Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T15:55:21.745Z Has data issue: false hasContentIssue false

9 - Placental hypoxia, hyperoxia and ischemia–reperfusion injury in pre-eclampsia

from Part I - Basic science

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Introduction

Oxidative stress of the placenta is a key element in the pathogenesis of pre-eclampsia, although its precise contribution remains uncertain (Hubel, 1999; Redman and Sargent, 2000). The aim of this chapter is to address the origin of that oxidative stress and, as the title suggests, to consider the effects of different oxygen concentrations on placental tissues. In the past it has widely been assumed that the vascular abnormalities in the endometrial arteries of women with pre-eclampsia result in reduced placental perfusion, and hence chronic hypoxia within the feto-placental unit. More recently, the converse has been proposed, and that in pre-eclampsia associated with intrauterine growth restriction (IUGR) the placenta is in fact hyperoxic due to less oxygen than normal being extracted from the intervillous space by the smaller fetus (Kingdom and Kaufmann, 1997). Hypoxia and hyperoxia are relative terms, however, and these assessments have of necessity been based on data obtained at the time of delivery, which, in the majority of cases, represents the end-stage of a process that may have been developing over many weeks. It is therefore difficult to separate primary from secondary effects, and to elucidate earlier stages in the pathogenesis of the disorder. The situation is further complicated by the fact that pre-eclampsia varies widely in severity. Late onset pre-eclampsia is often associated with normal birthweight, whereas early onset of the disease is generally linked with IUGR (Douglas and Redman, 1994).

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 138 - 151
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamsons, K. and Myers, R. E. (1975). Circulation in the intervillous space; obstetrical considerations in fetal deprivation. In The Placenta and its Maternal Supply Line. Effects of Insufficiency on the Fetus, ed. Gruenwald, P.. Lancaster: Medical and Technical Publishing Co. Ltd., pp. 158–77.Google Scholar
Adamsons, K., Mueller-Heubach, E. and Myers, R. E. (1971). Production of fetal asphyxia in the rhesus monkey by administration of catecholamines to the mother. Am. J. Obstet. Gynecol., 109, 248–62.CrossRefGoogle Scholar
Allaire, A. D., Ballenger, K. A., Wells, S. R., McMahon, M. J. and Lessey, B. A. (2000). Placental apoptosis in preeclampsia. Obstet. Gynecol., 96, 271–6.Google ScholarPubMed
Bloxham, D. L., Bullen, B. E., Walters, B. N. J. and Lao, T. T. (1987). Placental glycolysis and energy metabolism in preeclampsia. Am. J. Obstet. Gynecol., 157, 97–101.CrossRefGoogle Scholar
Borell, U., Fernström, I., Ohlson, L. and Wiqvist, N. (1965a). An arteriographic study of the blood flow through the uterus and the placenta at midpregnancy. Acta Obstet. Gynecol. Scand., 44, 22–31.CrossRefGoogle Scholar
Borell, U., Fernström, I., Ohlson, L. and Wiqvist, N. (1965b). Influence of uterine contractions on the uteroplacental blood flow at term. Am. J. Obstet. Gynecol., 93, 44–57.CrossRefGoogle Scholar
Brosens, I. (1964). A study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. J. Obstet. Gynaecol. Br. Commonwlth, 71, 222–30.CrossRefGoogle ScholarPubMed
Brosens, I. A. (1988). The utero-placental vessels at term – the distribution and extent of physiological changes. Trophoblast Res., 3, 61–7.Google Scholar
Brosens, J. J., Pijnenborg, R. and Brosens, I. A. (2002). The myometrial junctional zone spiral arteries in normal and abnormal pregnancies. Am. J. Obstet. Gynecol., 187, 1416–23.CrossRefGoogle ScholarPubMed
Burton, G. J. (1997). On ‘Oxygen and placental villous development: origins of fetal hypoxia’. Placenta, 18, 625–6.CrossRefGoogle Scholar
Carden, D. L. and Granger, D. N. (2000). Pathophysiology of ischaemia–reperfusion injury. J. Pathol., 190, 255–66.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Carter, A. M. (2000). Placental oxygen consumption. Part I: in vivo studies – a review. Placenta, 21 (Suppl A), S31–7.CrossRefGoogle ScholarPubMed
Collard, C. D. and Gelman, S. (2001). Pathophysiology, clinical manifestations, and prevention of ischemia–reperfusion injury. Anesthesiology, 94, 1133–8.CrossRefGoogle ScholarPubMed
Critchley, G. R. and Burton, G. J. (1987). Intralobular variations in barrier thickness in the mature human placenta. Placenta, 8, 185–94.CrossRefGoogle ScholarPubMed
Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem. J., 341, 233–49.CrossRefGoogle ScholarPubMed
Wolf, F., Robertson, W. B. and Brosens, I. (1975). The ultrastructure of acute atherosis in hypertensive pregnancy. Am. J. Obstet. Gynecol., 123, 164–74.CrossRefGoogle ScholarPubMed
Douglas, K. A. and Redman, C. (1994). Eclampsia in the United Kingdom. Br. Med. J., 309, 1395–400.CrossRefGoogle ScholarPubMed
Espinoza, J., Sebire, N. J., McAuliffe, F., Krampl, E. and Nicolaides, K. H. (2001). Placental villus morpholgy in relation to maternal hypoxia at high altitude. Placenta, 22, 606–8.CrossRefGoogle Scholar
Francis, S. T., Duncan, K. R., Moore, R. J., Baker, P. N. and Johnson, I. R. (1998). Non-invasive mapping of placental perfusion. Lancet, 351, 1397–9.CrossRefGoogle ScholarPubMed
Freeman, B. A. and Crapo, J. D. (1981). Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem., 256, 10,986–92.Google ScholarPubMed
Grace, P. A. and Mathie, R. T. (1999). Ischaemia–Reperfusion Injury. Oxford: Blackwell Science. 384 pp.Google Scholar
Halliwell, B. and Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine. Oxford: Oxford Science Publications. 936 pp.Google Scholar
Hempstock, J., Bao, Y.-P., Bar-Issac, M., et al. (2003a). Intralobular differences in antioxidant enzyme expression and activity reflect oxygen gradients within the human placenta. Placenta, 24, 517–23.CrossRefGoogle Scholar
Hempstock, J., Jauniaux, E., Greenwold, N. and Burton, G. J. (2003b) The contribution of placental oxidative stress to early pregnancy failure. Hum. Pathol., 34, 1265–75.CrossRefGoogle Scholar
Hockenbery, D. (1995). Defining apoptosis. Am. J. Pathol., 146, 16–19.Google ScholarPubMed
Hubel, C. A. (1999). Oxidative stress in the pathogenesis of preeclampsia. Proc. Soc. Exp. Biol. Med., 222, 222–35.CrossRefGoogle ScholarPubMed
Hung, T.-H., Charnock-Jones, D. S., Skepper, J. N. and Burton, G. J. (2004). Secretion of tumour necrosis factor-α from human placental tissues induced by hypoxia–reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am. J. Pathol., 164, 1049–61.CrossRefGoogle ScholarPubMed
Hung, T.-H., Skepper, J. N. and Burton, G. J. (2001). In vitro ischemia–reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am. J. Pathol., 159, 1031–43.CrossRefGoogle ScholarPubMed
Hung, T.-H., Skepper, J. N., Charnock-Jones, D. S. and Burton, G. J. (2002). Hypoxia/reoxygenation. A potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ. Res., 90, 1274–81.CrossRefGoogle Scholar
Huppertz, B., Kingdom, J., Caniggia, I., et al. (2003). Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta, 24, 181–90.CrossRefGoogle ScholarPubMed
Ishihara, N., Matsuo, H., Murakoshi, H., Laoag-Fernandez, J., Samoto, T. and Maruo, T. (2002). Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am. J. Obstet. Gynecol., 186, 158–66.CrossRefGoogle ScholarPubMed
Jauniaux, E. and Nicolaides, K. H. (1996). Placental lakes, absent umbilical artery diastolic flow and poor fetal growth in early pregnancy. Ultras. Obstet. Gynecol., 7, 141–4.CrossRefGoogle ScholarPubMed
Jauniaux, E., Ramsay, B. and Campbell, S. (1994). Ultrasonographic investigation of placental morphologic characteristics and size during the second trimester of pregnancy. Am. J. Obstet. Gynecol., 170, 130–7.CrossRefGoogle ScholarPubMed
Jauniaux, E., Watson, A. L. and Burton, G. J. (2001). Evaluation of respiratory gases and acid-base gradients in fetal fluids and uteroplacental tissue between 7 and 16 weeks. Am. J. Obstet. Gynecol., 184, 998–1003.CrossRefGoogle Scholar
Jauniaux, E., Hempstock, J., Greenwold, N. and Burton, G. J. (2003). Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am. J. Pathol., 162, 115–25.CrossRefGoogle ScholarPubMed
Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y.-P., Skepper, J. N. and Burton, G. J. (2000). Onset of maternal arterial bloodflow and placental oxidative stress; a possible factor in human early pregnancy failure. Am. J. Pathol., 157, 2111–22.CrossRefGoogle Scholar
Kam, E. P. Y., Gardner, L., Loke, Y. W. and King, A. (1999). The role of trophoblast in the physiological change in decidual spiral arteries. Hum. Reprod., 14, 2131–8.CrossRefGoogle ScholarPubMed
Karimu, A. L. and Burton, G. J. (1994). The effects of maternal vascular pressure on the dimensions of the placental capillaries. Br. J. Obstet. Gynaecol., 101, 57–63.CrossRefGoogle ScholarPubMed
Kingdom, J. C. P. and Kaufmann, P. (1997). Oxygen and placental villous development: origins of fetal hypoxia. Placenta, 18, 613–21.CrossRefGoogle ScholarPubMed
Krampl, E., Lees, C., Bland, J. M., Espinoza Dorado, J., Moscoso, G. and Campbell, S. (2000). Fetal biometry at 4300 m compared to sea level Peru. Ultras. Obstet. Gynaecol., 16, 9–18.CrossRefGoogle ScholarPubMed
Leist, M., Single, B., Castoldi, A. F., Kühnle, S. and Nicotera, P. (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med., 185, 1481–6.CrossRefGoogle ScholarPubMed
Leung, D. N., Smith, S. C., To, K. F., Sahota, D. S. and Baker, P. N. (2001). Increased placental apoptosis in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol., 184, 1249–50.CrossRefGoogle ScholarPubMed
Majno, G. and Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol., 146, 3–15.Google ScholarPubMed
Malek, A., Sager, R. and Schneider, H. (2001). Effect of hypoxia, oxidative stress and lipopolysaccharides on the release of prostaglandins and cytokines from human term placental explants. Placenta, 22 (Suppl A), S45–50.CrossRefGoogle ScholarPubMed
Manes, C. (2001). Human placental NAD(P)H oxidase: solubilization and properties. Placenta, 22, 58–63.CrossRefGoogle ScholarPubMed
Many, A. and Roberts, J. M. (1997). Increased xanthine oxidase during labour-implications for oxidative stress. Placenta, 18, 725–6.CrossRefGoogle ScholarPubMed
Many, A., Hubel, C. A., Fisher, S. J., Roberts, J. M. and Zhou, Y. (2000). Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am. J. Pathol., 156, 321–31.CrossRefGoogle ScholarPubMed
Martin, C. B., McGaughey, H. S., Kaiser, I. H., Donner, M. W. and Ramsey, E. M. (1964). Intermittent functioning of the uteroplacental arteries. Am. J. Obstet. Gynecol., 90, 819–23.CrossRefGoogle ScholarPubMed
Matsubra, S. and Tamada, T. (1991). Ultracytochemical localisation of NAD(P)H oxidase activity in the human placenta. Acta Obstet. Gynaecol. Jap., 43, 117–21.Google Scholar
Mayhew, T. M., Ohadike, C., Baker, P. N., Crocker, I. P., Mitchell, C. and Ong, S. S. (2003). Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta, 24, 219–26.CrossRefGoogle ScholarPubMed
Meekins, J. W., Pijnenborg, R., Hanssens, M., McFadyen, I. R. and Assche, F. A. (1994). A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol., 101, 669–74.CrossRefGoogle ScholarPubMed
Moll, W., Künzel, W. and Herberger, J. (1975). Hemodynamic implications of hemochorial placentation. Eur. J. Obstet. Gynecol. Reprod. Biol., 5, 67–74.CrossRefGoogle ScholarPubMed
Myatt, L., Rosenfield, R. B., Eis, A. L. W., Brockman, D. E., Greer, I. and Lyall, F. (1996). Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension, 28, 488–93.CrossRefGoogle ScholarPubMed
Raha, S., McEachern, G. E., Myint, A. T. and Robinson, B. H. (2000). Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radi. Biol. Med., 29, 170–80.CrossRefGoogle ScholarPubMed
Ramsey, E. M. and Donner, M. W. (1980). Placental Vasculature and Circulation. Anatomy, Physiology, Radiology, Clinical Aspects, Atlas and Textbook. Stuttgart: Georg Thieme. 101 pp.Google Scholar
Ramsey, E. M. and Donner, M. W. (1988). Placental vasculature and circulation in primates. Trophoblast Res., 3, 217–33.Google Scholar
Ramsey, E. M., Corner, G. W. and Donner, M. W. (1963). Serial and cineradiographic visualization of the maternal circulation in the primate (hemochorial) placenta. Am. J. Obstet. Gynecol., 86, 213–25.CrossRefGoogle Scholar
Redman, C. W. G. and Sargent, I. L. (2000). Placental debris, oxidative stress and pre-eclampsia. Placenta, 21, 597–602.CrossRefGoogle ScholarPubMed
Reshetnikova, O. S., Burton, G. J. and Milovanov, A. P. (1994). Effects of hypobaric hypoxia on the feto-placental unit; the morphometric diffusing capacity of the villous membrane at high altitude. Am. J. Obstet. Gynecol., 171, 1560–5.CrossRefGoogle Scholar
Richart, R. M., Doyle, G. B. and Ramsay, G. C. (1964). Visualisation of the entire maternal placental circulation in the rhesus monkey. Am. J. Obstet. Gynecol., 90, 334–9.Google Scholar
Rodesch, F., Simon, P., Donner, C. and Jauniaux, E. (1992). Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol., 80, 283–5.Google ScholarPubMed
Schneider, H. (2000). Placental oxygen consumption. Part II: in vitro studies – a review. Placenta, 21 (Suppl A), S38–44.CrossRefGoogle ScholarPubMed
Schuhmann, R., Stoz, F. and Maier, M. (1988). Histometric investigations in placentones (materno-fetal circulation units) of human placentae. Trophoblast Res., 3, 3–16.Google Scholar
Serkova, N., Bendrick-Peart, J., Alexander, B. and Tissot van Patot, M. C. (2003). Metabolite concentrations in human term placentae and their changes due to delayed collection after delivery. Placenta, 24, 227–35.CrossRefGoogle ScholarPubMed
Sheppard, B. L. and Bonnar, J. (1988). The maternal blood supply to the placenta in pregnancy complicated by intrauterine fetal growth retardation. Trophoblast Res., 3, 69–81.Google Scholar
Soothill, P. W., Nicolaides, K. H., Rodeck, C. H. and Campbell, S. (1986). Effect of gestational age on fetal and intervillous blood gas and acid–base values in human pregnancy. Fetal Therapy, 1, 168–75.CrossRefGoogle ScholarPubMed
Teasdale, F. (1985). Histomorphometry of the human placenta in maternal preeclampsia. Am. J. Obstet. Gynecol., 152, 25–31.CrossRefGoogle ScholarPubMed
Teasdale, F. (1987). Histomorphometry of the human placenta in pre-eclampsia associated with severe intra-uterine growth retardation. Placenta, 8, 119–28.CrossRefGoogle Scholar
Teixeira, J. M., Fisk, N. M. and Glover, V. (1999) Association between maternal anxiety in pregnancy and increased uterine artery resistance index: cohort based study. Br. Med. J., 318, 153–7.CrossRefGoogle ScholarPubMed
Watson, A. L., Skepper, J. N., Jauniaux, E. and Burton, G. J. (1998). Susceptibility of human placental syncytiotrophoblastic mitochondria to oxygen-mediated damage in relation to gestational age. J. Clin. Endocrinol. Metab., 83, 1697–705.Google ScholarPubMed
Watson, A. L, Skepper, J. N., Jauniaux, E. and Burton, G. J. (1999). Reducing oxidative stress effects in early human placental villi during in vitro culture. Placenta, 20, A69.Google Scholar
Wigglesworth, J. S. (1969). Vascular anatomy of the human placenta and its significance for placental pathology. J. Obstet. Gynaecol. Br. Commonwlth, 76, 979–89.CrossRefGoogle ScholarPubMed
Woods, J. R. Jr., Cavanaugh, J. L., Norkus, E. P., Plessinger, M. A. and Miller, R. K. (2002). The effect of labor on maternal and fetal vitamins C and E. Am. J. Obstet. Gynecol., 187, 1179–83.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×