Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T13:10:05.548Z Has data issue: false hasContentIssue false

7 - Comparison of development of the primate fovea centralis with peripheral retina

Published online by Cambridge University Press:  22 August 2009

Anita Hendrickson
Affiliation:
Biological Structure, Box 357420, University of Washington, Seattle, WA 98195, USA
Jan Provis
Affiliation:
Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

The macula lutea (‘yellow spot’), located towards the posterior pole of the human retina was identified grossly in the late eighteenth century, and the fovea centralis – located approximately at the centre of the macula – was first described by Soemmerring in 1795. It was H. Müller who produced the first histological description of the human fovea (see Polyak, 1941), along with identification of the retinal layers and a correct analysis of their general place in the retinal circuitry. Knowledge of its anatomical organization was greatly expanded by the Golgi impregnation work of Cajal (1893) and Polyak (1941), which indicated that foveal cones give rise to highly specialized circuits.

Some of the earliest studies of developing primate retina were carried out by Chievitz (1888), Magitot (1910) and Bach and Seefelder (1911, 1912, 1914), from whose work some illustrations are reproduced later in this chapter. These early studies were greatly expanded on by Ida Mann in the first part of the twentieth century and published in monograph form in 1928 (see Mann, 1964, 2nd edition). Little further work was published on foveal development until Hendrickson and Kupfer's study (1976) showing photoreceptor displacement towards the developing fovea. This most recent period of analysis of primate (including human) retinal development (1976 to present) has taken place in the context of an expanding body of knowledge, gleaned largely from investigation of retinal development in non-primate species – much of which is covered in other chapters of this volume – including gene regulation of eye and retinal formation, retinal cell generation, development of target visual nuclei, guidance mechanisms, the importance of neuronal acitivity and the significance of apoptosis.

Type
Chapter
Information
Retinal Development , pp. 126 - 149
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bach, L. and Seefelder, R. (1911, 1912, 1914). Entwicklungsgeschichte des Menschlichen Auges, Parts 1–3. Leipzig: W. EngelmannGoogle Scholar
Bumsted, K. and Hendrickson, A. E. (1999). Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea. J. Comp. Neurol., 403, 502–163.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bumsted, K., Jasoni, C., Szél, A. and Hendrickson, A. E. (1997). Spatial and temporal expression of cone opsins during monkey retinal development. J. Comp. Neurol., 378, 117–343.0.CO;2-7>CrossRefGoogle ScholarPubMed
Bumsted-O'Brien, K. M., Schulte, D. and Hendrickson, A. E. (2003). Expression of photoreceptor-associated molecules during human fetal eye development. Mol. Vis., 9, 401–9Google Scholar
Cajal, S. R. (1893). The Structure of the Retina: La Retine des Vertebres. Springfield IL: Thomas SpringfieldGoogle Scholar
Chievitz, J. H. (1888). Entwicklund der fovea centralis retinae. Anat. Anzeig. Jena Bd, III, 5579Google Scholar
Cornish, E. E., Hendrickson, A. E. and Provis, J. M. (2004a). Distribution of short wavelength sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles. Vis. Res., 44, 2019–26CrossRefGoogle Scholar
Cornish, E. E., Xiao, M., Yang, Z., Provis, J. M. and Hendrickson, A. E. (2004b). The role of opsin expression and apoptosis in determination of cone types in human retina. Exp. Eye Res., 78, 1143–54CrossRefGoogle Scholar
Cornish, E. E., Madigan, M. C., Natoli, R. C.et al. (2005). Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina. Vis. Neurosci., 32, 447–59CrossRefGoogle Scholar
Crooks, J., Okada, M. and Hendrickson, A. E. (1995). Quantitative analysis of synaptogenesis in the inner plexiform layer of macaque monkey fovea. J. Comp. Neurol., 360, 349–62CrossRefGoogle ScholarPubMed
Curcio, C. A. and Hendrickson, A. E. (1991). Organization and development of the primate photoreceptor mosaic. Prog. Retin. Res. Eye, 10, 90–120Google Scholar
Curcio, C. A., Sloan, K. R., Kalina, R. E. and Hendrickson, A. E. (1990). Human photoreceptor topography. J. Comp. Neurol., 292, 497–523CrossRefGoogle ScholarPubMed
Curcio, C. A., Allen, K. A., Sloan, K. R.et al. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol., 312, 610–24CrossRefGoogle ScholarPubMed
Dacey, D. M. (1996). Circuitry for color coding in the primate's retina. Proc. Natl. Acad Sci. U. S. A., 93, 582–8CrossRefGoogle Scholar
Dacey, D. M. (1999). Primate retina: cell types, circuits and color opponency. Prog. Retin. Eye Res., 18, 737–63. Erratum in Prog. Retin. Eye Res., 2000 Sep; 19(5):following 646CrossRefGoogle ScholarPubMed
Diaz-Araya, C. M. and Provis, J. M. (1992). Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae. Vis. Neurosci., 8, 505–14CrossRefGoogle ScholarPubMed
Dorn, E. M., Hendrickson, L. and Hendrickson, A. E. (1995). The appearance of rod opsin during monkey retinal development. Invest. Ophthalmol. Vis. Sci., 36, 2634–51Google ScholarPubMed
Fischer, A. J., Hendrickson, A. E. and Reh, T. E. (2001). Immunocytochemical characterization of cysts in the peripheral retina and pars plana of the adult primate. Invest. Ophthalmol. Vis. Sci., 42, 3256–63Google ScholarPubMed
Franco, E. C., Finlay, B. L., Silveira, L. C., Yamada, E. S. and Crowley, J. C. (2000). Conservation of absolute foveal area in New World monkeys. A constraint on eye size and conformation. Brain Behav. Evol., 56, 276–86CrossRefGoogle ScholarPubMed
Gariano, R. F., Iruela-Arispe, M. L. and Hendrickson, A. E. (1994). Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Invest. Ophthalmol. Vis. Sci., 35, 3442–55Google ScholarPubMed
Georges, P., Madigan, M. C. and Provis, J. M. (1999). Apoptosis during development of the human retina: relationship to foveal development and retinal synaptogenesis. J. Comp. Neurol., 413, 198–2083.0.CO;2-J>CrossRefGoogle ScholarPubMed
Georges, P., Cornish, E. E., Provis, J. M. and Medigan, M. C. (2006). Müller cell expression of glutamate cycle related proteins and anti-apoptotic proteins in early human retinal development. Br. J. Ophthalmol., 90, 223–8CrossRefGoogle ScholarPubMed
Hendrickson, A. E. (1992). A morphological comparison of foveal development in man and monkey. Eye 6, 136–44CrossRefGoogle ScholarPubMed
Hendrickson, A. E. (1996). Synaptic development in macaque monkey retina and its implications for other developmental sequences. Perspect. Dev. Neurobiol., 3, 195–201Google ScholarPubMed
Hendrickson, A. E. and Kupfer, C. (1976). The histogenesis of the fovea in the macaque monkey. Invest. Ophthalmol., 15, 746–56Google ScholarPubMed
Hendrickson, A. E. and Yuodelis, C. (1984). The morphological development of the human fovea. Ophthalmology, 91, 603–12CrossRefGoogle ScholarPubMed
Hendrickson, A. E., Djajadi, H. R., Nakamura, L., Possin, D. E. and Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. J. Comp. Neurol., 424, 718–303.0.CO;2-Z>CrossRefGoogle Scholar
Hollenberg, M. J. and Spira, A. W. (1973). Human retinal development: ultrastructure of the outer retina. Am. J. Anat., 137, 357–85CrossRefGoogle ScholarPubMed
Jacobs, G. H. (1996). Primate photopigments and primate color vision. Proc. Natl. Acad. Sci. U. S. A., 93, 577–81CrossRefGoogle ScholarPubMed
Jacobs, G. H. and Deegan, J. F., 2nd. (1999). Uniformity of color vision in Old World monkeys. Proc. R. Soc. LondonBBiol. Sci., 266, 2023–28CrossRefGoogle Scholar
Kirby, M. A. and Steineke, T. C. (1991). Early dendritic outgrowth of primate retinal ganglion cells. Vis. Neurosci., 7, 513–30CrossRefGoogle ScholarPubMed
Koontz, M. A. and Hendrickson, A. E. (1993). Comparison of immunolocalization patterns for the synaptic vesicle proteins p65 and synapsin I in macaque monkey retina. Synapse, 14, 268–82CrossRefGoogle ScholarPubMed
LaVail, M. M., Rapaport, D. H. and Rakic, P. (1991). Cytogenesis in the monkey retina. J. Comp. Neurol., 309, 86–114CrossRefGoogle Scholar
Linberg, K. A. and Fisher, S. K. (1990). A burst of differentiation in the outer posterior retina of the eleven-week human fetus: an ultrastructural study. Visual Neurosci., 5, 43–60CrossRefGoogle Scholar
Magitot, M. A. (1910). Etude sur le développement de la rétine humaine. Annales d'Occulistique, 143, 241–82Google Scholar
Mann, I. (1964). The Development of the Human Eye, 2nd edn.New York: Grune and StrattonGoogle Scholar
Martin, P. R. and Grunert, U. (1999). Analysis of the short wavelength-sensitive (‘blue’) cone mosaic in the primate retina: comparison of New World and Old World monkeys. J. Comp. Neurol., 406, 1–143.0.CO;2-1>CrossRefGoogle Scholar
Martin, P. R., Grunert, U., Chan, T. L. and Bumsted, K. (2000). Spatial order in short-wavelength-sensitive cone photoreceptors: a comparative study of the primate retina. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 17, 557–67CrossRefGoogle ScholarPubMed
Mears, A. J., Kondo, M., Swain, P. K.et al. (2001). Nrl is required for rod photoreceptor development. Nat. Genet., 29, 447–52CrossRefGoogle ScholarPubMed
Nathans, J. (1989). The genes for color vision. Sci. Am., 260, 42–9CrossRefGoogle ScholarPubMed
Nathans, J., Merbs, S. L., Sung, C. H., Weitz, C. J. and Wang, Y. (1992). Molecular genetics of human visual pigments. Annu. Rev. Genet., 26, 403–24CrossRefGoogle ScholarPubMed
Nishimura, Y. and Rakic, P. (1985). Development of the rhesus monkey retina. I. Emergence of the inner plexiform layer and its synapses. J. Comp. Neurol., 241, 420–34CrossRefGoogle ScholarPubMed
Nishimura, Y. and Rakic, P. (1987). Development of the rhesus monkey retina. II. A three-dimensional analysis of the sequences of synaptic combinations in the inner plexiform layer. J. Comp. Neurol., 262, 290–313CrossRefGoogle Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. and Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–20CrossRefGoogle ScholarPubMed
Okada, M., Erickson, A. and Hendrickson, A. E. (1994). Light and electron microscopic analysis of synaptic development in Macaca monkey retina as detected by immunocytochemical labeling for the synaptic vesicle protein, SV2. J. Comp. Neurol., 339, 535–58CrossRefGoogle ScholarPubMed
Packer, O., Hendrickson, A. E. and Curcio, C. A. (1989). Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). J. Comp. Neurol., 288, 165–83CrossRefGoogle Scholar
Packer, O., Hendrickson, A. E. and Curcio, C. A. (1990). Development redistribution of photoreceptors across the Macaca nemestrina (pigtail macaque) retina. J. Comp. Neurol., 298, 472–93CrossRefGoogle ScholarPubMed
Perry, V. H. and Cowey, A. (1985). The ganglion cell and cone distributions in the monkey's retina: implications for central magnification factors. Vis. Res., 25, 1795–1810CrossRefGoogle ScholarPubMed
Polyak, S. L. (1941). The Retina. Chicago: University of Chicago PressGoogle Scholar
Provis, J. M. (1985). Retinal development in humans: the roles of differential growth rates, cell migration and naturally occurring cell death. Aust. J. Opththalmol., 13, 125–33CrossRefGoogle ScholarPubMed
Provis, J. M. (1987). Patterns of cell death in the ganglion cell layer of the human fetal retina. J. Comp. Neurol., 259, 237–46CrossRefGoogle ScholarPubMed
Provis, J. M. (2001). Development of the primate retinal vasculature. Prog. Retin. Eye Res., 20, 799–821CrossRefGoogle ScholarPubMed
Provis, J. M., Driel, D., Billson, F. A. B. and Russell, P. (1985a). Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J. Comp. Neurol., 233, 429–51CrossRefGoogle Scholar
Provis, J. M., Driel, D., Billson, F. A. B. and Russell, P. (1985b). Human fetal optic nerve: over-production and elimination of retinal axons during development. J. Comp. Neurol., 238, 92–100CrossRefGoogle Scholar
Provis, J. M., Diaz, C. M. and Dreher, B. (1998). Ontogeny of the primate fovea: a central issue in retinal development. Prog. Neurobiol., 54, 549–80CrossRefGoogle ScholarPubMed
Provis, J. M., Sandercoe, T. and Hendrickson, A. E. (2000). Astrocytes and blood vessels define the foveal rim during primate retinal development. Invest. Ophthalmol. Vis. Sci., 41, 2827–36Google ScholarPubMed
Rakic, P. and Riley, K. P. (1983). Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science, 219, 1441–4CrossRefGoogle ScholarPubMed
Rapaport, D. H. and Stone, J. (1984). The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience, 11, 289–301CrossRefGoogle ScholarPubMed
Robb, R. (1982). Increase in retinal surface area during infancy and childhood. J. Pediatr. Ophthalmol. Strabismus, 19, 16–20Google ScholarPubMed
Robinson, S. R. (1991). Development of the mammalian retina. Neuroanatomy of the Visual Pathways and their Development, Vol. 3, ed. Dreher, B., and Robinson, S. R.. London: Macmillan, pp. 69–128Google Scholar
Robinson, S. R. and Hendrickson, A. E. (1995). Shifting relationships between photoreceptors and pigment epithelial cells in monkey retina: implications for the development of retinal topography. Vis. Neurosci., 12, 767–78CrossRefGoogle ScholarPubMed
Rohen, J. W. (1966). Zur Histologie des Tarsiusauges. Graefs' Arch. Klin. Exp. Ophthalmol., 169, 299–317CrossRefGoogle Scholar
Rohen, J. W. and Castenholtz, A. (1967). Über die Zentralisation der Retina bei Primaten. Folia Primatologica, 5, 92–147CrossRefGoogle Scholar
Roorda, A. and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397, 520–2CrossRefGoogle ScholarPubMed
Sears, S., Erickson, A. and Hendrickson, A. E. (2000). The spatial and temporal expression of outer segment proteins during development of Macaca monkey cones. Invest. Ophthalmol. Vis. Sci., 41, 971–9Google ScholarPubMed
Snodderly, D. M., Weinhaus, R. S. and Choi, J. C. (1992). Neural-vascular relationships in the central retina of macaque monkeys (Macaca fascicularis). J. Neurosci., 12, 1169–93CrossRefGoogle Scholar
Springer, A. and Hendrickson, A. E. (2004). Development of the primate area of high acuity. 2. Quantitative morphological changes associated with retinal and pars plana growth. Vis. Neurosci., 21, 775–90CrossRefGoogle ScholarPubMed
Springer, A. and Hendrickson, A. E. (2005). Development of the primate area of high acuity. 3. Temporal relationships between pit formation, retinal elongation and cone packing. Vis. Neurosci., 22, 171–86CrossRefGoogle ScholarPubMed
Driel, D., Provis, J. M. and Billson, F. A. (1990). Early differentiation of ganglion, amacrine, bipolar and Müller cells in the developing fovea of human retina. J. Comp. Neurol., 291, 203–19CrossRefGoogle ScholarPubMed
Walcott, J. C. and Provis, J. M. (2003). Müller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina. Clin. Exp. Ophthalmol., 31, 246–9CrossRefGoogle ScholarPubMed
Wässle, H., Grünert, U., Martin, P. and Boycott, B. (1994). Color coding in the primate retina: predicitions and constraints from anatomy. Structural and Functional Organization of the Neocortex, ed. Albowitz, B., Albus, K., Kuhnt, U., Nothdurft, H.-C. and Wahle, P., Berlin, Heidelberg: Springer-Verlag, pp. 94–104CrossRefGoogle Scholar
Webb, S. V. and Kaas, J. H. (1976). The sizes and distribution of ganglion cells in the retina of the owl monkey, Aotes trivirgatus. Vis. Res., 16, 1247–54CrossRefGoogle Scholar
Wikler, K. C., Williams, R. W. and Rakic, P. (1990). Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J. Comp. Neurol., 297, 499–508CrossRefGoogle ScholarPubMed
Xiao, M. and Hendrickson, A. E. (2000). Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. J. Comp. Neurol., 425, 545–593.0.CO;2-3>CrossRefGoogle ScholarPubMed
Yuodelis, C. and Hendrickson, A. E. (1986). A qualitative and quantitative analysis of the human fovea during development. Vis. Res., 26, 847–55CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×