Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T09:01:36.863Z Has data issue: false hasContentIssue false

12 - Pre-eclampsia a two-stage disorder: what is the linkage? Are there directed fetal/placental signals?

from Part I - Basic science

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 183 - 194
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aardema, M. W., Oosterhof, H., Timmer, A., Rooy, I. and Aarnoudse, J. G. (2001). Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta, 22, 405–11.CrossRefGoogle ScholarPubMed
Arias, F., Rodriquez, L., Rayne, S. C. and Kraus, F. T. (1993). Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am. J. Obstet. Gynecol., 168, 585–91.CrossRefGoogle ScholarPubMed
Ashworth, C. J., Hoggard, N., Thomas, L., Mercer, J. G., Wallace, J. M. and Lea, R. G. (2000). Placental leptin. Rev. Reprod., 5, 18–24.CrossRefGoogle ScholarPubMed
Bai, H., Liu, X., Liu, R., Liu, Y., Li, M. and Liu, B. (2002). Angiotensinogen and angiotensin-I converting enzyme gene variations in Chinese pregnancy induced hypertension. Hua-Hsi i Ko Ta Hsueh Hsueh Pao (Journal of West China University of Medical Sciences), 33, 233–7.Google ScholarPubMed
Bashford, M. T., Hefler, L. A., Vertrees, T. W., Roa, B. B. and Gregg, A. R. (2001). Angiotensinogen and endothelial nitric oxide synthase gene polymorphisms among Hispanic patients with preeclampsia. Am. J. Obstet. Gynecol., 184, 1345–50; discussion 1350–1.CrossRefGoogle ScholarPubMed
Benyo, D. F., Miles, T. M. and Conrad, K. P. (1997). Hypoxia stimulates cytokine production by villous explants from the human placenta. J. Clin. Endocrinol. Metab., 82, 1582–8.Google ScholarPubMed
Bodner, J., Ebenbichler, C. F., Wolf, H. J., et al. (1999). Leptin receptor in human term placenta: in situ hybridization and immunohistochemical localization. Placenta, 20, 677–82.CrossRefGoogle ScholarPubMed
Brosens, I. A., Robertson, W. B., and Dixon, H. G. (1979). The role of the spiral arteries in the pathogenesis of preeclampsia. In Obstetrics and Gynecology Annual, ed. Wynn, R.. pp. 177–91.Google Scholar
Cester, N., Staffolani, R., Rabini, R. A., et al. (1994). Pregnancy induced hypertension: a role for peroxidation in microvillus plasma membranes. Mol. Cell. Biochem., 131, 151–5.CrossRefGoogle ScholarPubMed
Chambers, J. C., Fusi, L., Malik, I. S., Haskard, D. O., Swiet, M. and Kooner, J. S. (2001). Association of maternal endothelial dysfunction with preeclampsia. J. Am. Med. Ass., 285, 1607–12.CrossRefGoogle ScholarPubMed
Chappell, L. C., Seed, P. T., Briley, A., et al. (2002). A longitudinal study of biochemical variables in women at risk of preeclampsia. Am. J. Obstet. Gynecol., 187, 127–36.CrossRefGoogle ScholarPubMed
Chesley, L. C. (1966). Vascular reactivity in normal and toxemic pregnancy. Clin. Obstet. Gynecol., 9, 871–81.CrossRefGoogle ScholarPubMed
Conrad, K. P. and Benyo, D. F. (1997). Placental cytokines and the pathogenesis of preeclampsia. Am. J. Reprod. Immun., 37, 240–9.CrossRefGoogle ScholarPubMed
D'Anna, R., Baviera, G., Scilipoti, A., Leonardi, I. and Leo, R. (2000). The clinical utility of serum uric acid measurements in pre-eclampsia and transient hypertension in pregnancy. Panminerva Medica, 42, 101–3.Google ScholarPubMed
Domali, E. and Messinis, I. E. (2002). Leptin in pregnancy. J. Maternal–Fetal Neonatal Med., 12, 222–30.CrossRefGoogle ScholarPubMed
Fadalti, M., Pezzani, I., Cobellis, L., et al. (2000). Placental corticotropin-releasing factor. An update. Ann. N. Y. Acad. Sci., 900, 89–94.CrossRefGoogle ScholarPubMed
Ferrazzani, S., Carolis, S., Pomini, F., Testa, A. C., Mastromarino, C. and Caruso, A. (1994). The duration of hypertension in the puerperium of preeclamptic women: relationship with renal impairment and week of delivery. Am. J. Obstet. Gynecol., 171, 506–12.CrossRefGoogle ScholarPubMed
Guo, G., Wilton, A. N., Fu, Y., Qiu, H., Brennecke, S. P. and Cooper, D. W. (1997). Angiotensinogen gene variation in a population case-control study of preeclampsia/eclampsia in Australians and Chinese. Electrophoresis, 18, 1646–9.CrossRefGoogle Scholar
Harris, R. B. S. (2000). Leptin – much more than a satiety signal. Ann. Rev. Nutr., 20, 45–75.CrossRefGoogle ScholarPubMed
Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. and Sivitz, W. I. (1997). Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest., 100, 270–8.CrossRefGoogle ScholarPubMed
Hubel, C. and Roberts, J. (1999). In Chesley's Hypertensive Disorders in Pregnancy, ed. Cunningham, F.. Appleton & Lange, pp. 453–86.Google Scholar
Hubel, C., Snaedal, S., Geirsson, R., Roberts, J. and Arngrímsson, R. (1998). Women with a history of eclampsia manifest dyslipidemia during later life. J. Soc. Gynecol. Invest., 5(Suppl.), 40A–41A.CrossRefGoogle Scholar
Hubel, C. A., Kagan, V. E., Kisin, E. R., McLaughlin, M. K. and Roberts, J. M. (1997). Increased ascorbate radical formation and ascorbate depletion in plasma from women with preeclampsia – implications for oxidative stress. Free Rad. Biol. Med., 23, 597–609.CrossRefGoogle ScholarPubMed
Huppertz, B., Kingdom, J., Caniggia, I., et al. (2003). Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta, 24, 181–90.CrossRefGoogle ScholarPubMed
Ishihara, N., Matsuo, H., Murakoshi, H., Laoag-Fernandez, J. B., Samoto, T. and Maruo, T. (2002). Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am. J. Obstet. Gynecol., 186, 158–66.CrossRefGoogle ScholarPubMed
Jansson, N., Greenwood, S. L., Johansson, B. R., Powell, T. L. and Jansson, T. (2003). Leptin stimulates the activity of the system. A amino acid transporter in human placental villous fragments. J. Clin. Endocrinol. Metab., 88, 1205–11.CrossRefGoogle ScholarPubMed
Karteris, E., Grammatopoulos, D. K., Randeva, H. S. and Hillhouse, E. W. (2001). The role of corticotropin-releasing hormone receptors in placenta and fetal membranes during human pregnancy. Mol. Genet. Metab., 72, 287–96.CrossRefGoogle ScholarPubMed
Karteris, E., Goumenou, A., Koumantakis, E., Hillhouse, E. W. and Grammatopoulos, D. K. (2003). Reduced expression of corticotropin-releasing hormone receptor type-1 alpha in human preeclamptic and growth-restricted placentas. J. Clin. Endocrinol. Metab., 88, 363–70.CrossRefGoogle ScholarPubMed
Khong, T. Y., Wolf, F., Robertson, W. B. and Brosens, I. (1986). Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br. J. Obstet. Gynaecol., 93, 1049–59.CrossRefGoogle ScholarPubMed
Kobashi, G., Hata, A., Shido, K., et al. (1999). Association of a variant of the angiotensinogen gene with pure type of hypertension in pregnancy in the Japanese: implication of a racial difference and significance of an age factor. Am. J. Med. Genet., 86, 232–6.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Laivuori, H., Tikkanen, M. J. and Ylikorkala, O. (1996). Hyperinsulinemia 17 years after preeclamptic first pregnancy. J. Clin. Endocrinol. Metab., 81, 2908–11.Google ScholarPubMed
Laivuori, H., Kaaja, R., Rutanen, E. M., Viinikka, L. and Ylikorkala, O. (1998). Evidence of high circulating testosterone in women with prior preeclampsia. J. Clin. Endocrinol. Metab., 83, 344–7.Google ScholarPubMed
Laivuori, H., Kaaja, R., Koistinen, H., et al. (2000). Leptin during and after preeclamptic or normal pregnancy: its relation to serum insulin and insulin sensitivity. Metab. – Clin. Exp., 49, 259–63.CrossRefGoogle ScholarPubMed
Linnemann, K., Malek, A., Sager, R., Blum, W. F., Schneider, H. and Fusch, C. (2000). Leptin production and release in the dually in vitro perfused human placenta. J. Clin. Endocrinol. Metab., 85, 4298–301.Google ScholarPubMed
Lorentzen, B., Endresen, M. J., Clausen, T. and Henriksen, T. (1994). Fasting serum free fatty acids and triglycerides are increased before 20 weeks of gestation in women who later develop preeclampsia. Hypertens. Pregn., 13, 103–9.CrossRefGoogle Scholar
Mantzoros, C. S. (2000). Role of leptin in reproduction. Ann. N. Y. Acad. Sci., 900, 174–83.CrossRefGoogle ScholarPubMed
Many, A., Hubel, C. A., Fisher, S. J., Roberts, J. M. and Zhou, Y. (2000). Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am. J. Pathol., 156, 321–31.CrossRefGoogle ScholarPubMed
Manyonda, I. T., Slater, D. M., Fenske, C., Hole, D., Choy, M. Y. and Wilson, C. (1998). A role for noradrenaline in pre-eclampsia: towards a unifying hypothesis for the pathophysiology. Br. J. Obstet. Gynaecol., 105, 641–8.CrossRefGoogle ScholarPubMed
Maynard, S. E., Min, J. Y., Merchan, J., et al. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. Comment. J. Clin. Invest., 111, 649–58.CrossRefGoogle Scholar
Mazzali, M., Hughes, J., Kim, Y. G., et al. (2001). Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension, 38, 1101–6.CrossRefGoogle ScholarPubMed
McCarthy, J. F., Misra, D. N. and Roberts, J. M. (1999). Maternal plasma leptin is increased in preeclampsia and positively correlates with fetal cord concentration. Am. J. Obstet. Gynecol., 180, 731–6.CrossRefGoogle ScholarPubMed
Meijer, A. J. (2003). Amino acids as regulators and components of nonproteinogenic pathways. J. Nutr., 133, 2057S–62S.CrossRefGoogle ScholarPubMed
Mise, H., Sagawa, N., Matsumoto, T., et al. (1998). Augmented placental production of leptin in preeclampsia: possible involvement of placental hypoxia. J. Clin. Endocrinol. Metab., 83, 3225–9.Google ScholarPubMed
Morgan, L., Baker, P., Pipkin, F. B. and Kalsheker, N. (1995). Pre-eclampsia and the angiotensinogen gene. Br. J. Obstet. Gynaecol., 102, 489–90.CrossRefGoogle ScholarPubMed
Morris, J., Fay, R. and Ellwood, D. (1998). Abnormal uterine artery waveforms in the second trimester are associated with adverse pregnancy outcome in high risk women. J. Maternal–Fetal Invest., 8, 82–4.Google ScholarPubMed
Myatt, L., Rosenfield, R., Eis, A., Brockman, D., Greer, I. and Lyall, F. (1996). Nitrotyrosine residues in placenta evidence of peroxynitrite formation and action. Hypertension, 28, 488–93.CrossRefGoogle ScholarPubMed
Page, E. W. (1939). The relation between hydatid moles, relative ischemia of the gravid uterus, and the placental origin of eclampsia. Am. J. Obstet. Gynecol., 37, 291–3.Google Scholar
Papageorghiou, A. T., Yu, C. K., Cicero, S., Bower, S. and Nicolaides, K. H. (2002). Second-trimester uterine artery Doppler screening in unselected populations: a review. Comment. J. Maternal–Fetal Neonatal Med., 12, 78–88.CrossRefGoogle Scholar
Pijnenborg, R., Anthony, J., Davey, D. A., et al. (1991). Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br. J. Obstet. Gynaecol., 98, 648–55.CrossRefGoogle ScholarPubMed
Poston, L. (2002). Leptin and preeclampsia. Semin. Reprod. Med., 20, 131–8.CrossRefGoogle ScholarPubMed
Redman, C. W., Beilin, L. J., Bonnar, J. and Wilkinson, R. H. (1976). Plasma-urate measurements in predicting fetal death in hypertensive pregnancy. Lancet, 1, 1370–3.CrossRefGoogle ScholarPubMed
Redman, C. W., Sacks, G. P. and Sargent, I. L. (1999). Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol., 180, 499–506.CrossRefGoogle Scholar
Redman, C. W. G. (1991). Current topic: pre-eclampsia and the placenta. Placenta, 12, 301–8.CrossRefGoogle ScholarPubMed
Redman, C. W. G. and Sargent, I. L. (2000). Placental debris, oxidative stress and pre-eclampsia. Placenta, 21, 597–602.CrossRefGoogle ScholarPubMed
Roberts, J. M. (1998a). Endothelial dysfunction in preeclampsia. Semin. Reprod. Endocrinol., 16, 5–15.CrossRefGoogle Scholar
Roberts, J. M. (1998b). In Maternal Fetal Medicine, ed. Resnik, R.. Philadelphia: W. B. Saunders, pp. 833–72.Google Scholar
Roberts, J. M. and Hubel, C. A. (1999). Is oxidative stress the link in the two-stage model of pre-eclampsia? Comment. Lancet, 354, 788–9.CrossRefGoogle Scholar
Roberts, J. M. and Cooper, D. W. (2001). Pathogenesis and genetics of pre-eclampsia. Lancet, 357, 53–6.CrossRefGoogle ScholarPubMed
Roberts, J. M. and Lain, K. Y. (2002). Recent insights into the pathogenesis of pre-eclampsia. Placenta, 23, 359–72.CrossRefGoogle ScholarPubMed
Roberts, J. M., Taylor, R. N., Musci, T. J., Rodgers, G. M., Hubel, C. A. and McLaughlin, M. K. (1989). Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol., 161, 1200–4.CrossRefGoogle Scholar
Roggensack, A. M., Zhang, Y. and Davidge, S. T. (1999). Evidence for peroxynitrite formation in the vasculature of women with preeclampsia. Hypertension, 33, 83–9.CrossRefGoogle ScholarPubMed
Sagawa, N., Yura, S., Itoh, H., et al. (2002). Role of leptin in pregnancy – a review. Placenta, 23, S80–6.CrossRefGoogle ScholarPubMed
Sarkar, S., Tsai, S. W., Nguyen, T. T., Plevyak, M., Padbury, J. F. and Rubin, L. P. (2001). Inhibition of placental 11 beta-hydroxysteroid dehydrogenase type 2 by catecholamines via alpha-adrenergic signaling. Am. J. Physiol. Regul. Integr. Compar. Physiol., 281, R1966–74.CrossRefGoogle Scholar
Sastry, B. V. (1997). Human placental cholinergic system. Biochem. Pharmacol., 53, 1577–86.CrossRefGoogle ScholarPubMed
Sattar, N. and Greer, I. A. (2002). Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening?Br. Med. J., 325, 157–60.CrossRefGoogle ScholarPubMed
Savvidou, M. D., Hingorani, A. D., Tsikas, D., Frolich, J. C., Vallance, P. and Nicolaides, K. H. (2003). Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet, 361, 1511–17.CrossRefGoogle ScholarPubMed
Sodha, R. J., Proegler, M. and Schneider, H. (1984). Transfer and metabolism of norepinephrine studied from maternal-to-fetal and fetal-to-maternal sides in the in vitro perfused human placental lobe. Am. J. Obstet. Gynecol., 148, 474–81.CrossRefGoogle ScholarPubMed
Staff, A. C., Halvorsen, B., Ranheim, T. and Henriksen, T. (1999a). Elevated level of free 8-iso-prostaglandin F-2 alpha in the decidua basalis of women with preeclampsia. Am. J. Obstet. Gynecol., 181, 1211–15.CrossRefGoogle Scholar
Staff, A. C., Ranheim, T., Khoury, J. and Henriksen, T. (1999b). Increased contents of phospholipids, cholesterol, and lipid peroxides in decidua basalis in women with preeclampsia. Am. J. Obstet. Gynecol., 180, 587–92.CrossRefGoogle Scholar
Teppa, R. J., Ness, R. B., Crombleholme, W. R. and Roberts, J. M. (2000). Free leptin is increased in normal pregnancy and further increased in preeclampsia. Metab. – Clin. Exp., 49, 1043–8.CrossRefGoogle ScholarPubMed
Tyurin, V. A., Liu, S. X., Tyurina, Y. Y., et al. (2001). Elevated levels of S-nitrosoalbumin in preeclampsia plasma. Comment. Circ. Res., 88, 1210–15.CrossRefGoogle Scholar
Uotila, J., Solakivi, T., Jaakkola, O., Tuimala, R. and Lehtimaki, T. (1998). Antibodies against copper-oxidised and malondialdehyde-modified low density lipoproteins in pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol., 105, 1113–17.CrossRefGoogle Scholar
Dadelszen, P., Wilkins, T. and Redman, C. W. G. (1999). Maternal peripheral blood leukocytes in normal and pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol., 106, 576–81.CrossRefGoogle Scholar
Wakwe, V. C. and Abudu, O. O. (1999). Estimation of plasma uric acid in pregnancy induced hypertension (PIH). Is the test still relevant?Afr. J. Med. Medic. Sci., 28, 155–8.Google Scholar
Walsh, S. W. and Wang, Y. (1993). Deficient glutathione peroxidase activity in preeclampsia is associated with increased placental production of thromboxane and lipid peroxides. Am. J. Obstet. Gynecol., 1456–61.CrossRefGoogle ScholarPubMed
Walsh, S. W., Vaughan, J. E., Wang, Y. and Roberts, L. J. (2000). Placental isoprostane is significantly increased in preeclampsia. FASEB J., 14, 1289–96.CrossRefGoogle ScholarPubMed
Wang, J. L., Chinookoswong, N., Scully, S., Qi, M. and Shi, Z. Q. (1999). Differential effects of leptin in regulation of tissue glucose utilization in vivo. Endocrinology, 140, 2117–24.CrossRefGoogle ScholarPubMed
Wang, Y. and Walsh, S. W. (2001). Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta, 22, 206–12.CrossRefGoogle ScholarPubMed
Wang, Y., Walsh, S. W. and Kay, H. H. (1992). Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am. J. Obstet. Gynecol., 167, 945–9.CrossRefGoogle ScholarPubMed
Ward, K., Hata, A., Jeunemaitre, X., et al. (1993). A molecular variant of angiotensinogen associated with preeclampsia. Nature Genetics, 4, 59–61.CrossRefGoogle ScholarPubMed
Xiong, X., Demianczuk, N. N., Buekens, P. and Saunders, L. D. (2000). Association of preeclampsia with high birth weight for gestational age. Am. J. Obstet. Gynecol., 183, 148–55.CrossRefGoogle Scholar
Zeek, P. and Assali, N. (1950). Vascular changes in the decidua associated with eclamptogenic toxemia of pregnancy. Am. J. Clin. Pathol., 20, 1099–109.CrossRefGoogle ScholarPubMed
Zusterzeel, P. L., Rutten, H., Roelofs, H. M., Peters, W. H. and Steegers, E. A. (2001). Protein carbonyls in decidua and placenta of pre-eclamptic women as markers for oxidative stress. Placenta, 22, 213–19.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×