and Baron, A. D. (2000). Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes, 49, 1231–8.CrossRefGoogle ScholarPubMed
Steinberg, H. O., Tarshoby, M., Monestel, R., et al. (1997). Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Invest., 100, 1230–9.CrossRefGoogle ScholarPubMed
Vigne, J. L., Murai, J. T., Arbogast, B. W., Jia, W., Fisher, S. J. and Taylor, R. N. (1997). Elevated nonesterified fatty acid concentrations in severe preeclampsia shift the isoelectric characteristics of plasma albumin. J. Clin. Endocrinol. Metab., 82, 3786–92.Google ScholarPubMed
Vogel, R. A., Corretti, M. C. and Plotnick, G. D. (1997). Effect of a single high-fat meal on endothelial function in healthy subjects. Am. J. Cardiol., 79, 350–4.CrossRefGoogle ScholarPubMed
Wakatsuki, A., Ikenoue, N., Okatani, Y., Shinohara, K. and Fukaya, T. (2000). Lipoprotein particles in preeclampsia: susceptibility to oxidative modification. Obstet. Gynecol., 96, 55–9.Google ScholarPubMed
Walsh, S. W. (1998). Maternal–placental interactions of oxidative stress and antioxidants in preeclampsia. Semin. Reprod. Endocrinol., 16, 93–104.CrossRefGoogle ScholarPubMed
Williams, C. and Coltart, T. M. (1978). Adipose tissue metabolism in pregnancy: the lipolytic effect of human placental lactogen. Br. J. Obstet. Gynaecol., 85, 43–6.CrossRefGoogle ScholarPubMed
Williams, M., Zingheim, R., King, I. and Zebelman, A. (1995). Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology, 6, 232–7.CrossRefGoogle ScholarPubMed
Winkler, K., Wetzka, B., Hoffmann, M. M., et al. (2000). Low density lipoprotein (LDL) subfractions during pregnancy: accumulation of buoyant LDL with advancing gestation. J. Clin. Endocrinol. Metab., 85, 4543–50.CrossRefGoogle ScholarPubMed
Winkler, K., Wetzka, B., Hoffmann, M. M., et al. (2003). Triglyceride-rich lipoproteins are associated with hypertension in preeclampsia. J. Clin. Endocrinol. Metab., 88, 1162–6.CrossRefGoogle ScholarPubMed
Wittmaack, F., Gafvels, M., Bronner, M., et al. (1995). Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport. Endocrinology, 136, 340–8.CrossRefGoogle ScholarPubMed
Wolf, M., Kettyle, E., Sandler, L., Ecker, J. L., Roberts, J. and Thadhani, R. (2001). Obesity and preeclampsia: the potential role of inflammation. Obstet. Gynecol., 98, 757–62.Google ScholarPubMed
Wolf, M., Sandler, L., Munoz, K., Hsu, K., Ecker, J. and Thadhani, R. (2002). First trimester insulin resistance and subsequent preeclampsia: a prospective study. J. Clin. Endocrinol. Metab., 87, 1563–8.CrossRefGoogle ScholarPubMed
Yuan, H., Antholine, W. E., Subczynski, W. K. and Green, M. A. (1996). Release of CuPTSM from human serum albumin after addition of fatty acids. J. Inorg. Biochem., 61, 251–9.CrossRefGoogle ScholarPubMed
Zhang, C., Austin, M., Edwards, K., et al. (2006). Functional variants of the lipoprotein lipase gene and the risk of preeclampsia among non-Hispanic Caucasian women. Clin. Genet., 69, 33–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×