Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T11:09:48.542Z Has data issue: false hasContentIssue false

4 - Endothelial factors

from Part I - Basic science

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Introduction

Vascular tone is influenced by the autonomic nervous system, intrinsic vascular smooth muscle reflexes and the endothelium (Figure 4.1). The endothelium is the cell layer lining the internal surface of blood vessels and in a person weighing 70 kg, covers an area of approximately 700 m2 and weighs between 1 and 1.5 kg (Luscher and Barton, 1997). The endothelium is responsible for an extensive array of highly specialized, homeostatic functions. It plays an important role in the control of blood pressure, blood flow, angiogenesis, coagulation, fibrinolysis, vessel patency, and local inflammatory responses. These functions are achieved through the release of endothelium-derived relaxing and contracting factors, thromboregulatory molecules, growth factors, and neutrophil adhesion molecules (Petty and Pearson, 1989) (Table 4.1). Impaired endothelial function contributes substantially to cardiovascular disorders such as hypertension, atherosclerosis and pre-eclampsia.

Stimulation of endothelial receptors activates pathways within the endothelium that mediate either relaxation or constriction of the underlying vascular smooth muscle. Endothelial responses are triggered by acetylcholine (ACh), serotonin (5-HT), angiotensin II (AngII), vasopressin (AVP), histamine, bradykinin and several other vasoactive hormones (Hill et al., 2001; Lincoln and Burnstock, 1990; Vanhoutte and Rimele, 1983). Endothelial-derived vasoactive factors influence vascular smooth muscle tone through prostaglandins, which are both vasodilatory (prostacyclin) and vasoconstrictor (thromboxane) (Moncada et al., 1976; Mombouli and Vanhoutte, 1999), endothelins, which are predominantly vasoconstrictor (Bagnall and Webb, 2000), endothelial-derived hyperpolarizing factor (EDHF), which is predominantly vasodilator (Chen et al., 1988; Garland et al. 1995), but still not fully characterized, and nitric oxide, which is a vasodilator (Palmer et al., 1987; Vallance et al., 1989).

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 50 - 77
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A., Li, X. F., Dunk, C., et al. (1995). Co-localization of vascular endothelial growth factor and its Flt-1 receptor in human placenta. Growth Factors, 12, 235–43.CrossRefGoogle Scholar
Ajne, G., Wolff, K., Fyhrquist, F., et al. (2003). Endothelin converting enzyme (ECE) activity in normal pregnancy and pre-eclampsia. Hypertens. Pregn., 22, 215–24.CrossRefGoogle Scholar
Anumba, D. O. C., Robson, S. C., Boys, R. J. and Ford, G. A. (1999). Nitric oxide activity in the peripheral vasculature during normotensive and preeclamptic pregnancy. Am. J. Physiol., 277, H848–54.Google ScholarPubMed
Ashworth, J. R., Warren, A. Y., Baker, P. N. and Johnson, I. R. (1996). Endothelium-dependent relaxation in omental and myometrial resistance arteries in pregnant and non-pregnant women. Am. J. Obstet. Gynecol., 175, 1307–12.CrossRefGoogle Scholar
Ashworth, J. R., Warren, A. Y., Baker, P. N. and Johnson, I. R. (1997). Loss of endothelium-dependent relaxation in myometrial resistance arteries in pre-eclampsia. Br. J. Obstet. Gynecol., 104, 1152–8.CrossRefGoogle ScholarPubMed
Assali, N. S. and Prystowsky, H. (1950). Studies on autonomic blockade. I. Comparison between the effects of tetraethylammonium chloride (TEAC) and high selective spinal anesthesia on blood pressure of normal and toxemic pregnancy. J. Clin. Invest., 29, 1354–66.CrossRefGoogle ScholarPubMed
Bagnall, A. J. and Webb, D. J. (2000). The endothelin system: physiology. In Vascular Endothelium in Human Physiology and Pathophysiology, eds. Vallance, P. J. T. and Webb, D. J.. The Netherlands: Harwood Academic Publishers.CrossRefGoogle Scholar
Baker, P. N., Krasnow, J., Roberts, J. M. and Yeo, K. T. (1995). Elevated serum levels of vascular endothelial growth factor in patients with pre-eclampsia. Obstet. Gynecol., 86, 815–21.CrossRefGoogle Scholar
Barden, A., Graham, D., Beilin, L. J., et al. (1997). Neutrophil CD11B expression and neutrophil activation in pre-eclampsia. Clin. Sci., 92, 37–44.CrossRefGoogle ScholarPubMed
Boccardo, P., Soregaroli, M., Aiello, S., et al. (1996). Systemic and fetal–maternal nitric oxide synthesis in normal pregnancy and pre-eclampsia. Br. J. Obstet. Gynaecol., 103, 879–86.CrossRefGoogle ScholarPubMed
Bonnar, J. (1987). Haemostasis and coagulation disorders in pregnancy. In Haemostasis and Thrombosis, eds. Bloom, A. L. and Thomas, D. P.. Edinburgh: Churchill Livingstone, pp. 570–84.Google Scholar
Boulanger, C. and Luscher, T. F. (1990). Release of endothelin from the porcine aorta: inhibition by endothelium-derived nitric oxide. J. Clin. Invest., 85, 587–90.CrossRefGoogle ScholarPubMed
Bower, S., Bewley, S. and Campbell, S. (1993). Improved prediction of preeclampsia by two-stage screening of uterine arteries using the early diastolic notch and color Doppler imaging. Obstet. Gynecol., 82, 78–83.Google ScholarPubMed
Bremme, K., Ostlund, E., Almquist, I., et al. (1992). Enhanced thrombin generation and fibrinolytic activity in normal pregnancy and the puerperium. Obstet. Gynecol., 80, 132–7.Google ScholarPubMed
Brockelsby, J., Hayman, R., Ahmed, A., et al. (1999). VEGF via VEGF receptor-1 (Flt-1) mimics pre-eclamptic plasma in inhibiting uterine blood vessel relaxation in pregnancy: implications in the pathogenesis of pre-eclampsia. Lab. Invest., 79, 1101–11.Google Scholar
Brown, M. A. and Gallery, E. D. M. (1994). Volume homeostasis in normal pregnancy and pre-eclampsia: physiology and clinical implications. Baillieres Clin. Obst. Gynaecol., 8, 287–310.CrossRefGoogle ScholarPubMed
Calver, A., Collier, J., Leone, A., Moncada, S. and Vallance, P. (1993). Effect of local intra-arterial asymmetric dimethylarginine (ADMA) on the forearm arteriolar bed of healthy volunteers. J. Hum. Hypertens., 7, 193–4.Google ScholarPubMed
Cameron, I., Papendorp, C. L., Palmer, R. M. J., et al. (1993). Relationship between nitric oxide synthesis and increase in systolic blood pressure in women with hypertension in pregnancy. Hypertens. Preg., 12, 85–92.CrossRefGoogle Scholar
Castro, L. C., Hobel, C. J. and Gornbein, J. (1994). Plasma levels of atrial natriuretic peptide in normal and hypertensive pregnancies: a meta-analysis. Am. J. Obstet. Gynecol., 171, 1642–51.CrossRefGoogle ScholarPubMed
Celermajer, D. S., Sorensen, K. E., Gooch, V. M., et al. (1992). Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet, 340, 1111–15.CrossRefGoogle ScholarPubMed
Chapman, A. B., Abraham, W. T., Zamudio, S., et al. (1998). Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int., 54, 2056–63.CrossRefGoogle ScholarPubMed
Chavarria, M. E., Lara-Gonzalez, L., Gonzalez-Gleason, A., et al. (2002). Maternal plasma cellular fibronectin concentrations in normal and pre-eclamptic pregnancies: a longitudinal study for early prediction of pre-eclampsia. Am. J. Obstet. Gynecol., 187, 595–601.CrossRefGoogle Scholar
Chavarria, M. E., Lara-Gonzalez, L., Gonzalez-Gleason, A., et al. (2003). Prostacyclin/thromboxane early changes in pregnancies that are complicated by pre-eclampsia. Am. J. Obstet. Gynecol., 188, 986–92.CrossRefGoogle Scholar
Chen, D. B., Bird, I. M., Zheng, J. and Magness, R. R. (2004). Membrane estrogen receptor-dependent extracellular signal-regulated kinase pathway mediates acute activation of endothelial nitric oxide synthase by estrogen in uterine artery endothelial cells. Endocrinology, 145, 113–25.CrossRefGoogle ScholarPubMed
Chen, G., Suzuki, H. and Weston, A. H. (1988). Acetylcholine releases endothelium-derived hyperpolarising factor and EDRF from rat blood vessels. Br. J. Pharmacol., 95, 1165–74.CrossRefGoogle Scholar
Chen, G., Wilson, R., Wang, S. H., et al. (1996). Tumour necrosis factor alpha (TNF-α) gene polymorphism and expression in pre-eclampsia. Clin. Exp. Immunol., 104, 154–9.CrossRefGoogle ScholarPubMed
Chirico, S., Smith, C., Merchant, C., et al. (1993). Lipid peroxidation in hyperlipidaemic patients: a study of plasma using an HPLC-based thiobarbituric acid test. Free Rad. Res. Commun., 19, 51–7.CrossRefGoogle ScholarPubMed
Clark, B. A., Ludmire, J., Epstein, F. H., et al. (1997). Urinary cGMP, endothelin, and prostaglandin E2 in normal pregnancy and preeclampsia. Am. J. Perinatol., 14, 559–62.CrossRefGoogle Scholar
CLASP (Collaborative Low Dose Aspirin Study in Pregnancy) Collaborative group. (1994). CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of preeclampsia among 9364 pregnant women. Lancet, 343, 619–29.CrossRef
Cockell, A. P. and Poston, L. (1997a). Flow mediated vasodilatation is enhanced in normal pregnancy but reduced in preeclampsia. Hypertension, 30, 247–51.CrossRefGoogle Scholar
Cockell, A. P. and Poston, L. (1997b). 17β estradiol stimulates flow-induced vasodilatation in isolated small mesenteric arteries from prepubertal female rats. Am. J. Obstet. Gynaecol., 177, 1432–8.CrossRefGoogle Scholar
Cockell, A. P., Learmont, J. G., Smarason, A. L., et al. (1997). Human placental syncytiotrophoblast microvillous membranes impair maternal vascular endothelial cell function. Br. J. Obstet. Gynaecol., 104, 235–40.CrossRefGoogle Scholar
Coleman, H. A., Tare, M. and Parkington, H. C. (2001). K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels. J. Physiol., 531, 359–73.CrossRefGoogle ScholarPubMed
Conrad, K. P. and Vernier, V. A. (1989). Plasma levels, urinary excretion and metabolic production of cGMP during gestation in rats. Am. J. Physiol., 257, R847–53.Google ScholarPubMed
Conrad, K. P. and Benyo, D. F. (1997). Placental cytokines and the pathogenesis of pre-eclampsia. Am. J. Reprod. Immunol., 37, 240–9.CrossRefGoogle Scholar
Conrad, K. P., Joffe, G. M., Kruszyna, H., et al. (1993). Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J., 7, 566–71.CrossRefGoogle ScholarPubMed
Coomerasamy, A., Honest, H., Papaionnou, S., et al. (2003). Aspirin for prevention of pre-eclampsia in women with historical risk factors: a systematic review. Obstet. Gynecol., 101, 1318–32.Google Scholar
Curtis, N. E., Gude, N. M., King, R. G., et al. (1995). Nitric oxide metabolites in normal human pregnancy and preeclampsia. Hypertens. Preg., 23, 1096–105.Google Scholar
Danielson, L. A. and Conrad, K. P. (1995). Acute blockade of nitric oxide synthase inhibits renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats. J. Clin. Investig., 96, 482–90.CrossRefGoogle ScholarPubMed
Davenport, A. P., Ashley, M. J., Easton, P., et al. (1990). A sensitive radioimmunoassay measuring endothelin-like immunoreactivity in human plasma: comparison of levels in patients with essential hypertension and normotensive control subjects. Clin. Sci., 78, 261–4.CrossRefGoogle ScholarPubMed
Davidge, S. T. (2001). Prostaglandin H synthase and vascular function. Circ. Res., 89, 650–60.CrossRefGoogle ScholarPubMed
Davidge, S. T., Signorella, A. P., Lykins, D. L., et al. (1996). Evidence of endothelial activation and endothelial activators in cord blood of infants of pre-eclamptic women. Am. J. Obstet. Gynecol., 175, 1301–6.CrossRefGoogle Scholar
Davison, J. M. (1984). Renal haemodynamics and volume homeostasis in pregnancy. Scand. J. Clin. Lab. Invest., 169(Suppl.), 15–27.CrossRefGoogle ScholarPubMed
Dayoub, H., Achan, V., Adimoolam, S., et al. (2003). Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis. Genetic and physiological evidence. Circulation, 108, 3042–7.CrossRefGoogle ScholarPubMed
Boer, K., ten-Cate, J. W., Sturk, A., et al. (1989). Enhanced thrombin generation in normal and hypertensive pregnancy. Am. J. Obstet. Gynecol., 160, 95–100.CrossRefGoogle ScholarPubMed
Dunk, C. and Ahmed, A. (2001). Expression of VEGF-c and activation of its receptors VEGFR-2 and VEGFR-3 in trophoblast. Histol. Histopathol., 16, 359–75.Google ScholarPubMed
Dunlop, W. (1981). Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynecol., 88, 1–9.CrossRefGoogle ScholarPubMed
Easterling, T. R., Watts, H., Schumucker, B. C. and Benedettie, T. J. (1987). Measurement of cardiac output during pregnancy: validation of Doppler technique and clinical observations in pre-eclampsia. Obstet. Gynecol., 69, 845–50.Google Scholar
Edwards, G., Dora, K. A., Gardener, M. J., et al. (1998). K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature, 396, 269–72.CrossRefGoogle ScholarPubMed
Edwards, G., Thollon, C., Gardener, M. J., et al. (2000). Role of gap junctions and EETs in endothelium-dependent hyperpolarisation of porcine artery. Br. J. Pharmacol., 129, 1145–54.CrossRefGoogle Scholar
Endresen, M. J., Tosti, E., Lorentzen, B. and Henriksen, T. (1995). Sera of preeclamptic women is not cytotoxic to endothelial cells in culture. Am. J. Obstet. Gynecol., 172, 196–201.CrossRefGoogle Scholar
Farhat, M. Y., Lavigne, M. C. and Ramwell, P. W. (1996). The vascular protective effects of estrogen. FASEB J., 10, 615–24.CrossRefGoogle ScholarPubMed
Feletou, M. and Vanhoutte, P. M. (1988). Endothelium-dependent hyperpolarisation of canine coronary smooth muscle. Br. J. Pharmacol., 93, 515–24.CrossRefGoogle Scholar
Fickling, S. A., Williams, D., Vallance, P., et al. (1993). Plasma concentrations of endogenous inhibitor of nitric oxide synthesis in normal pregnancy and pre-eclampsia. Lancet, 342, 242–3.CrossRefGoogle ScholarPubMed
Fitzgerald, D. J., Rocki, W., Murray, R., et al. (1990). Thromboxane A2 synthesis in pregnancy-induced hypertension. Lancet, 335, 751–4.CrossRefGoogle ScholarPubMed
Flavahan, N. A. and Vanhoutte, P. M. (1995). Endothelial cell signalling and endothelial cell dysfunction. Am. J. Hypertens., 8, 28S–41S.CrossRefGoogle Scholar
Ford, G. A., Robson, S. C. and Mahdy, Z. A. (1996). Superficial hand vein responses to NG-monomethyl-l-arginine in post-partum and non-pregnant women. Clin. Sci., 90, 493–7.CrossRefGoogle ScholarPubMed
Fostermann, U., Closs, E. I., Pollock, J. S., et al. (1994). Nitric oxide synthase isoenzymes. Characterization, purification, molecular cloning, and functions. Hypertension, 23, 1211–31.Google Scholar
Freeman, B. A., Gutierrez, H. and Rubbo, H. (1995). Nitric oxide: a central regulatory species in pulmonary oxidant reactions. Am. J. Physiol., 268, L697–8.Google ScholarPubMed
Fried, G. and Samuelson, U. (1991). Endothelin and neuropetide Y are vasoconstrictors in human uterine blood vessels. Am. J. Obstet. Gynecol., 164, 1330–6.CrossRefGoogle Scholar
Furchgott, R. F. (1988). Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from retractor penis in inorganic nitrite and the endothelium-derived relaxing factor in nitric oxide. In Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium, ed. Vanhoutte, P. M.. New York: Raven, pp. 401–14.Google Scholar
Furchgott, R. F. and Vanhoutte, P. M. (1989). Endothelium-derived relaxing and contracting factors. FASEB J., 3, 2007–18.CrossRefGoogle ScholarPubMed
Furchgott, R. and Zawadzki, D. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–6.CrossRefGoogle ScholarPubMed
Gargett, C. E., Bucak, K., Zaitseva, M., et al. (2002). Estrogen receptor-alpha and -beta expression in microvascular endothelial cells and smooth muscle cells of myometrium and leiomyoma. Mol. Hum. Reprod., 8, 770–5.CrossRefGoogle ScholarPubMed
Garland, C. J., Plane, F., Kemp, B. K. and Cox, T. M. (1995). Endothelium-dependent hyperpolarisation: a role in the control of vascular tone. Trends Pharmacol. Sci., 16, 23–30.CrossRefGoogle Scholar
Gerber, R. T., Anwar, M. A. and Poston, L. (1998). Enhanced acetylcholine induced relaxation in small mesenteric arteries from pregnant rats: an important role for endothelium-derived hyperpolarizing factor (EDHF). Br. J. Pharmacol., 125 (3), 455–60.CrossRefGoogle Scholar
Goodrum, L., Saade, G., Jahoor, F., et al. (1996). Nitric oxide production in normal human pregnancy. J. Soc. Gynecol. Investig., 3, 97A.CrossRefGoogle Scholar
Goonasekera, C. D., Rees, D. D., Woolard, P., et al. (1997). Nitric oxide synthase inhibitors and hypertension in children and adolescents. J. Hypertens., 15, 901–9.CrossRefGoogle ScholarPubMed
Granger, J. P., Alexander, B. T., Llinas, M. T., et al. (2001). Pathophysiology of hypertension during pre-eclampsia. Linking placental ischaemia with endothelial dysfunction. Hypertension, 38(Suppl.), 718–22.CrossRefGoogle ScholarPubMed
Greer, I. A., Haddad, N. G., Dawes, J., et al. (1989). Neutrophil activation in pregnancy-induced hypertension. Br. J. Obstet. Gynaecol., 96, 978–82.CrossRefGoogle ScholarPubMed
Halligan, A., O'Brien, E., O'Malley, K., et al. (1993). 24 hour ambulatory blood pressure measurement in the primigravid population. J. Hypertens., 11, 869–73.CrossRefGoogle ScholarPubMed
Hashimoto, M., Akishita, M., Eto, M., et al. (1995). Modulation of endothelium-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation, 92, 3431–5.CrossRefGoogle ScholarPubMed
Hecker, M., Bara, A. T., Bauersachs, J. and Busse, R. (1994). Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J. Physiol. (Lond.), 481, 407–14.CrossRefGoogle ScholarPubMed
Hill, C. E., Phillips, J. K. and Sandow, S. L. (2001). Heterogeneous control of blood flow amongst different vascular beds. Medic. Res. Rev., 21, 1–60.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Holden, D. P., Fickling, S. A., StJ. Whitley, G. and Nussey, S. S. (1998). Plasma concentrations of asymmetric dimethylarginine, a natural inhibitor of nitric oxide synthase, in normal pregnancy and pre-eclampsia. Am. J. Obstet. Gynecol., 178, 551–6.CrossRefGoogle Scholar
Hubel, C. A., McLaughlin, M. K., Evans, R. W., et al. (1996). Fasting serum triglycerides, free fatty acids and malondialdehyde are increased in pre-eclampsia, are positively correlated, and decrease within 48 hours post partum. Am. J. Obstet. Gynecol., 174, 975–82.CrossRefGoogle ScholarPubMed
Ignarro, L. J., Byrns, R. E. and Wood, K. S. (1988). Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical. In Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium, ed. Vanhoutte, P. M.. New York: Raven, pp. 401–14.Google Scholar
Kabbinavar, F., Hurwitz, H. I., Fehrenbacher, L., et al. (2003). Phase II, randomised trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) and FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol., 21, 60–5.CrossRefGoogle Scholar
Kakimoto, Y. and Akazawa, S. (1970). Isolation and identification of NG,NG- and NG,N′G-dimethylarginine, N-epsilon-mono, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J. Biol. Chem., 245, 5751–8.Google Scholar
Kenny, L. C., Baker, P. N., Kendall, D. A., et al. (2002a). Differential mechanisms of endothelium-dependent vasodilator responses in human myometrial small arteries in normal pregnancy and pre-eclampsia. Clin. Sci., 103, 67–73.CrossRefGoogle Scholar
Kenny, L. C., Baker, P. N., Kendall, D. A., et al. (2002b). The role of gap junctions in mediating endothelium-dependent responses to bradykinin in myometrial small arteries isolated from pregnant women. Br. J. Pharmacol., 136, 1085–8.CrossRefGoogle Scholar
Killam, A. P., Rosenfeld, C. R., Battaglia, F. C., et al. (1973). Effect of estrogens on the uterine blood flow of oophorectomised ewes. Am. J. Obstet. Gynecol., 115, 1045–52.CrossRefGoogle Scholar
Kitching, A. R., Kong, Y. Z., Huang, X. R., et al. (2003). Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol., 14, 1487–95.CrossRefGoogle ScholarPubMed
Knock, G. A. and Poston, L. (1996). Bradykinin-mediated relaxation of isolated maternal resistance arteries in normal pregnancy and preeclampsia. Am. J. Obstet. Gynecol., 175, 1668–74.CrossRefGoogle ScholarPubMed
Koga, K., Osuga, Y., Yoshino, O., et al. (2003). Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with pre-eclampsia. J. Clin. Endocrinol. Metab., 88, 2348–51.CrossRefGoogle Scholar
Kopp, L., Paradiz, G. and Tucci, J. R. (1977). Urinary excretion of cyclic 3′,5′-adenosine monophosphate and cyclic 3′,5′-guanosine monophosphate during and after pregnancy. J. Clin. Endocrinol. Metabol., 44, 590–4.CrossRefGoogle ScholarPubMed
Kruithof, E. K., Tran-Thang, C., Gudinchet, A., et al. (1987). Fibrinolysis in pregnancy: a study of plasminogen activator inhibitors. Blood, 69, 460–6.Google ScholarPubMed
Kublickiene, K. R., Kublickas, M., Lindblom, B., Lunell, N.-O. and Nisell, H. (1997a). A comparsion of myogenic and endothelial properties of myometrial and resistance vessels in late pregnancy. Am. J. Obstet. Gynecol., 176, 560–6.CrossRefGoogle Scholar
Kublickiene, K. R., Cockell, A. P., Nisell, H. and Poston, L. (1997b). Role of nitric oxide in the regulation of vascular tone in pressurised and perfused resistance myometrial arteries from term pregnant women. Am. J. Obstet. Gynecol., 177, 1263–9.CrossRefGoogle Scholar
Kublickiene, K. R., Gruenwald, C., Lindblom, B. and Nisell, H. (1998). Myogenic and endothelial properties of myometrial resistance arteries from women with pre-eclampsia. Hypertens. Preg., 17, 271–82.CrossRefGoogle Scholar
Kuchan, M. J. and Frangos, J. A. (1994). Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol., 266, C628–36.CrossRefGoogle ScholarPubMed
Kupfermine, M., Peaceman, A. M., Wigton, T. R., et al. (1994). Tumour necrosis factor α is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am. J. Obstet. Gynecol., 170, 1752–9.CrossRefGoogle Scholar
Learmont, J. G., Cockell, A. P., Knock, G. A. and Poston, L. (1996). Myogenic and flow mediated responses in isolated mesenteric small arteries from pregnant and non-pregnant rats. Am. J. Obstet. Gynecol., 174, 1631–6.CrossRefGoogle Scholar
Leiper, J. and Vallance, P. (1999). Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc. Res., 43, 542–8.CrossRefGoogle ScholarPubMed
Leiper, J. M., Santa Maria, J., Chubb, A., et al. (1999). Identification of two human dimethylarginine dimethyl-aminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem. J., 343, 209–14.CrossRefGoogle ScholarPubMed
Letsky, E. A. (1995). Coagulation defects. In Medical Disorders in Obstetric Practice, ed. Swiet, M.. Oxford: Blackwell Scientific, pp. 71–115.Google Scholar
Levine, R. J., Maynard, S. E., Cong, , Qian, et al. (2004). Circulating angiogenic factors and the risk of pre-eclampsia. N. Engl. J. Med., 350, 672–83.CrossRefGoogle Scholar
Levine, R. J., Lam, Chun, Qian, Cong, et al. (2006). Soluble endoglin and other circulating antiangiogenic factors in pre-eclampsia. N. Engl. J. Med., 355, 992–1005.CrossRefGoogle Scholar
Lincoln, J. and Burnstock, G. (1990). Neural–endothelial interactions in control of local blood flow. In The Endothelium: An Introduction to Current Research, ed. Warren, J. D.. New York: Wiley-Liss, Inc., pp. 21–32.Google Scholar
Luscher, T. F. and Barton, M. (1997). Biology of the endothelium. Clin. Cardiol., 20, 3–10.Google ScholarPubMed
Luscher, T. F. and Vanhoutte, P. M. (1990). The Endothelium: Modulator of Cardiovascular Function. Boca Raton, FL: CRC Press.Google Scholar
Lyall, F. and Greer, I. A. (1996). The vascular endothelium in normal pregnancy and pre-eclampsia. Rev. Reprod., 1, 107–16.CrossRefGoogle ScholarPubMed
Lyall, F., Greer, I. A., Boswell, F., et al. (1994). The cell adhesion molecule VCAM-1, is selectively elevated in serum in pre-eclampsia: does this indicate the mechanism of leucocyte activation?Br. J. Obstet. Gynaecol., 101, 485–7.CrossRefGoogle ScholarPubMed
Lyall, F., Greer, I. A., Boswell, F. and Fleming, R. (1997). Suppression of serum vascular endothelial growth factor immunoreactivity in normal pregnancy and in pre-eclampsia. Br. J. Obstet. Gynaecol., 104, 223–8.CrossRefGoogle ScholarPubMed
MacRitchie, A. N., Jun, S. S., Chen, Z., et al. (1997). Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circ. Res., 81, 355–62.CrossRefGoogle ScholarPubMed
Magness, R. R., Shaw, C. E., Phernetton, T. M., et al. (1997). Endothelial vasodilator production by uterine and systemic arteries. II Pregnancy effects on NO synthase expression. Am. J. Physiol., 272, H1730–40.Google ScholarPubMed
Mahdy, Z., Otun, H. A., Dunlop, W. and Gillespie, J. I. (1998). The responsiveness of isolated human hand vein endothelial cells in normal pregnancy and in pre-eclampsia. J. Physiol., 508, 609–17.CrossRefGoogle ScholarPubMed
Mantovani, A. (1997). The interplay between primary and secondary cytokines. Cytokines involved in the regulation of monocyte recruitment. Drugs, 54, 15–23.CrossRefGoogle ScholarPubMed
Manyonda, I. T., Slater, D. M., Fenske, C., et al. (1988). A role for noradrenaline in pre-eclampsia: towards a unifying hypothesis for the pathophysiology. Br. J. Obstet. Gynaecol., 105, 641–8.CrossRefGoogle Scholar
Marx, N., Imhof, A., Froehlich, J., et al. (2003). Effect of rosiglitazone treatment on soluble CD40L in patients with type II diabetes and coronary artery disease. Circulation, 107, 1954–7.CrossRefGoogle ScholarPubMed
Masaki, T. (1989). The discovery, the present state, and future prospects of endothelin. J. Cardiovasc. Pharmacol., 13 (Suppl. 5), S1–4.CrossRefGoogle ScholarPubMed
Maynard, S. E., Min, J. Y., Merchan, J., et al. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt-1) may contribute to endothelial dysfunction, hypertension, and proteinuria in pre-eclampsia. J. Clin. Investig., 111, 649–58.CrossRefGoogle Scholar
McCarthy, A. L., Taylor, P., Graves, J., et al. (1994). Endothelium dependent relaxation of human resistance arteries in pregnancy. Am. J. Obstet. Gynecol., 171, 1309–15.CrossRefGoogle ScholarPubMed
McDermott, J. R. (1976). Studies on the catabolism of NG-methylarginine, NG,NG-dimethylarginine and NG,NG-dimethylarginine in the rabbit. Biochem. J., 154, 179–84.CrossRefGoogle ScholarPubMed
Mendelsohn, M. E. and Karas, R. H. (1994). Estrogen and the blood vessel wall. Curr. Opin. Cardiol., 9, 619–26.CrossRefGoogle ScholarPubMed
Mills, J. L., DerSimonian, R., Raymond, E., et al. (1999). Prostacyclin and thromboxane changes predating clinical onset of pre-eclampsia. A multicenter prospective study. J. Am. Med. Ass., 282, 356–62.CrossRefGoogle ScholarPubMed
Miyazaki, H., Matsuoka, H., Cooke, J. P., et al. (1999). Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation, 99, 1141–6.CrossRefGoogle ScholarPubMed
Molnar, M. and Hertelendy, F. (1995). Signal transduction in rat myometrial cells: comparison of the actions of endothelin-1, oxytocin and prostaglandin F2 alpha. Eur. J. Endocrinol., 133, 467–74.CrossRefGoogle ScholarPubMed
Molnar, M., Suto, T., Toth, T., et al. (1994). Prolonged blockade of nitric oxide synthesis in gravid rats produces sustained hypertension, proteinuria, thrombocytopaenia and intrauterine growth retardation. Am. J. Obstet. Gynecol., 170, 1458–66.CrossRefGoogle ScholarPubMed
Mombouli, J. V. and Vanhoutte, P. M. (1999). Endothelial dysfunction: from physiology to therapy. J. Mol. Cell. Cardiol., 31, 61–74.CrossRefGoogle Scholar
Moncada, S. (1982). Biological importance of prostacyclin. Br. J. Pharmacol., 76, 3–31.CrossRefGoogle ScholarPubMed
Moncada, S. (1992). The L-arginine-nitric oxide pathway. Acta Physiol. Scand., 145, 201–27.CrossRefGoogle ScholarPubMed
Moncada, S. and Higgs, E. A. (1993). The l-arginine-nitric oxide pathway. NJEM, 329, 2002–12.Google ScholarPubMed
Moncada, S., Gryglewski, R., Bunting, S. and Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263, 663–5.CrossRefGoogle Scholar
Moncada, S., Herman, A. G., Higgs, E. A. and Vane, J. R. (1977). Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall: an explanation for the anti-thrombotic properties of vascular endothelium. Thromb. Res., 11, 323–44.CrossRefGoogle ScholarPubMed
Nobunaga, T., Tokugawa, Y., Hashimoto, K., et al. (1996). Plasma nitric oxide levels in pregnant patients with preeclampsia and essential hypertension. Gynecol. Obstet. Investig., 41, 189–93.CrossRefGoogle ScholarPubMed
Palmer, R. M., Ferrige, A. G. and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–6.CrossRefGoogle ScholarPubMed
Palmer, R. M., Ashton, D. S. and Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 333, 664–6.CrossRefGoogle ScholarPubMed
Pascoal, I. F. and Umans, J. G. (1996). Effect of pregnancy on mechanisms of relaxation in human omental microvessels. Hypertension, 28, 183–7.CrossRefGoogle ScholarPubMed
Pascoal, I. F., Lindheimer, M. D., Nalbantian-Brandt, C. and Umans, J. G. (1998). Preeclampsia selectively impairs endothelium-dependent relaxation and leads to oscillatory activity in small omental arteries. J. Clin. Investig., 101, 464–70.CrossRefGoogle ScholarPubMed
Patrignani, P., Filabozzi, P. and Patrono, C. (1982). Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J. Clin. Investig., 69, 366–72.CrossRefGoogle ScholarPubMed
Pedersen, A. K. and FitzGerald, G. A. (1984). Dose related kinetics of aspirin. N. Engl. J. Med., 311, 1206–11.CrossRefGoogle ScholarPubMed
Penney, L. L., Frederick, R. J. and Parker, G. W. (1981). 17β-estradiol stimulation of uterine blood flow in oophorectomized rabbits with complete inhibition of uterine ribonucleic acid synthesis. Endocrinology, 109, 1672–6.CrossRefGoogle ScholarPubMed
Petty, R. G. and Pearson, J. D. (1989). Endothelium – the axis of vascular health and disease. J. R. Coll. Physicians, 23, 92–101.Google ScholarPubMed
Phippard, A. F., Horvath, J. S., Glynn, E. M., et al. (1986). Circulatory adaptation to pregnancy: serial studies of haemodynamics, blood volume, renin and aldosterone in the baboon. J. Hypertens., 4, 773–9.CrossRefGoogle ScholarPubMed
Pober, J. S. and Cotran, R. S. (1990). Cytokines and endothelial cell biology. Physiol. Rev., 70, 427–51.CrossRefGoogle ScholarPubMed
Polliotti, B. M., Fry, A. G., Saller, D. N., et al. (2003). Second-trimester maternal serum placental growth factor and vascular endothelial growth factor for predicting severe, early-onset pre-eclampsia. Obstet. Gynecol., 101, 1266–74.Google Scholar
Poston, L., McCarthy, A. L. and Ritter, J. M. (1995). Control of vascular resistance in the maternal and feto-placental arterial beds. Pharmacol. Ther., 65, 215–39.CrossRefGoogle ScholarPubMed
Poston, L. and Williams, D. J. (2000). The endothelium in human pregnancy. In Vascular Endothelium in Human Physiology and Pathophysiology, eds. Vallance, P. J. T. and Webb, D. J.. Harwood Academic Publishers, pp. 247–81.CrossRefGoogle Scholar
Potter, J. M. and Nestel, P. J. (1979). The hyperlipidaemia of pregnancy in normal and complicated pregnancies. Am. J. Obstet. Gynecol., 133, 165–70.CrossRefGoogle ScholarPubMed
Randall, M. D., Alexander, S. P. H., Bennett, T., et al. (1996). An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem. Biophys. Res. Commun., 229, 114–20.CrossRefGoogle ScholarPubMed
Redman, C. W., Sacks, G. P. and Sargent, I. L. (1999). Pre-eclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol., 180, 499–506.CrossRefGoogle Scholar
Rees, D. D., Palmer, R. M. and Moncada, S. (1989). Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc. Natl Acad. Sci. USA, 86, 3375–8.CrossRefGoogle ScholarPubMed
Resnick, N., Yahav, H., Schubert, S., et al. (2000). Signalling pathways in vascular endothelium activated by shear stress: relevance to atherosclerosis. Curr. Opin. Lipidol., 11, 167–77.CrossRefGoogle ScholarPubMed
Ritter, J. M., Cockcroft, J. R., Doktor, H., et al. (1989). Differential effect of aspirin on thromboxane and prostaglandin biosynthesis in man. Br. J. Clin. Pharm., 28, 573–9.CrossRefGoogle ScholarPubMed
Roberts, J. M. and Redman, C. W. G. (1993). Pre-eclampsia: more than pregnancy-induced hypertension. Lancet, 341, 1447–51.CrossRefGoogle ScholarPubMed
Roberts, J. M., Taylor, R. N., Musci, T. J., et al. (1989). Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol., 161, 1200–4.CrossRefGoogle Scholar
Roberts, M., Lindheimer, M. D. and Davison, J. M. (1996). Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modeling in human pregnancy. Am. J. Physiol., 270, F338–43.Google ScholarPubMed
Robinson, L. J., Weremowicz, S., Morton, C. C. and Michel, T. (1994). Isolation and chromosomal localization of the human eNOS gene. Genomics, 19, 350–7.CrossRefGoogle Scholar
Robson, S. C., Hunter, S., Boys, R. J. and Dunlop, W. (1989). Serial study of factors influencing changes in cardiac output during human pregnancy. Am. J. Physiol., 256, H1060–5.Google ScholarPubMed
Rogers, G. M., Taylor, R. N. and Roberts, J. M. (1988). Pre-eclampsia is associated with a serum factor cytotoxic to human endothelial cells. Am. J. Obstet. Gynecol., 159, 908–14.CrossRefGoogle Scholar
Russell, K. R., Haynes, M. P., Sinha, D., et al. (2000a). Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signalling. Proc. Natl Acad. Sci. USA, 97, 5930–5.CrossRefGoogle Scholar
Russell, K. S., Haynes, M. P., Caulin-Glaser, T., et al. (2000b). Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release. J. Biol. Chem., 275, 5026–30.CrossRefGoogle Scholar
Sacks, G. P., Studena, K., Sargent, K., et al. (1998). Normal pregnancy and pre-eclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am. J. Obstet. Gynecol., 179, 80–6.CrossRefGoogle ScholarPubMed
Savvidou, M. D., Hingorani, A. D., Tsikas, D., et al. (2003). Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet, 361, 1511–17.CrossRefGoogle ScholarPubMed
Savvidou, M. D., Kametas, N. A., Donald, A. E. and Nicolaides, K. H. (2000). Non-invasive assessment of endothelial function in normal pregnancy. Ultrasound Obstet. Gynecol., 15, 502–7.CrossRefGoogle ScholarPubMed
Schafer, K., Muller, K., Hecke, A., et al. (2003). Enhanced thrombosis in atherosclerosis-prone mice is associated with increased arterial expression of plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol., 23, 2097–103.CrossRefGoogle ScholarPubMed
Schneider, F., Lutun, P., Balduf, J. J., et al. (1996). Plasma cyclic GMP concentrations and their relationship with changes of blood pressure levels in pre-eclampsia. Acta Obstet. Gynecol. Scand., 75, 40–4.CrossRefGoogle ScholarPubMed
Schobel, H. P., Fischer, T., Heuszer, K., Geiger, H. and Schmieder, R. E. (1996). Pre-eclampsia – a state of sympathetic overactivity. N. Engl. J. Med., 335, 1480–5.CrossRefGoogle ScholarPubMed
Seligman, S. P., Buyon, J. P., Clancy, R. M., et al. (1994). The role of nitric oxide in the pathogenesis of preeclampsia. Am. J. Obstet. Gynecol., 171, 944–8.CrossRefGoogle ScholarPubMed
Sladek, S. M., Magness, R. R. and Conrad, K. P. (1997). Nitric oxide and pregnancy. Am. J. Physiol., 272, R441–63.Google Scholar
Smarason, A. K., Allman, K. G., Young, D. and Redman, C. W. G. (1997). Elevated levels of serum nitrate, a stable end product of nitric oxide, in women with pre-eclampsia. Br. J. Obstet. Gynaecol., 104, 538–43.CrossRefGoogle ScholarPubMed
Sorensen, J., Secher, N. J. and Jespersen, J. (1995). Perturbed (procoagulant) endothelium and deviations within the fibrinolytic system during the third trimester of normal pregnancy. Acta Obstet. Gynecol. Scand., 74, 257–61.CrossRefGoogle ScholarPubMed
Sudd, S. S., Gupta, I., Dhaliwal, L. K., et al. (1999). Serial plasma fibronectin levels in pre-eclamptic and normotensive women. Int. J. Gynecol. Obstet., 66, 123–8.CrossRefGoogle Scholar
Taylor, R. N., Crombleholme, W. R., Friedman, S. A., et al. (1991). High plasma cellular fibronectin levels correlate with biochemical and clinical features of pre-eclampsia but cannot be attributed to hypertension alone. Am. J. Obstet. Gynecol., 165, 895–901.CrossRefGoogle ScholarPubMed
Taylor, R. N., Grimwood, J., Taylor, R. S., et al. (2003). Longitudinal serum concentrations of placental growth factor: evidence for abnormal placental angiogenesis in pathologic pregnancies. Am. J. Obstet. Gynecol., 188, 177–82.CrossRefGoogle ScholarPubMed
Tran, C. T., Fox, M. F., Vallance, P., et al. (2000). Chromosomal localization, gene structure, and expression pattern of DDAH I: comparison with DDAH II and implications for evolutionary origins. Genomics, 68, 101–5.CrossRefGoogle ScholarPubMed
Tsatsaris, V., Goffin, F., Munaut, C., et al. (2003). Overexpression of the soluble vascular endothelial growth factor in pre-eclamptic patients: pathophysiological consequences. J. Clin. Endocrinol. Metab., 88, 5555–63.CrossRefGoogle Scholar
Vallance, P., Collier, J. and Moncada, S. (1989). Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet, 2, 997–1000.CrossRefGoogle ScholarPubMed
Vallance, P., Leone, A., Calver, A., Collier, J. and Moncada, S. (1992). Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet, 339, 572–5.Google ScholarPubMed
Vane, J. R. (1983). Clinical potential of prostacyclin. Adv. Prostaglandin Thromboxane Leukot. Res., 11, 457–61.Google ScholarPubMed
Vangoni, K. E., Shaw, C. E., Phernetton, T. M., et al. (1998). Endothelial vasodilator production by uterine and systemic arteries. III. Ovarian and estrogen effects on NO synthase. Am. J. Physiol., 275, H1845–55.Google Scholar
Vaughan, D. E., Lazos, S. A. and Tong, K. (1995). Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin–angiotensin system and thrombosis. J. Clin. Invest., 95, 995–1001.CrossRefGoogle ScholarPubMed
Vanhoutte, P. M. and Rimele, T. J. (1983). Role of endothelium in the control of vascular smooth muscle function. J. Physiol., 78, 681–6.Google Scholar
Vedernikov, Y. P., Belfort, M. A., Saade, G. R. and Mosie, K. J. (1995). Preeclampsia does not alter the response to endothelin-1 in human omental artery. J. Cardiovasc. Pharmacol., 3, S233–5.CrossRefGoogle Scholar
Wang, Z. Q., Millatt, L. J., Heiderstadt, N. T., et al. (1999). Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin-dependent hypertension. Hypertension, 33, 96–101.CrossRefGoogle ScholarPubMed
Weiner, C., Lizasoain, I., Baylis, S. A., et al. (1994a). Induction of calcium dependent nitric oxide synthases by sex hormones. Proc. Natl Acad. Sci. USA, 91, 5212–16.CrossRefGoogle Scholar
Weiner, C. P., Knowles, R. G. and Moncada, S. (1994b). Induction of nitric oxide synthases early in pregnancy. Am. J. Obstet. Gynecol., 171, 838–43.CrossRefGoogle Scholar
Williams, D. J. (2003). Physiological changes of normal pregnancy. In Oxford Textbook of Medicine (fourth edition), eds. Warrell, D. A., Cox, T. M., Firth, J. D. and Benz, E. J.. Oxford: Oxford University Press, chapter, 13.1, pp. 383–5.Google Scholar
Williams, D. J., Vallance, P. J., Neild, G. H., et al. (1997). Nitric oxide mediated vasodilatation in human pregnancy. Am. J. Physiol., 272, H748–52.Google ScholarPubMed
Williams, M. A., Farrand, A., Mittendorf, R., et al. (1999). Maternal second trimester serum tumour necrosis factor-alpha-soluble receptor p55 (sTNFp55) and subsequent risk of pre-eclampsia. Am. J. Epidemiol., 149, 323–9.CrossRefGoogle Scholar
Wolff, K., Nisell, H., Modin, A., et al. (1993). Contractile effects of endothelin 1 and endothelin 3 on myometrium and small intramyometrial arteries of pregnant women at term. Gynecol. Obstet. Investig., 36, 166–71.CrossRefGoogle ScholarPubMed
Wolff, K., Kublickiene, K. R., Kublickas, M., et al. (1996a). Effects of endothelin-1 and the ETA receptor antagonist BQ-123 on resistance arteries from normal pregnant and pre-eclamptic women. Acta Obstet. Gynecol. Scand., 75, 432–8.CrossRefGoogle Scholar
Wolff, K., Nisell, H., Carlstom, K., et al. (1996b). Endothelin-1 and big endothelin-1 levels in normal term pregnancy and in preeclampsia. Regul. Peptides, 67, 211–16.CrossRefGoogle Scholar
Wolff, K., Carlstom, K., Fyhrquist, F., et al. (1997). Plasma endothelin in normal and diabetic pregnancy. Diabetes Care, 20, 653–6.CrossRefGoogle ScholarPubMed
Xu, D., Martin, P., St John, J., et al. (1996). Upregulation of endothelial and constitutive nitric oxide synthase in pregnant rats. Am. J. Physiol., 271, R1739–45.Google ScholarPubMed
Xu, H., Gonzalo, J. A., St Pierre, Y., et al. (1994). Leukocytosis and resistance to septic shock in intercellular adhesion molecule-1 deficient mice. J. Exp. Med., 180, 95–109.CrossRefGoogle ScholarPubMed
Yallampalli, C. and Garfield, R. E. (1993). Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of pre-eclampsia. Am. J. Obstet. Gynecol., 169, 1316–20.CrossRefGoogle Scholar
Yang, J. C., Haworth, L., Sherry, R. M., et al. (2003). A randomised trial of bevacizumab, an antivascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med., 349, 427–34.CrossRefGoogle Scholar
Yang, S., Bae, L. and Zhang, L. (2000). Estrogen increases eNOS and Nox release in human coronary artery endothelium. J. Cardiovasc. Pharmacol., 36, 242–7.CrossRefGoogle ScholarPubMed
Yoshimura, T., Yoshimura, M., Tabata, A., et al. (2000). Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with severe preeclampsia. J. Soc. Gynecol. Investig., 7, 238–41.Google ScholarPubMed
Zemel, M. B., Zemel, P. C., Berry, S., et al. (1990). Altered platelet calcium metabolism as an early predictor of increased peripheral vascular resistance and pre-eclampsia in urban black women. N. Engl. J. Med., 323, 434–8.CrossRefGoogle ScholarPubMed
Zhou, Y., McMater, M., Woo, K., et al. (2002). Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe pre-eclampsia and haemolysis, elevated liver enzymes, and low platelet syndrome. Am. J. Path., 160, 1405–23.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×