Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-30T21:09:29.337Z Has data issue: false hasContentIssue false

9 - Glial cells in the developing retina

Published online by Cambridge University Press:  22 August 2009

Kathleen Zahs
Affiliation:
University of Minnesota, Department of Physiology, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
Manuel Esguerra
Affiliation:
University of Minnesota, Department of Neuroscience, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

Müller cells, the principal glia of vertebrate retinas, are radial glia that span the entire depth of the retina. The distal processes of Müller cells form the external limiting membrane of the retina, while their ‘endfeet’ form the inner limiting membrane. Müller cell processes surround neuronal cell bodies in the nuclear layers and contact synapses in the plexiform layers (Newman and Reichenbach, 1996). Müller cells play a major role in regulating extracellular K+ and pH (Newman et al., 1984; Karwoski et al., 1989; Kusaka and Puro, 1997), in neurotransmitter uptake (Pow, 2001) and in glutamine synthesis (Riepe, 1977, 1978; Germer et al., 1997a; Prada et al., 1998), functions performed by astrocytes in other regions of the central nervous system. Müller cells also have some similarities to oligodendrocytes; although they do not form myelin, Müller cell processes wrap the axons of retinal ganglion cells (Holländer et al., 1991; Stone et al., 1995). In addition, intercellular Ca2+ waves have been observed among Müller cells (Newman and Zahs, 1997). These waves are increases in glial cytosolic Ca2+ that propagate away from the site of initial activation. The arrival of Ca2+ waves in retinal glia is correlated with modulation of the light-evoked activity of neighbouring retinal ganglion cells (Newman and Zahs, 1998). Modulation of retinal ganglion cell activity has been shown to be mediated by a variety of factors released by Müller cells, including purine nucleotides (Newman, 2003) and d-serine, a co-agonist at the N-methyl-d–aspartate (NMDA) type of glutamate receptor (Stevens et al., 2003).

Type
Chapter
Information
Retinal Development , pp. 172 - 192
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aricescu, A. R., McKinnell, I. W., Halfter, W. and Stoker, A. W. (2002). Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase omega. Mol. Cell. Biol., 22, 1881–92CrossRefGoogle Scholar
Barres, B. A., Koroshetz, W. J., Chun, L. L. Y. and Corey, D. P. (1990). Ion channel expression by white matter glia: the type-1 astrocyte. Neuron, 5, 527–44CrossRefGoogle ScholarPubMed
Bauch, H., Stier, H. and Schlosshauer, B. (1998). Axonal versus dendritic outgrowth is differentially affected by radial glia in discrete layers of the retina. J. Neurosci., 18, 1774–85CrossRefGoogle ScholarPubMed
Bazan, N. G., Gordon, W. C. and Rodriguez, Turco E. B. (1992). Docosahexaenoic acid and metabolism in photoreceptors: retinal conservation by an efficient retinal pigment epithelial cell-mediated recycling process. Adv. Exp. Med. Biol., 318, 295–306CrossRefGoogle ScholarPubMed
Biedermann, B., Frohlich, E., Grosche, J., Wagner, H. J. and Reichenbach, A. (1995). Mammalian Müller (glial) cells express functional D2 dopamine receptors. NeuroReport, 6, 609–12CrossRefGoogle ScholarPubMed
Biedermann, B., Bringmann, A. and Franze, K.et al. (2004). GABA(A) receptors in Müller glial cells of the human retina. Glia, 46, 302–10CrossRefGoogle ScholarPubMed
Brew, H., Gray, P. T. A., Mobbs, P. and Attwell, D. (1986). Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature, 324, 466–8CrossRefGoogle ScholarPubMed
Bringmann, A. and Reichenbach, A. (2001). Role of Müller cells in retinal degenerations. Front. Biosci., 6, E72–92CrossRefGoogle ScholarPubMed
Bringmann, A., Biedermann, B. and Reichenbach, A. (1999a). Expression of potassium channels during postnatal differentiation of rabbit Müller glial cells. Eur. J. Neurosci., 11, 2883–96CrossRefGoogle Scholar
Bringmann, A., Francke, M. and Pannicke, T.et al. (1999b). Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci., 40, 3316–23Google Scholar
Bringmann, A., Francke, M. and Pannicke, T.et al. (2000a). Role of glial K(+) channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia, 29, 35–443.0.CO;2-A>CrossRefGoogle Scholar
Bringmann, A., Schopf, S. and Reichenbach, A. (2000b). Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells. J. Neurophysiol, 84, 2975–83CrossRefGoogle Scholar
Bringmann, A., Pannicke, T., Moll, V. (2001). Upregulation of P2X(7) receptor currents in Müller glial cells during proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci., 42, 860–7Google ScholarPubMed
Bringmann, A., Pannicke, T., Weick, M.et al. (2002). Activation of P2Y receptors stimulates potassium and cation currents in acutely isolated human Müller (glial) cells. Glia, 37, 139–52CrossRefGoogle ScholarPubMed
Brittis, P. A. and Silver, J. (1995). Multiple factors govern intra-retinal axon guidance: a time-lapse study. Mol. Cell. Neurosci., 6, 413–32CrossRefGoogle Scholar
Burgi, P.-Y. and Grzywacz, N. M. (1994a). Model based on extracellular potassium for spontaneous synchronous activity in developing retinae. Neural Comput., 6, 983–1004CrossRefGoogle Scholar
Burgi, P.-Y. and Grzywacz, N. M. (1994b). Model for the pharmacological basis of spontaneous synchronous activity in developing retinae. J. Neurosci., 14, 7426–39CrossRefGoogle Scholar
Cann, G. M., Bradshaw, A. D., Gervin, D. B., Hunter, A. W. and Clegg, D. O. (1996). Widespread expression of beta1 integrins in the developing chick retina: evidence for a role in migration of retinal ganglion cells. Dev. Biol., 180, 82–96CrossRefGoogle ScholarPubMed
Chader, G. J. (1971). Hormonal effects on the neural retina. I. Glutamine synthetase development in the retina and liver of the normal and triiodothyronine-treated rat. Arch. Biochem. Biophys., 144, 657–62CrossRefGoogle ScholarPubMed
Chaitin, M. H., Ankrum, M. T. and Wortham, H. S. (1996). Distribution of CD44 in the retina during development and the rds degeneration. Brain Res. Mol. Brain Res., 94, 92–8CrossRefGoogle ScholarPubMed
Connors, B. W., Ransom, B. R., Kunis, D. M. and Gutnick, M. J. (1982). Activity- dependent K+ accumulation in the developing rat optic nerve. Science, 216, 1341–3CrossRefGoogle ScholarPubMed
Cunningham, R. and Miller, R. F. (1980). Electrophysiological analysis of taurine and glycine action on neurons of the midpuppy retina. I. Intracellular recording. Brain Res., 197, 123–38CrossRefGoogle ScholarPubMed
Kozak, Y., Cotinet, A., Goureau, O., Hicks, D. and Thillaye-Goldenberg, B. (1997). Tumor necrosis factor and nitric oxide production by resident retinal glial cells from rats presenting hereditary retinal degeneration. Ocul. Immunol. Inflamm., 5, 85–94CrossRefGoogle ScholarPubMed
Ding, J., Hu, B., Tang, L. S. and Yip, H. K. (2001). Study of the role of the low-affinity neurotrophin receptor p75 in naturally occurring cell death during development of the rat retina. Dev. Neurosci., 23, 390–8CrossRefGoogle ScholarPubMed
Distler, C. and Dreher, Z. (1996). Glia cells of the monkey retina-II. Müller cells. Vis. Res., 36, 2381–94CrossRefGoogle Scholar
Dorrell, M. I., Aguilar, E. and Friedlander, M. (2002). Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest. Ophthalmol. Vis. Sci., 43, 3500–10Google ScholarPubMed
Du, J. L., Xu, L. Y. and Yang, X. L. (2002). Glycine receptors and transporters on bullfrog retinal Müller cells. NeuroReport, 13, 1653–6CrossRefGoogle ScholarPubMed
Dubois-Dauphin, M., Poitry-Yamate, C., Bilbao, F.et al. (2000). Early postnatal Müller cell death leads to retinal but not optic nerve degeneration in NSE-HU-BCL-2 transgenic mice. Neuroscience, 95, 9–21CrossRefGoogle Scholar
Dyer, M. A. and Cepko, C. L. (2000). Control of Müller glial cell proliferation and activation following retinal injury. Nat. Neurosci, 3, 873–80CrossRefGoogle ScholarPubMed
Felmy, F., Pannicke, T., Richt, J. A., Reichenbach, A. and Guenther, E. (2001). Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae. Glia, 34, 190–9CrossRefGoogle ScholarPubMed
Insua, Fernanda M., Garelli, A., Rotstein, N. P.et al. (2003). Cell cycle regulation in retinal progenitors by glia-derived neurotrophic factor and docosahexaenoic acid. Invest. Opthalmol. Vis. Sci., 44, 2235–44CrossRefGoogle ScholarPubMed
Fischer, A. J. and Reh, T. A. (2003). Potential of Müller glia to become neurogenic retinal progenitor cells. Glia, 43, 70–6CrossRefGoogle ScholarPubMed
Frasson, M., Picaud, S., Leveillard, T.et al. (1999). Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest. Ophthalmol. Vis. Sci., 40, 2724–34Google ScholarPubMed
Fruttiger, M. (2002). Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest. Ophthalmol. Vis. Sci., 43, 522–7Google ScholarPubMed
Gadea, A., Lopez, E., Hernandez-Cruz, A. and Lopez-Colome, A. M. (2002). Role of Ca2+ and calmodulin-dependent enzymes in the regulation of glycine transport in Müller glia. J. Neurochem., 80, 634–45CrossRefGoogle ScholarPubMed
Gardner, T. W., Lieth, E., Khin, S. A.et al. (1997). Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest. Ophthalmol. Vis. Sci., 38, 2423–27Google ScholarPubMed
Germer, A., Jahnke, C., Mack, A., Enzmann, V. and Reichenbach, A. (1997a). Modification of glutamine synthetase expression by mammalian Müller (glial) cells in retinal organ cultures. NeuroReport, 8, 3067–72CrossRefGoogle Scholar
Germer, A., Kuhnel, K., Grosche, J.et al. (1997b). Development of the neonatal rabbit retina in organ culture. Anat. Embryol. (Berl.), 196, 67–79CrossRefGoogle Scholar
Giusto, N. M., Pasquare, S. J., Salvador, G. A.et al. (2000). Lipid metabolism in vertebrate retinal rod outer segments. Prog. Lipid Res., 39, 315–91CrossRefGoogle ScholarPubMed
Grunder, T., Kohler, K. and Guenther, E. (2000). Distribution and developmental regulation of AMPA receptor subunit proteins in rat retina. Invest. Ophthalmol. Vis. Sci., 41, 3600–6Google ScholarPubMed
Haberecht, M. F. and Redburn, D. A. (1996). High levels of extracellular glutamate are present in retina during neonatal development. Neurochem. Res., 21, 285–91CrossRefGoogle ScholarPubMed
Haberecht, M. F., Mitchell, C. K., Lo, G. J. and Redburn, D. A. (1997). N-methyl-d- aspartate-mediated glutamate toxicity in the developing rabbit retina. J. Neurosci. Res., 47, 416–263.0.CO;2-H>CrossRefGoogle ScholarPubMed
Harada, C., Harada, T., Quah, H. M.et al. (2003). Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration. Neuroscience, 122, 229–35CrossRefGoogle ScholarPubMed
Harada, T., Harada, C., Nakayama, N.et al. (2000). Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron, 26, 533–41CrossRefGoogle ScholarPubMed
Hatten, M. E. (1990). Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci., 13, 179–84CrossRefGoogle ScholarPubMed
Higgs, M. H. and Lukasiewicz, P. D. (1999). Glutamate uptake limits synaptic excitation of retinal ganglion cells. J. Neurosci., 19, 3691–700CrossRefGoogle ScholarPubMed
Hoffman, D. R., Locke, K. G., Wheaton, D. H.et al. (2004). A randomized, placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa. Am. J. Ophthalmol., 137, 704–18Google ScholarPubMed
Holländer, H., Makarov, F., Dreher, Z.et al. (1991). Structure of the macroglia of the retina: sharing and division of labour between astrocytes and Müller cells. J. Comp. Neurol., 313, 587–603CrossRefGoogle ScholarPubMed
Ikeda, K., Tanihara, H., Tatsuno, T., Noguchi, H. and Nakayama, C. (2003). Brain-derived neurotrophic factor shows a protective effect and improves recovery of the ERG b-wave response in light-damage. J. Neurochem., 87, 290–6CrossRefGoogle Scholar
Izumi, Y., Shimamoto, K., Benz, A. M.et al. (2002). Glutamate transporters and retinal excitotoxicity. Glia, 39, 58–68CrossRefGoogle ScholarPubMed
Jablonski, M. M., Tombran-Tink, J., Mrazek, D. A. and Iannaccone, A. (2001). Pigment epithelium-derived factor supports normal Müller cell development and glutamine synthetase expression after removal of the retinal pigment epithelium. Glia, 35, 14–25CrossRefGoogle ScholarPubMed
Jabs, R., Guenther, E., Marquordt, K. and Wheeler-Schilling, T. H. (2000). Evidence for P2X(3), P2X(4), P2X(5) but not for P2X(7) containing purinergic receptors in Müller cells of the rat retina. Brain Res. Mol. Brain Res., 76, 205–10CrossRefGoogle Scholar
Janzer, R. C. and Raff, M. C. (1987). Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 325, 253–7CrossRefGoogle ScholarPubMed
Jeffrey, B. G., Weisinger, H. S., Neuringer, M. and Mitchell, D. C. (2001). The role of docosahexaenoic acid in retinal function. Lipids, 36, 859–71CrossRefGoogle ScholarPubMed
Jo, S. A., Wang, E. and Benowitz, L. I. (1999). Ciliary neurotrophic factor is an axogenesis factor for retinal ganglion cells. Neuroscience, 89, 579–91CrossRefGoogle ScholarPubMed
Jomary, C., Darrow, R. M., Wong, P., Organisciak, D. T. and Jones, S. E. (2004). Expression of neurturin, glial cell line-derived neurotrophic factor, and their receptor components in light-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci., 45, 1240–6CrossRefGoogle ScholarPubMed
Karwoski, C. J., Lu, H. and Newman, E. A. (1989). Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells. Science, 244, 578–80CrossRefGoogle ScholarPubMed
Keirstead, S. A. and Miller, R. F. (1997). Metabotropic glutamate receptor agonists evoke calcium waves in isolated Müller cells. Glia, 21, 194–2033.0.CO;2-7>CrossRefGoogle ScholarPubMed
Kirsch, M., Lee, M., Meyer, V., Wiese, A. and Hofmann, H. (1997). Evidence for multiple, local functions of ciliary neurotrophic factor (CNTF) in retinal development: expression of CNTF and its receptor and in vitro effects on target cells. J. Neurochem., 68, 979–90CrossRefGoogle ScholarPubMed
Kofuji, P., Biedermann, B., Siddharthan, V.et al. (2002). Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia, 39, 292–303CrossRefGoogle ScholarPubMed
Kusaka, S. and Puro, D. G. (1997). Intracellular ATP activates inwardly rectifying K+ channels in human and monkey retinal Müller (glial) cells. J. Physiol., 500, 593–604CrossRefGoogle ScholarPubMed
LaVail, M. M. and Reif-Lehrer, L. (1971). Glutamine synthetase in the normal and dystrophic mouse retina. J. Cell Biol., 51, 348–54CrossRefGoogle Scholar
LaVail, M. M., Unoki, K., Yasumura, D.et al. (1992). Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc. Natl. Acad. Sci. U. S. A., 89, 11249–53CrossRefGoogle ScholarPubMed
Lewis, G. P., Linberg, K. A., Geller, S. F., Guerin, C. J. and Fisher, S. K. (1999). Effects of the neurotrophin brain-derived neurotrophic factor in an experimental model of retinal detachment. Invest. Ophthalmol. Vis. Sci., 40, 1530–44Google Scholar
Li, M. and Sakaguchi, D. S. (2002). Expression patterns of focal adhesion associated proteins in the developing retina. Dev. Dyn., 225, 544–53CrossRefGoogle ScholarPubMed
Li, Y., Holtzclaw, L. A. and Russell, J. T. (2001). Müller cell Ca2+ waves evoked by purinergic receptor agonists in slices of rat retina. J. Neurophysiol., 85, 986–94CrossRefGoogle ScholarPubMed
Linser, P. and Moscona, A. A. (1979). Induction of glutamine synthetase in embryonic neural retina: localization in Müller fibers and dependence on cell interactions. Proc. Natl. Acad. Sci. U. S. A., 76, 6476–80CrossRefGoogle ScholarPubMed
Liu, Y. and Wakakura, M. (1998). P1-/P2-purinergic receptors on cultured rabbit retinal Müller cells. Jpn. J. Ophthalmol., 42, 33–40CrossRefGoogle ScholarPubMed
Lopez, T., Lopez-Colome, A. M. and Ortega, A. (1998). Changes in GluR4 expression induced by metabotropic receptor activation in radial glia cultures. Brain Res. Mol. Brain Res., 58, 40–6CrossRefGoogle ScholarPubMed
Lukasiewicz, P. D. and McReynolds, J. S. (1985). Synaptic transmission at N-methyl-d- aspartate receptors in the proximal retina of the mudpuppy. J. Physiol., 367, 99–115CrossRefGoogle ScholarPubMed
Mack, A. F., Germer, A., Janke, C. and Reichenbach, A. (1998). Müller (glial) cells in the teleost retina: consequences of continuous growth. Glia, 22, 306–133.0.CO;2-2>CrossRefGoogle ScholarPubMed
Malchow, R. P., Qian, H. H. and Ripps, H. (1989). gamma-Aminobutyric acid (GABA)-induced currents of skate Müller (glial) cells are mediated by neuronal-like GABAA receptors. Proc. Natl. Acad. Sci. U. S. A., 86, 4326–30CrossRefGoogle ScholarPubMed
Sanftner, McGee L. H., Abel, H., Hauswirth, W. W. and Flannery, J. G. (2001). Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol. Ther., 4, 622–9CrossRefGoogle Scholar
Mi, H., Haeberle, H. and Barres, B. A. (2001). Induction of astrocyte differentiation by endothelial cells. J. Neurosci., 21, 1538–47CrossRefGoogle ScholarPubMed
Michaelson, I. (1954). Retinal Circulation in Man and Animals. Springfield, IL: Charles C. ThomasGoogle Scholar
Moriguchi, K., Yoshizawa, K., Shikata, N.et al. (2004). Suppression of N-methyl-N- nitrosourea-induced photoreceptor apoptosis in rats by docosahexaenoic acid. Ophthalmic Res., 36, 98–105CrossRefGoogle ScholarPubMed
Morris, J. E. and Moscona, A. A. (1970). Induction of glutamine synthetase in embryonic retina: its dependence on cell interactions. Science, 167, 1736–8CrossRefGoogle ScholarPubMed
Moscona, A. A. and Linser, P. (1983). Developmental and experimental changes in retinal glia cells: cell interactions and control of phenotype expression and stability. Curr. Top. Dev. Biol., 18, 155–88CrossRefGoogle ScholarPubMed
Muresan, Z. and Besharse, J. C. (1993). D2-like dopamine receptors in amphibian retina: localization with fluorescent ligands. J. Comp. Neurol., 331, 149–60CrossRefGoogle ScholarPubMed
Newman, E. A. (2003). Glial cell inhibition of neurons by release of ATP. J. Neurosci., 23, 1659–66CrossRefGoogle ScholarPubMed
Newman, E. A. and Reichenbach, A. (1996). The Müller cell: a functional element of the retina. Trends Neurosci., 19, 307–12CrossRefGoogle ScholarPubMed
Newman, E. A. and Zahs, K. R. (1997). Calcium waves in retinal glial cells. Science, 275, 844–7CrossRefGoogle ScholarPubMed
Newman, E. A. and Zahs, K. R. (1998). Modulation of neuronal activity by glial cells in the retina. J. Neurosci., 18, 4022–8CrossRefGoogle ScholarPubMed
Newman, E. A., Frambach, D. A. and Odette, L. L. (1984). Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science, 225, 1174–5CrossRefGoogle ScholarPubMed
Normand, G., Hicks, D. and Dreyfus, H. (1998). Neurotrophic growth factors stimulate glycosaminoglycan synthesis in identified retinal cell populations in vitro. Glycobiology, 8, 1227–35CrossRefGoogle ScholarPubMed
Oku, H., Ikeda, T., Honma, Y.et al. (2002). Gene expression of neurotrophins and their high-affinity Trk receptors in cultured human Müller cells. Ophthalmic Res., 34, 38–42CrossRefGoogle ScholarPubMed
Pannicke, T., Bringmann, A. and Reichenbach, A. (2002). Electrophysiological characterization of retinal Müller glial cells from mouse during postnatal development: comparison with rabbit cells. Glia, 38, 268–72CrossRefGoogle ScholarPubMed
Peng, M., Li, Y., Luo, Z.et al. (1998). Alpha2-adrenergic agonists selectively activate extracellular signal-regulated kinases in Müller cells in vivo. Invest. Ophthalmol. Vis. Sci., 39, 1721–6Google ScholarPubMed
Perkins, M. N. and Stone, T. W. (1982). An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res., 247, 184–7CrossRefGoogle ScholarPubMed
Peterson, W. M., Wang, Q., Tzekova, R. and Wiegand, S. J. (2000). Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J. Neurosci., 20, 4081–90CrossRefGoogle ScholarPubMed
Pinzon-Duarte, G., Arango-Gonzalez, B., Guenther, E. and Kohler, K. (2004). Effects of brain-derived neurotrophic factor on cell survival, differentiation and patterning of neuronal connections and Müller glia cells in the developing retina. Eur. J. Neurosci., 19, 1475–84CrossRefGoogle ScholarPubMed
Politi, L., Rotstein, N. and Carri, N. (2001). Effects of docosahexaenoic acid on retinal development: cellular and molecular aspects. Lipids, 36, 927–35CrossRefGoogle ScholarPubMed
Pow, D. V. (2001). Amino acids and their transporters in the retina. Neurochem. Int., 38, 463–84CrossRefGoogle ScholarPubMed
Pow, D. V. and Barnett, N. L. (1999). Changing patterns of spatial buffering of glutamate in developing rat retinae are mediated by the Müller cell glutamate transporter GLAST. Cell Tissue Res., 297, 57–66CrossRefGoogle ScholarPubMed
Pow, D. V. and Robinson, S. R. (1994). Glutamate in some retinal neurons is derived solely from glia. Neuroscience, 60, 355–66CrossRefGoogle ScholarPubMed
Prada, F. A., Quesada, A., Dorado, M. E., Chmielewski, C. and Prada, C. (1998). Glutamine synthetase (GS) activity and spatial and temporal patterns of GS expression in the developing chick retina; relationship with synaptogenesis in the outer plexiform layer. Glia, 22, 221–363.0.CO;2-8>CrossRefGoogle ScholarPubMed
Provis, J. M. (2001). Development of the primate retinal vasculature. Prog. Retin. Eye Res., 20, 799–821CrossRefGoogle ScholarPubMed
Provis, J. M., Leech, J., Diaz, C. M.et al. (1997). Development of the human retinal vasculature: cellular relations and VEGF expression. Exp. Eye Res., 65, 555–68CrossRefGoogle ScholarPubMed
Provis, J. M., Sandercoe, T. and Hendrickson, A. E. (2000). Astrocytes and blood vessels define the foveal rim during primate retinal development. Invest. Ophthalmol. Vis. Sci., 41, 2827–36Google ScholarPubMed
Puro, D. G., Yuan, J. P. and Sucher, N. J. (1996). Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium currents. Vis. Neurosci., 13, 319–26CrossRefGoogle ScholarPubMed
Rapaport, D. H., Wong, L. L., Wood, E. D., Yasumura, D. and LaVail, M. M. (2004). Timing and topography of cell genesis in the rat retina. J. Comp. Neurol., 474, 304–4CrossRefGoogle ScholarPubMed
Raub, T. J., Kuentzel, S. L. and Sawada, G. A. (1992). Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells. Exp. Cell Res., 199, 330–40CrossRefGoogle ScholarPubMed
Reh, T. A. and Fischer, A. J. (2001). Stem cells in the vertebrate retina. Brain Behav. Evol., 58, 296–305CrossRefGoogle ScholarPubMed
Reichelt, W., Hernandez, M., Damian, R. T., Kisaalita, W. S., and Jordan, B. L. (1997). Voltage- and GABA-evoked currents from Müller glial cells of the baboon retina. NeuroReport, 8, 541–4CrossRefGoogle ScholarPubMed
Reichenbach, A. and Robinson, S. R. (1995). Phylogenetic constraints on retinal organization and development. Prog. Retin. Eye Res., 15, 139–71CrossRefGoogle Scholar
Reifel, Saltzberg J. M., Garvey, K. A. and Keirstead, S. A. (2003). Pharmacological characterization of P2Y receptor sub-types on isolated tiger salamander Müller cells. Glia, 42, 149–59CrossRefGoogle Scholar
Rejdak, R., Zarnowski, T., Turski, W. A.et al. (2001). Presence of kynurenic acid and kynurenine aminotransferases in the inner retina. NeuroReport, 12, 3675–8CrossRefGoogle ScholarPubMed
Rejdak, R., Zielinska, E., Shenk, Y.et al. (2003). Ontogenic changes of kynurenine aminotransferase I activity and its expression in the chicken retina. Vis. Res., 43, 1513–7CrossRefGoogle ScholarPubMed
Rejdak, R., Shenk, Y., Schuettauf, F.et al. (2004). Expression of kynurenine aminotransferases in the rat retina during development. Vis. Res., 44, 1–7CrossRefGoogle ScholarPubMed
Rhee, K. D. and Yang, X. J. (2003). Expression of cytokine signal transduction components in the postnatal mouse retina. Mol. Vis., 9, 157–22Google ScholarPubMed
Rich, K. A., Figueroa, S. L., Zhan, Y. and Blanks, J. C. (1995). Effects of Müller cell disruption on mouse photoreceptor cell development. Exp. Eye Res., 61, 235–48CrossRefGoogle ScholarPubMed
Riepe, R. E. (1977). Müller cell localisation of glutamine synthetase in rat retina. Nature, 268, 654–5CrossRefGoogle ScholarPubMed
Riepe, R. E. (1978). Glutamine synthetase in the developing rat retina: an immunohistochemical study. Exp. Eye Res., 27, 435–44CrossRefGoogle Scholar
Risau, W. and Lemmon, V. (1988). Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol., 125, 441–50CrossRefGoogle ScholarPubMed
Robinson, S. R. and Dreher, Z. (1989). Evidence for three morphological classes of astrocyte in the adult rabbit retina: functional and developmental implications. Neurosci. Lett., 106, 261–8CrossRefGoogle ScholarPubMed
Rohrer, B., Korenbrot, J. I., LaVail, M. M., Reichardt, L. F. and Xu, B. (1999). Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J. Neurosci., 19, 8919–30CrossRefGoogle ScholarPubMed
Rotstein, N. P., Politi, L. E., German, O. L. and Girotti, R. (2003). Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest. Ophthalmol. Vis. Sci., 44, 2252–9CrossRefGoogle ScholarPubMed
Sanches, G., Alencar, L. S. and Ventura, A. L. (2002). ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade. Int. J. Dev. Neurosci., 20, 21–7CrossRefGoogle ScholarPubMed
Sandercoe, T. M., Madigan, M. C., Billson, F. A., Penfold, P. L. and Provis, J. M. (1999). Astrocyte proliferation during development of the human retinal vasculature. Exp. Eye Res., 69, 511–23CrossRefGoogle ScholarPubMed
Scharfman, H. E., Hodgkins, P. S., Lee, S. C. and Schwarcz, R. (1999). Quantitative differences in the effects of de novo produced and exogenous kynurenic acid in rat brain slices. Neurosci. Lett., 274, 111–4CrossRefGoogle ScholarPubMed
Schnitzer, J. and Karschin, A. (1986). The shape and distribution of astrocytes in the retina of the adult rabbit. Cell Tissue Res., 246, 91–102CrossRefGoogle ScholarPubMed
Schopf, S., Ruge, H., Bringmann, A., Reichenbach, A. and Skatchkov, S. N. (2004). Switch of K+ buffering conditions in rabbit retinal Müller glial cells during postnatal development. Neurosci. Lett., 365, 167–70CrossRefGoogle ScholarPubMed
Sharma, R. K. and Johnson, D. A. (2000). Molecular signals for development of neuronal circuitry in the retina. Neurochem. Res., 25, 1257–63CrossRefGoogle ScholarPubMed
Stevens, E. R., Esguerra, M., Kim, P. M., et al. (2003). D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc. Natl. Acad. Sci. U. S. A., 100, 6789–94CrossRefGoogle ScholarPubMed
Stier, H. and Schlosshauer, B. (1998). Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth. Eur. J. Neurosci., 10, 1000–10CrossRefGoogle ScholarPubMed
Stier, H. and Schlosshauer, B. (1999). Cross-species collapse activity of polarized radial glia on retinal ganglion cell axons. Glia, 25, 143–533.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Stone, J., Makarov, F. and Holländer, H. (1995). The glial ensheathment of the soma and axon hillock of retinal ganglion cells. Vis. Neurosci., 12, 273–9CrossRefGoogle ScholarPubMed
Taylor, S., Srinivasan, B., Wordinger, R. J. and Roque, R. S. (2003). Glutamate stimulates neurotrophin expression in cultured Müller cells. Brain Res. Mol. Brain Res., 111, 189–97CrossRefGoogle ScholarPubMed
Threlkeld, A., Adler, R. and Hewitt, A. T. (1989). Proteoglycan biosynthesis by chick embryo retina glial-like cells. Dev. Biol., 132, 559–68CrossRefGoogle ScholarPubMed
Triviño, A., Ramirez, J. M., Ramirez, A. I. and Salazar, J. J. (1992). Retinal perivascular astroglia: an immunoperoxidase study. Vis. Res., 32, 1601–7CrossRefGoogle Scholar
Triviño, A., Ramírez, J. M., Ramírez, A. I., Salazar, J. J. and García-Sánchez, J. (1997). Comparative study of astrocytes in human and rabbit retinae. Vis. Res., 37, 1707–11CrossRefGoogle ScholarPubMed
Turner, D. L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature, 328, 131–6CrossRefGoogle ScholarPubMed
Uchihori, Y. and Puro, D. G. (1993). Glutamate as a neuron-to-glial signal for mitogenesis: role of glial N-methyl-D-aspartate receptors. Brain Res., 613, 212–20CrossRefGoogle ScholarPubMed
Valter, K., Bisti, S. and Stone, J. (2003). Location of CNTFRalpha on outer segments: evidence of the site of action of CNTF in rat retina. Brain Res., 985, 169–75CrossRefGoogle ScholarPubMed
Vardimon, L., Fox, L. L., Degenstein, L. and Moscona, A. A. (1988). Cell contacts are required for induction by cortisol of glutamine synthetase gene transcription in the retina. Proc. Natl. Acad. Sci. U. S. A., 85, 5981–5CrossRefGoogle ScholarPubMed
Vetter, M. L. and Moore, K. B. (2001). Becoming glial in the neural retina. Dev. Dyn., 221, 146–53CrossRefGoogle ScholarPubMed
Wahlin, K. J., Campochiaro, P. A., Zack, D. J.Adler, R. (2000). Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest. Ophthalmol. Vis. Sci., 41, 927–36Google Scholar
Wahlin, K. J., Lim, L., Grice, E. A.et al. (2004). A method for analysis of gene expression in isolated mouse photoreceptor and Müller cells. Mol. Vis., 10, 366–75Google ScholarPubMed
Wakakura, M., Utsunomiya-Kawasaki, I. and Ishikawa, S. (1998). Rapid increase in cytosolic calcium ion concentration mediated by acetylcholine receptors in cultured retinal neurons and Müller cells. Graefe's Arch. Clin. Exp. Ophthalmol., 236, 934–9CrossRefGoogle ScholarPubMed
Walsh, N., Valter, K. and Stone, J. (2001). Cellular and sub-cellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina. Exp. Eye Res., 72, 495–501CrossRefGoogle Scholar
Watanabe, T. and Raff, M. C. (1988). Retinal astrocytes are immigrants from the optic nerve. Nature, 332, 834–7CrossRefGoogle ScholarPubMed
Wexler, E. M., Berkovich, O. and Nawy, S. (1998). Role of the low-affinity NGF receptor (p75) in survival of retinal bipolar cells. Vis. Neurosci., 15, 211–8CrossRefGoogle ScholarPubMed
Willbold, E., Reinicke, M., Lance-Jones, C.et al. (1995). Müller glia stabilizes cell columns during retinal development: lateral cell migration but not neuropil growth is inhibited in mixed chick-quail retinospheroids. Eur. J. Neurosci., 7, 2277–84CrossRefGoogle Scholar
Willbold, E., Rothermel, A., Tomlinson, S. and Layer, P. G. (2000). Müller glia cells reorganize reaggregating chicken retinal cells into correctly laminated in vitro retinae. Glia, 29, 45–573.0.CO;2-4>CrossRefGoogle ScholarPubMed
Wolter, J. R. (1957). Perivascular glia of the blood vessels of the human retina. Am. J. Ophthalmol., 44, 766–73CrossRefGoogle ScholarPubMed
Xu, L. Y., Zhao, J. W. and Yang, X. L. (2004). GLAST expression on bullfrog Müller cells is regulated by dark/light. NeuroReport, 15, 2451–4CrossRefGoogle ScholarPubMed
Zack, D. J. (2000). Neurotrophic rescue of photoreceptors: are Müller cells the mediators of survival?Neuron, 26, 285–6CrossRefGoogle Scholar
Zhang, J. and Yang, X. L. (1999). GABA(B) receptors in Müller cells of the bullfrog retina. NeuroReport, 10, 1833–6CrossRefGoogle ScholarPubMed
Zhang, J., Blas, A. L., Miralles, C. P. and Yang, C. Y. (2003). Localization of GABAA receptor subunits alpha 1, alpha 3, beta 1, beta 2/3, gamma 1, and gamma 2 in the salamander retina. J. Comp. Neurol., 459, 440–53CrossRefGoogle Scholar
Zhou, C. and Dacheux, R. F. (2004). AII amacrine cells in the rabbit retina possess AMPA-, NMDA-, GABA-, and glycine-activated currents. Vis. Neurosci., 21, 181–8CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Glial cells in the developing retina
    • By Kathleen Zahs, University of Minnesota, Department of Physiology, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA, Manuel Esguerra, University of Minnesota, Department of Neuroscience, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Glial cells in the developing retina
    • By Kathleen Zahs, University of Minnesota, Department of Physiology, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA, Manuel Esguerra, University of Minnesota, Department of Neuroscience, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Glial cells in the developing retina
    • By Kathleen Zahs, University of Minnesota, Department of Physiology, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA, Manuel Esguerra, University of Minnesota, Department of Neuroscience, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.011
Available formats
×