Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T16:16:48.655Z Has data issue: false hasContentIssue false

3 - Retinal neurogenesis

Published online by Cambridge University Press:  22 August 2009

David H. Rapaport
Affiliation:
Division of Anatomy, Department of Surgery, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0604, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

In the past half-century the field of biology has witnessed a burgeoning of understanding of the biochemistry, molecular and cell biology of cell signalling. More recently, a significant effort was made to focus the techniques and concepts of biology to a mechanistic understanding of the nervous system. Within the area of development, perhaps the cardinal question has been how to signal immature cells to form the diverse organs, tissues and differentiated cells of the body – a particularly challenging question in the nervous system given the great diversity of cell types to be made. Because of its combination of diverse cell types within a highly structured tissue the vertebrate retina has served as an important model tissue in pursuit of answers to such questions. Specifically, the retina displays a laminar cytoarchitecture, and seven cell types that are largely confined to one of three laminae. These include receptors (rod and cone photoreceptors), short and long projection neurons (bipolar and retinal ganglion cells, respectively), local circuit neurons (horizontal and amacrine cells) and glia (Müller cells). The constancy of retinal structure and cell types across vertebrates allows cross-species comparisons to be readily made. Further, almost all retinal cell types exhibit multiple levels of differentiation. For example, there are several subtypes of ganglion cells or amacrine cells based on morphology, transmitter content, synaptic connectivity, etc. Thus, explanation of determination and differentiation can be sought at multiple levels of specificity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexiades, M. R. and Cepko, C. (1996). Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev. Dyn., 205, 293–3073.0.CO;2-D>CrossRefGoogle ScholarPubMed
Austin, C. P., Feldman, D. E., Ida, J. A. J. and Cepko, C. L. (1995). Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development, 121, 3637–50Google ScholarPubMed
Bao, Z. Z. and Cepko, C. L. (1997). The expression and function of Notch pathway genes in the developing rat eye. J. Neurosci., 17, 1425–34CrossRefGoogle ScholarPubMed
Barnstable, C. J., Hofstein, R. and Akagawa, K. (1985). A marker of early amacrine cell development in rat retina. Dev. Brain Res., 20, 286–90CrossRefGoogle Scholar
Bhattacharjee, J. and Sanyal, S. (1975). Developmental origin and early differentiation of retinal Müller cells in mice. J. Anat., 120, 367–72Google ScholarPubMed
Blanks, J. C. and Bok, D. (1977). An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J. Comp. Neurol., 174, 317–28CrossRefGoogle ScholarPubMed
Blenkinsopp, W. K. (1968). Duration of availability of tritiated thymidine following intraperitoneal injection. J. Cell Sci., 3, 89–95Google ScholarPubMed
Bumsted, K., Jasoni, C., Szel, A. and Hendrickson, A. (1997). Spatial and temporal expression of cone opsins during monkey retinal development. J. Comp. Neurol., 378, 117–343.0.CO;2-7>CrossRefGoogle ScholarPubMed
Carter-Dawson, L. D. and LaVail, M. M. (1979). Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J. Comp. Neurol., 188, 263–72CrossRefGoogle ScholarPubMed
Carter-Dawson, L., Alvarez, R. A., Fong, S. L.et al. (1986). Rhodopsin, 11-cis vitamin A, and interstitial retinol-binding protein (IRBP) during retinal development in normal and rd mutant mice. Dev. Biol., 116, 431–8CrossRefGoogle ScholarPubMed
Cayouette, M. and Raff, M. (2003). The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development, 130, 2329–39CrossRefGoogle ScholarPubMed
Cayouette, M., Whitmore, A. V., Jeffery, G. and Raff, M. (2001). Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium. J. Neurosci., 21, 5643–51CrossRefGoogle ScholarPubMed
Chang, W. S and Harris, W. A (1998). Sequential genesis and determination of cone and rod photoreceptors in Xenopus. J. Neurobiol., 35, 227–443.0.CO;2-0>CrossRefGoogle ScholarPubMed
Chinen, A., Hamaoka, T., Yamada, Y. and Kawamura, S. (2003). Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics, 163, 663–75Google ScholarPubMed
Das, T., Payer, B., Cayouette, M. and Harris, W. A. (2003). In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron, 37, 597–609CrossRefGoogle ScholarPubMed
Leeuw, A. M., Gaur, V. P., Saari, J. C. and Milam, A. H. (1990). Immunolocalization of cellular retinol-, retinaldehyde- and retinoic acid-binding proteins in rat retina during pre- and postnatal development. J. Neurocytol., 19, 253–64CrossRefGoogle ScholarPubMed
Denham, S. (1967). A cell proliferation study of the neural retina in the two-day rat. J. Embryol. Exp. Morphol., 18, 53–66Google ScholarPubMed
Dorsky, R. I., Rapaport, D. H. and Harris, W. A. (1995). Xotch inhibits cell differentiation in the Xenopus retina. Neuron, 14, 487–96CrossRefGoogle ScholarPubMed
Dorsky, R. I., Chang, W. S., Rapaport, D. H. and Harris, W. A. (1997). Regulation of neuronal diversity in the Xenopus retina by Delta signaling. Nature, 385, 67–70CrossRefGoogle Scholar
Dräger, U. C. (1985). Birth dates of ganglion cells giving rise to crossed and uncrossed retinal projections in the mouse. Proc. R. Soc. London B, 224, 57–77CrossRefGoogle ScholarPubMed
Evans, J. A. and Battelle, B.-A. (1987). Histogenesis of dopamine-containing neurons in the rat retina. Exp. Eye Res., 44, 407–14CrossRefGoogle ScholarPubMed
French, M. B., Koch, U., Shaye, R. E.et al. (2002). Transgenic expression of numb inhibits notch signaling in immature thymocytes but does not alter T cell fate specification. J. Immunol., 168, 3173–80CrossRefGoogle Scholar
Fujita, S. (1962). Kinetics of cellular proliferation. Exp. Cell Res., 28, 52–60CrossRefGoogle ScholarPubMed
Fujita, S. and Horii, M. (1963). Analysis of cytogenesis in chick retina by tritiated thymidine autoradiography. Arch. Histol. Jpn., 23, 359–66CrossRefGoogle ScholarPubMed
Fukuda, Y., Sawai, H., Watanabe, M., Wakakuwa, K. and Morigiwa, K. (1989). Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J. Neurosci., 9, 2353–73CrossRefGoogle Scholar
Furukawa, T., Mukherjee, S., Bao, Z. Z., Morrow, E. M. and Cepko, C. L. (2000). rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron, 26, 383–94CrossRefGoogle ScholarPubMed
Galli-Resta, L. and Ensini, M. (1996). An intrinsic time limit between genesis and death of individual neurons in the developing retinal ganglion cell layer. J. Neurosci., 16, 2318–24CrossRefGoogle ScholarPubMed
Gardino, P. F., Santos, dos R. M. and Hokoc, J. N. (1993). Histogenesis and topographical distribution of tyrosine hydroxylase immunoreactive amacrine cells in the developing chick retina. Brain Res. Dev. Brain Res., 72, 226–36CrossRefGoogle ScholarPubMed
Gloor, B. P., Rokos, L. and Kaldarar-Pedotti, S. (1985). Cell cycle time and life-span of cells in the mouse eye. Dev. Ophthalmol., 12, 70–129CrossRefGoogle ScholarPubMed
Gonzalez-Fernandez, F. and Healy, J. I. (1990). Early expression of the gene for interphotoreceptor retinol-binding protein during photoreceptor differentiation suggests a critical role for the interphotoreceptor matrix in retinal development. J. Cell. Biol., 111, 2775–84CrossRefGoogle ScholarPubMed
Hamburger, V. and Hamilton, H. C. (1951). A series of normal stages in the development of the chick embryo. J. Morphol., 88, 49–92CrossRefGoogle ScholarPubMed
Harman, A. M. and Beazley, L. D. (1989). Generation of retinal cells in the wallaby, Setonix brachyurus (quokka). Neuroscience, 28, 219–32CrossRefGoogle Scholar
Harris, W. A. and Messersmith, S. L. (1992). Two cellular inductions involved in photoreceptor determination in Xenopus retina. Neuron, 9, 357–72CrossRefGoogle ScholarPubMed
Hauswirth, W. W., Langerijt, A. V., Timmers, A. M., Adamus, G. and Ulshafer, R. J. (1992). Early expression and localization of rhodopsin and interphotoreceptor retinoid-binding protein (IRBP) in the developing fetal bovine retina. Exp. Eye Res., 54, 661–70CrossRefGoogle ScholarPubMed
Hickey, T. L., Whikehart, D. R., Jackson, C. A., Hitchcock, P. F. and Paduzzi, J. D. (1983). Tritiated thymidine experiments in the cat: a description of techniques and experiments to define the time-course of radioactive thymidine availability. J. Neurosci. Methods, 8, 139–47CrossRefGoogle ScholarPubMed
Hollyfield, J. G. (1972). Histogenesis of the retina in the killifish Fundulus heteroclitus. J. Comp. Neurol., 144, 373–80CrossRefGoogle ScholarPubMed
Holt, C. E., Bertsch, T. W., Ellis, H. M. and Harris, W. A. (1988). Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron, 1, 15–26CrossRefGoogle ScholarPubMed
Holt, C. E., Garlick, N. and Cornel, E. (1990). Lipofectin of cDNAs in the embryonic vertebrate central nervous system. Neuron, 4, 203–14CrossRefGoogle ScholarPubMed
Hu, M. and Easter, S. S. (1999). Retinal neurogenesis: the formation of the initial central patch of post-mitotic cells. Dev. Biol., 207, 309–21CrossRefGoogle Scholar
Huang, B., Mitchell, C. K. and Redburn-Johnson, D. A. (2000). GABA and GABA(A) receptor antagonists alter developing cone photoreceptor development in neonatal rabbit retina. Vis. Neurosci., 17, 925–35CrossRefGoogle ScholarPubMed
Jacobson, M. (1976). Histogenesis of retina in the clawed frog with implications for the pattern of development of retinotectal connections. Brain Res., 103, 541–5CrossRefGoogle ScholarPubMed
Jacobson, M. (1978). Developmental Neurobiology. New York, London: Plenum PressCrossRefGoogle Scholar
Jeffery, G. (1985). The relationship between cell density and the nasotemporal division in the rat retina. Brain Res., 347, 354–7CrossRefGoogle ScholarPubMed
Johnson, P. T., Williams, R. R., Cusato, K. and Reese, B. E. (1999). Rods and cones project to the inner plexiform layer during development. J. Comp. Neurol., 414, 1–123.0.CO;2-G>CrossRefGoogle ScholarPubMed
Johnson, P. T., Williams, R. R. and Reese, B. E. (2001). Developmental patterns of protein expression in photoreceptors implicate distinct environmental versus cell-intrinsic mechanisms. Vis. Neurosci., 18, 157–68CrossRefGoogle ScholarPubMed
Kahn, A. J. (1974). An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Dev. Biol., 18, 163–79Google Scholar
Kay, J. N., Finger-Baier, K. C., Roeser, T., Staub, W. and Baier, H. (2001). Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog. Neuron, 30, 725–36CrossRefGoogle ScholarPubMed
Kuwabara, T. and Weidman, T. A. (1974). Development of the prenatal rat retina. Invest. Ophthalmol. Vis. Sci., 13, 725–739Google ScholarPubMed
Kuzmanovic, M., Dudley, V. J. and Sarthy, V. P. (2003). GFAP promoter drives Müller cell-specific expression in transgenic mice. Invest. Ophthalmol. Vis. Sci., 44, 3606–13CrossRefGoogle ScholarPubMed
Larison, K. D. and Bremiller, R. (1990). Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development, 109, 567–76Google ScholarPubMed
LaVail, M. M., Rapaport, D. H. and Rakic, P. (1991). Cytogenesis in the monkey retina. J. Comp. Neurol., 309, 86–114CrossRefGoogle Scholar
Lee, M. Y., Shin, S. L., Han, S. H. and Chun, M. H. (1999). The birthdates of GABA-immunoreactive amacrine cells in the rat retina. Exp. Brain Res., 128, 309–14CrossRefGoogle ScholarPubMed
Li, Z., Hu, M., Ochocinska, M. J., Joseph, N. M. and Easter, S. S. Jr. (2000). Modulation of cell proliferation in the embryonic retina of zebrafish (Danio rerio). Dev. Dyn., 219, 391–4013.0.CO;2-G>CrossRefGoogle Scholar
Livesey, F. J. and Cepko, C. L. (2001). Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci., 2, 109–18CrossRefGoogle ScholarPubMed
Masland, R. H. (2001). The fundamental plan of the retina. Nat. Neurosci., 4, 877–86CrossRefGoogle ScholarPubMed
Masland, R. H. and Tauchi, M. (1986). The cholinergic amacrine cell. Trends Neurosci., 9, 218–23CrossRefGoogle Scholar
McConnell, S. K. (1988). Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci., 8, 945–74CrossRefGoogle ScholarPubMed
McConnell, S. K. and Kaznowski, C. E. (1991). Cell cycle dependence of laminar determination in developing neocortex. Science, 254, 282–5CrossRefGoogle ScholarPubMed
Meller, K. and Tetzlaff, W. (1976). Scanning electron microscopic studies on the development of the chick retina. Cell Tissue Res., 170, 145–59CrossRefGoogle ScholarPubMed
Messersmith, E. K. and Redburn, D. A. (1993). The role of GABA during development of the outer retina in the rabbit. Neurochem. Res., 18, 463–70CrossRefGoogle ScholarPubMed
Mitchell, C. K., Rowe-Rendleman, C. L., Ashraf, S. and Redburn, D. A. (1995). Calbindin immunoreactivity of horizontal cells in the developing rabbit retina. Exp. Eye Res., 61, 691–8CrossRefGoogle ScholarPubMed
Mitchell, C. K., Huang, B. and Redburn-Johnson, D. A. (1999). GABA(A) receptor immunoreactivity is transiently expressed in the developing outer retina. Vis. Neurosci., 16, 1083–8CrossRefGoogle ScholarPubMed
Nawrocki, L., BreMiller, R., Streisinger, G. and Kaplan, M. (1985). Larval and adult visual pigments of the zebrafish, Brachydanio rerio. Vis. Res., 25, 1569–76CrossRefGoogle ScholarPubMed
Neumann, C. J. and Nuesslein-Volhard, C. (2000). Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science, 289, 2137–9CrossRefGoogle ScholarPubMed
Nieuwkoop, P. D. and Faber, J. (1956). Normal Table of Xenopus laevis (Daudin). Amsterdam: North-Holland Publishing CoGoogle Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. and Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–20CrossRefGoogle ScholarPubMed
Noctor, S. C., Flint, A. C., Weissman, T. A.et al. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci., 22, 3161–73CrossRefGoogle ScholarPubMed
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. and Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci., 7, 136–44CrossRefGoogle ScholarPubMed
Nowakowski, R. S. and Rakic, P. (1974). Clearance rate of exogenous 3H-thymidine from the plasma of pregnant rhesus monkeys. Cell Tissue Kinet., 7, 189–94Google ScholarPubMed
Ohnuma, S. and Harris, W. A. (2003). Neurogenesis and the cell cycle. Neuron, 40, 199–208CrossRefGoogle ScholarPubMed
Ohnuma, S.-I., Philpott, A., Wang, K., Holt, C. E. and Harris, W. A. (1999). p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell, 99, 499–510CrossRefGoogle ScholarPubMed
Ohnuma, S., Philpott, A. and Harris, W. A. (2001). Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol., 11, 66–73CrossRefGoogle Scholar
Ohnuma, S., Mann, F., Boy, S., Perron, M. and Harris, W. A. (2002). Lipofection strategy for the study of Xenopus retinal development. Methods, 28, 411–19CrossRefGoogle Scholar
Olney, J. W. (1968). An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Invest. Ophthalmol., 7, 250–68Google ScholarPubMed
Perry, V. H. and Silveira, L. C. L. (1988). Functional lamination in the ganglion cell layer of the macaque's retina. Neuroscience, 25, 217–23CrossRefGoogle ScholarPubMed
Peterson, R. E., Fadool, J. M., McClintock, J. and Linser, P. J. (2001). Müller cell differentiation in the zebrafish neural retina: evidence of distinct early and late stages in cell maturation. J. Comp. Neurol., 429, 530–403.0.CO;2-C>CrossRefGoogle ScholarPubMed
Prada, C., Puga, J., Pérez-Méndez, L., López, R. and Ramirez, G. (1991). Spatial and temporal patterns of neurogenesis in the chick retina. Eur. J. Neurosci., 3, 559–69CrossRefGoogle ScholarPubMed
Provis, J. and Watson, C. R. (1981). The distributions of ipsilaterally and contralaterally projecting ganglion cells in the retina of the pigmented rabbit. Exp. Brain. Res., 44, 82–92CrossRefGoogle Scholar
Rakic, P. (1981). Neuronal-glial interaction during brain development. Trends Neurosci., 4, 184–7CrossRefGoogle Scholar
Rapaport, D. H. and Dorsky, R. I. (1998). Inductive competence, its significance in retinal cell fate determination and a role for Delta-Notch signaling. Semin. Cell Dev. Biol., 9, 241–7CrossRefGoogle Scholar
Rapaport, D. H. and Stone, J. (1983). The topography of cytogenesis in the developing retina of the cat. J. Neurosci., 3, 1824–34CrossRefGoogle ScholarPubMed
Rapaport, D. H. and Vietri, A. (1991). Identity of cells produced by two stages of cytogenesis in the postnatal cat retina. J. Comp. Neurol., 312, 341–52CrossRefGoogle ScholarPubMed
Rapaport, D. H., Fletcher, J., LaVail, M. M. and Rakic, P. (1992). Genesis of neurons in the retinal ganglion cell layer of the monkey. J. Comp. Neurol., 322, 577–88CrossRefGoogle ScholarPubMed
Rapaport, D. H., LaVail, M. M. and Rakic, P. (1996). Spatiotemporal gradients of cell genesis in the monkey retina. Perspect. Dev. Neurobiol., 3, 147–60Google Scholar
Rapaport, D. H., Wong, L. L., Wood, E. D., Yasumura, D. and LaVail, M. M. (2004). Timing and topography of cell genesis in the rat retina. J. Comp. Neurol., 474, 304–24CrossRefGoogle ScholarPubMed
Redburn, D. A. and Madtes, P. Jr. (1986). Postnatal development of 3H-GABA-accumulating cells in rabbit retina. J. Comp. Neurol., 243, 41–57CrossRefGoogle ScholarPubMed
Reese, B. E. and Colello, R. J. (1992). Neurogenesis in the retinal ganglion cell layer of the rat. Neuroscience, 46, 419–29CrossRefGoogle ScholarPubMed
Reese, B. E., Guillery, R. W. and Mallarino, C. (1992). Time of ganglion cell genesis in relation to the chiasmatic pathway choice of retinofugal axons. J. Comp. Neurol., 324, 336–42CrossRefGoogle ScholarPubMed
Reese, B. E., Thompson, W. F. and Peduzzi, J. D. (1994). Birthdates of neurons in the retinal ganglion cell layer of the ferret. J. Comp. Neurol., 341, 464–75CrossRefGoogle ScholarPubMed
Reh, T. A. (1989). The regulation of neuronal production during retinal neurogenesis. In Development of the Vertebrate Retina, ed, Finlay, B. L. and Sengelaub, D. R.. New York: Plenum, pp. 43–67CrossRefGoogle Scholar
Rodieck, R. W. and Marshak, D. W. (1992). Spatial density and distribution of choline acetyltransferase immunoreactive cells in human, macaque, and baboon retinae. J. Comp. Neurol., 321, 46–64CrossRefGoogle Scholar
Sarthy, P. V., Fu, M. and Huang, J. (1991). Developmental expression of the glial fibrillary acidic protein (GFAP) gene in the mouse retina. Cell. Mol. Neurobiol., 11, 623–37CrossRefGoogle ScholarPubMed
Sauer, M. E. and Chittenden, A. C. (1959). Deoxyribonucleic acid content of cell nuclei in the neural tube of the chick embryo: evidence for interkinetic migration of nuclei. Exp. Cell Res., 16, 1–6CrossRefGoogle Scholar
Sengelaub, D. R., Dolan, R. P. and Finlay, B. L. (1986). Cell generation, death, and retinal growth in the development of the hamster retinal ganglion cell layer. J. Comp. Neurol., 246, 527–43CrossRefGoogle ScholarPubMed
Sharma, S. C. and Ungar, F. (1980). Histogenesis of the goldfish retina. J. Comp. Neurol., 191, 373–82CrossRefGoogle ScholarPubMed
Sidman, R. L. (1961). Histogenesis of the mouse retina studied with thymidine 3-H. In The Structure of the Eye, ed. Smelser, G. K.. New York: Academic Press, pp. 487–506Google Scholar
Sidman, R. L. (1970). Cell Proliferation, Migration, and Interaction in the Developing Mammalian Central System. New York: The Rockefeller University PressGoogle Scholar
Silva, A. O., Ercole, C. E. and McLoon, S. C. (2002). Plane of cell cleavage and numb distribution during cell division relative to cell differentiation in the developing retina. J. Neurosci., 22, 7518–25CrossRefGoogle ScholarPubMed
Stenkamp, D. L., Hisatomi, O., Barthel, L. K., Tokunaga, F. and Raymond, P. A. (1996). Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic. Invest. Ophthalmol. Vis. Sci., 37, 363–76Google ScholarPubMed
Stenkamp, D. L., Barthel, L. K. and Raymond, P. A. (1997). Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina. J. Comp. Neurol., 382, 272–843.0.CO;2-U>CrossRefGoogle ScholarPubMed
Stiemke, M. M. and Hollyfield, J. G. (1995). Cell birthdays in Xenopus laevis retina. Differentiation, 58, 189–93CrossRefGoogle ScholarPubMed
Stone, J. (1966). The naso-temporal division of the cat's retina. J. Comp. Neurol., 126, 585–600Google ScholarPubMed
Stone, J. (1983). Parallel Processing in the Visual System: The Classification of Retinal Ganglion Cells and its Impact on the Neurobiology of Vision. New York, London: Plenum PressCrossRefGoogle Scholar
Stone, J., Leicester, J. and Sherman, S. (1973). The nasotemporal division of the the monkey's retina. J. Comp. Neurol., 150, 333–48CrossRefGoogle Scholar
Strettoi, E. and Masland, R. H. (1995). The organization of the inner nuclear layer of the rabbit retina. J. Neurosci., 15, 875–88CrossRefGoogle ScholarPubMed
Tibber, M. S., Kralj-Hans, I., Savage, J., Mobbs, P. G. and Jeffery, G. (2004). The orientation and dynamics of cell division within the plane of the developing vertebrate retina. Eur. J. Neurosci., 19, 497–504CrossRefGoogle ScholarPubMed
Turner, D. L. and Cepko, C. L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature, 328, 131–6CrossRefGoogle ScholarPubMed
Uga, S. and Smelser, G. K. (1973). Electron microscopic study of the development of retinal Müllerian cells. Invest. Ophthalmol. Vis. Sci., 12, 295–307Google ScholarPubMed
Vaney, D. I. (1990). The mosaic of amacrine cells in the mammalian retina. In Progress in Retinal Research, ed. N. N. Osborne and G. J., Chader, , Oxford: Pergamon Press, pp. 50–100Google Scholar
Vaney, D. I., Peichl, L. and Boycott, B. B. (1981). Matching populations of amacrine cells in the inner nuclear layer and ganglion cell layers of the rabbit retina. J. Comp. Neurol., 199, 373–91CrossRefGoogle ScholarPubMed
Versaux-Botteri, C., Pochet, R. and Nguyen-Legros, J. (1989). Immunohistochemical localization of GABA-containing neurons during postnatal development of the rat retina. Invest. Ophthalmol. Vis. Sci., 30, 652–9Google ScholarPubMed
Vetter, M. L. and Moore, K. B. (2001). Becoming glial in the neural retina. Dev. Dyn., 221, 146–53CrossRefGoogle ScholarPubMed
Vihtelic, T. S., Doro, C. J. and Hyde, D. R. (1999). Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins. Vis. Neurosci., 16, 571–85CrossRefGoogle ScholarPubMed
Waid, D. K. and McLoon, S. C. (1995). Immediate differentiation of ganglion cells following mitosis in the developing retina. Neuron, 14, 117–24CrossRefGoogle ScholarPubMed
Wakamatsu, Y., Maynard, T. M., Jones, S. U. and Weston, J. A. (1999). NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron, 23, 71–81CrossRefGoogle ScholarPubMed
Walsh, C. and Polley, E. H. (1985). The topography of ganglion cell production in the cat's retina. J. Neurosci., 5, 741–50CrossRefGoogle ScholarPubMed
Walsh, C., Polley, E. H., Hickey, T. L. and Guillery, R. W. (1983). Generation of cat retinal ganglion cells in relation to central pathways. Nature, 302, 611–14CrossRefGoogle ScholarPubMed
Weidman, T. A. and Kuwabara, T. (1968). Postnatal development of the rat retina. An electron microscopic study. Arch. Ophthalmol., 79, 470–84CrossRefGoogle ScholarPubMed
Wetts, R. and Fraser, S. E. (1988). Multipotent precursors can give rise to all major cell types of the frog retina. Science, 239, 1142–5CrossRefGoogle ScholarPubMed
Wikler, K. C., Perez, G. and Finlay, B. L. (1989). Duration of retinogenesis: its relationship to retinal organization in two cricetine rodents. J. Comp. Neurol., 285, 157–76CrossRefGoogle ScholarPubMed
Williams, R. W. and Goldowitz, D. (1992). Structure of clonal and polyclonal cell arrays in chimeric mouse retina. Proc. Natl. Acad. Sci. U. S. A., 89, 1184–8CrossRefGoogle ScholarPubMed
Young, R. W. (1985a). Cell proliferation during postnatal development of the retina in the mouse. Brain Res., 353, 229–39CrossRefGoogle Scholar
Young, R. W. (1985b). Cell differentiation in the retina of the mouse. Anat. Rec., 212, 199–205CrossRefGoogle Scholar
Zhang, D. R. and Yeh, H. H. (1990). Histogenesis of corticotropin releasing factor-like immunoreactive amacrine cells in the rat retina. Brain Res. Dev. Brain Res., 53, 194–9CrossRefGoogle ScholarPubMed
Zhong, W., Feder, J. N., Jiang, M. M.Jan, L. Y. and Jan, Y. N. (1996). Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron, 17, 43–53CrossRefGoogle ScholarPubMed
Zimmerman, R. P., Polley, E. H. and Fortney, R. L. (1988). Cell birthdays and rate of differentiation of ganglion cells of the developing cat's retina. J. Comp. Neurol., 274, 77–90CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Retinal neurogenesis
    • By David H. Rapaport, Division of Anatomy, Department of Surgery, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0604, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Retinal neurogenesis
    • By David H. Rapaport, Division of Anatomy, Department of Surgery, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0604, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Retinal neurogenesis
    • By David H. Rapaport, Division of Anatomy, Department of Surgery, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0604, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.005
Available formats
×