Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T11:48:15.816Z Has data issue: false hasContentIssue false

6 - Neurotransmitters and neurotrophins

Published online by Cambridge University Press:  22 August 2009

Rachael A. Pearson
Affiliation:
Developmental Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

In addition to intrinsic control mechanisms (see Chapter 5 and Cepko et al., 1996), the production of neurons by progenitor cells and the determination of their fate are regulated via an array of diffusible factors, two families of which are considered in this chapter: neurotransmitters and neurotrophins. Neurotrophins are now known to play an essential role in both the formation and the maintenance of the nervous system throughout development and adult life. There is growing evidence that besides their role as molecules mediating communication between nerve cells in the mature nervous system, a variety of both slow and fast neurotransmitters also play important roles during neuronal development. This chapter reviews recent evidence that demonstrates that a number of non-synaptic neurotransmitter release mechanisms, together with many neurotransmitters and their receptors, are present in the developing retina prior to the onset of synapse formation and that these early neurotransmitters act to modulate a range of events in neural development. Their precise mechanisms of action are still being elucidated but, as described here, the ability to modulate [Ca2+]i is one feature common to these early neurotransmitter systems, and is thought to underlie a number of their developmental actions. It is becoming clear that both neurotransmitters and neurotrophins play important regulatory roles in the early stages of retinal development, including the modulation of proliferation, differentiation, cell survival and circuit formation.

Type
Chapter
Information
Retinal Development , pp. 99 - 125
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T., Sugihara, H., Nawa, H.et al. (1992). Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem., 267, 13361–8Google ScholarPubMed
Allcorn, S., Catsicas, M. and Mobbs, P. (1996). Developmental expression and self-regulation of Ca2+ entry via AMPA/KA receptors in the embryonic chick retina. Eur. J. Neurosci., 8, 2499–510CrossRefGoogle ScholarPubMed
Angelini, C., Costa, M., Morescalchi, F.et al. (1998). Muscarinic drugs affect cholinesterase activity and development of eye structures during early chick development. Eur. J. Histochem., 42(4), 309–20Google ScholarPubMed
Aramori, I. and Nakanishi, S. (1992). Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron, 8, 757–65CrossRefGoogle ScholarPubMed
Attwell, D., Barbour, B. and Szatkowski, M. (1993). Nonvesicular release of neurotransmitter. Neuron, 11, 401–7CrossRefGoogle ScholarPubMed
Barbacid, M. (1994). The Trk family of neurotrophin receptors. J. Neurobiol., 25, 1386–403CrossRefGoogle ScholarPubMed
Barde, Y. A. (1989). Trophic factors and neuronal survival. Neuron, 2, 1525–34CrossRefGoogle ScholarPubMed
Barker, J. L., Behar, T., Li, Y. X.et al. (1998). GABAergic cells and signals in CNS development. Perspect. Dev. Neurobiol., 5, 305–22Google ScholarPubMed
Baughman, R. W. and Bader, C. R. (1977). Biochemical characterization and cellular localization of the cholinergic system in the chicken retina. Brain Res., 138, 469–85CrossRefGoogle ScholarPubMed
Bennett, M. V., Contreras, J. E., Bukauskas, F. F. and Saez, J. C. (2003). New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci., 26, 610–17CrossRefGoogle ScholarPubMed
Bergmann, M., Grabs, D. and Rager, G. (1999). Developmental expression of dynamin in the chick retinotectal system. J. Histochem. Cytochem., 47, 1297–306CrossRefGoogle ScholarPubMed
Bergmann, M., Grabs, D. and Rager, G. (2000). Expression of pre-synaptic proteins is closely correlated with the chronotopic pattern of axons in the retinotectal system of the chick. J. Comp. Neurol., 418, 361–3723.0.CO;2-U>CrossRefGoogle Scholar
Berridge, M. J. (1995). Calcium signaling and cell proliferation. BioEssays, 17, 491–500CrossRefGoogle Scholar
Bliss, T. V. and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31–9CrossRefGoogle ScholarPubMed
Bovolenta, P., Frade, J. M., Marti, E.et al. (1996). Neurotrophin-3 antibodies disrupt the normal development of the chick retina. J. Neurosci., 16, 4402–10CrossRefGoogle ScholarPubMed
Brändle, U., Guenther, E., Irrle, C. and Wheeler-Schilling, T. H. (1998). Gene expression of the P2x receptors in the rat retina. Brain Res. Mol. Brain Res., 59(2), 269–72CrossRefGoogle ScholarPubMed
Burnashev, N., Monyer, H., Seeburg, P. H. and Sakmann, B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron, 8, 189–98CrossRefGoogle ScholarPubMed
Burnstock, G. (2004). Cotransmisson. Curr. Opin. Pharmacol., 4(1), 47–52CrossRefGoogle Scholar
Cai, L., Hayes, N. L. and Nowakowski, R. S. (1997). Synchrony of clonal cell proliferation and contiguity of clonally related cells: production of mosaicism in the ventricular zone of developing mouse neocortex. J. Neurosci., 17, 2088–100CrossRefGoogle ScholarPubMed
Catsicas, M. and Mobbs, P. (2001). GABAb receptors regulate chick retinal calcium waves. J. Neurosci., 21, 897–910CrossRefGoogle ScholarPubMed
Catsicas, M., Bonness, V., Becker, D. and Mobbs, P. (1998). Spontaneous Ca2+ transients and their transmission in the developing chick retina. Curr. Biol., 8, 283–6CrossRefGoogle ScholarPubMed
Catsicas, M., Allcorn, S. and Mobbs, P. (2001). Early activation of Ca2+-permeable AMPA receptors reduces neurite outgrowth in embryonic chick retinal neurons. J. Neurobiol., 49, 200–11CrossRefGoogle Scholar
Cauley, K., Agranoff, B. W. and Goldman, D. (1990). Multiple nicotinic acetylcholine receptor genes are expressed in goldfish retina and tectum. J. Neurosci., 10, 670–83CrossRefGoogle ScholarPubMed
Caviness, V. S. Jr.Takahashi, T. and Nowakowski, R. S. (1995). Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci., 18, 379–383CrossRefGoogle ScholarPubMed
Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M. and Ezzeddine, D. (1996). Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. U. S. A., 93, 589–95CrossRefGoogle ScholarPubMed
Chalazonitis, A., Rothman, T. P., Chen, J.et al. (1994). Neurotrophin-3 induces neural crest-derived cells from fetal rat gut to develop in vitro as neurons or glia. J. Neurosci., 14 (11 Pt 1), 6571–84CrossRefGoogle ScholarPubMed
Chalazonitis, A., Rothman, T. P., Chen, J. and Gershon, M. D. (1998). Age-dependent differences in the effects of GDNF and NT-3 on the development of neurons and glia from neural crest-derived precursors immunoselected from the fetal rat gut: expression of GFRalpha-1 in vitro and in vivo. Dev. Biol., 204(2), 385–406CrossRefGoogle ScholarPubMed
Cherubini, E., Gaiarsa, J. L. and Ari, Ben Y. (1991). GABA: an excitatory transmitter in early postnatal life. Trends Neurosci., 14, 515–19CrossRefGoogle ScholarPubMed
Cotrina, M. L., Kang, J., Lin, J. H.et al. (1998). Astrocytic gap junctions remain open during ischemic conditions. J. Neurosci., 18(7), 2520–37CrossRefGoogle ScholarPubMed
Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C. and Nedergaard, M. (2000). ATP-mediated glia signaling. J. Neurosci., 20(8), 2835–44CrossRefGoogle ScholarPubMed
Cristovao, A. J., Oliveira, C. R. and Carvalho, C. M. (2002a). Expression of AMPA/kainate receptors during development of chick embryo retina cells: in vitro versus in vivo studies. Int. J. Dev. Neurosci., 20(1), 1–9CrossRefGoogle Scholar
Cristovao, A. J., Oliveira, C. R. and Carvalho, C. M. (2002b). Expression of functional N-methyl-D-aspartate receptors during development of chick embryo retina cells: in vitro versus in vivo studies. Brain Res. Mol. Brain Res., 99(2), 125–33CrossRefGoogle Scholar
da Costa Calaza, K., Hokoc, J. N. and Gardino, P. F. (2000). Neurogenesis of GABAergic cells in the click retina. Int. J. Dev. Neurosci., 18(8), 721–6CrossRefGoogle Scholar
Das, I., Sparrow, J. R., Lin, M. I.et al. (2000). Trk C signaling is required for retinal progenitor cell proliferation. J. Neurosci., 20(8), 2887–95. Erratum in J. Neurosci. 2000 July 15, 201(14), 5574CrossRefGoogle ScholarPubMed
Rosa, E. J., Bondy, C. A., Hernandez-Sanchez, C.et al. (1994). Insulin and insulin-like growth factor system components gene expression in the chicken retina from early neurogenesis until late development and their effect on neuroepithelial cells. Eur. J. Neurosci., 6(12), 1801–10CrossRefGoogle ScholarPubMed
Demarque, M., Represa, A., Becq, H.et al. (2002). Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron, 36, 1051–61CrossRefGoogle ScholarPubMed
Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. and Healy, J. I. (1997). Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature, 386(6627), 855–8. Eratum in Nature 1997 July 17, 388(6639), 308CrossRefGoogle ScholarPubMed
Dolmetsch, R. E., Xu, K. and Lewis, R. S. (1998). Calcium oscillations increase the efficiency and specificity of gene expression. Nature, 392, 933–6CrossRefGoogle ScholarPubMed
Duarte, C. B., Santos, P. F., Sanchez-Prieto, J. and Carvalho, A. P. (1996). On-line detection of glutamate release from cultured chick retinospheroids. Vis. Res., 36, 1867–72CrossRefGoogle ScholarPubMed
Fischer, A. J., McKinnon, L. A., Nathanson, N. M. and Stell, W. K. (1998). Identification and localization of muscarinic acetylcholine receptors in the ocular tissues of the chick. J. Comp. Neurol., 392, 273–843.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Frade, J. M., Rodriguez-Tebar, A. and Barde, Y. A. (1996). Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature, 383, 166–8CrossRefGoogle ScholarPubMed
Frade, J. M., Bovolenta, P., Martinez-Morales, J. R.et al. (1997). Control of early cell death by BDNF in the chick retina. Development, 124, 3313–20Google ScholarPubMed
Frade, J. M., Bovolenta, P. and Rodriguez-Tebar, A. (1999). Neurotrophins and other growth factors in the generation of retinal neurons. Microsc. Res. Tech., 45, 243–513.0.CO;2-S>CrossRefGoogle ScholarPubMed
Frambach, D. A. and Misfeldt, D. S. (1983). Furosemide-sensitive Cl transport in embryonic chicken retinal pigment epithelium. Am. J. Physiol., 244, F679–85Google ScholarPubMed
Frederick, J. M. (1987). The emergence of GABA-accumulating neurons during retinal histogenesis in the embryonic chick. Exp. Eye Res., 45, 933–45CrossRefGoogle ScholarPubMed
Gonzalez-Hoyuela, M., Barbas, J. A. and Rodriguez-Tebar, A. (2001). The autoregulation of retinal ganglion cell number. Development, 128(1), 117–24Google ScholarPubMed
Grabs, D., Bergmann, M. and Rager, G. (2000). Developmental expression of amphiphysin in the retinotectal system of the chick: from mRNA to protein. Eur. J. Neurosci., 12, 1545–53CrossRefGoogle ScholarPubMed
Greenwood, D., Yao, W. P. and Housley, G. D. (1997). Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the retina. NeuroReport, 8, 1083–8CrossRefGoogle ScholarPubMed
Greferath, U., Grunert, U., Muller, F. and Wassle, H. (1994). Localization of GABAA receptors in the rabbit retina. Cell Tissue Res., 276(2), 295–307Google ScholarPubMed
Greka, A., Lipton, S. A. and Zhang, D. (2000). Expression of GABAC receptor rho1 and rho2 subunits during development of the mouse retina. Eur. J. Neurosci., 12(10), 3575–82CrossRefGoogle Scholar
Gu, X. and Spitzer, N. C. (1993). Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J. Neurosci., 13, 4936–48CrossRefGoogle ScholarPubMed
Gu, X. and Spitzer, N. C. (1995). Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature, 375, 784–7CrossRefGoogle ScholarPubMed
Gu, X., Olson, E. C. and Spitzer, N. C. (1994). Spontaneous neuronal calcium spikes and waves during early differentiation. J. Neurosci., 14, 6325–35CrossRefGoogle ScholarPubMed
Hamassaki-Britto, D. E., Gardino, P. F., Hokoc, J. N.et al. (1994). Differential development of alpha-bungarotoxin-sensitive and alpha-bungarotoxin-insensitive nicotinic acetylcholine receptors in the chick retina. J. Comp. Neurol., 347, 161–70CrossRefGoogle ScholarPubMed
Hapner, S. J., Boeshore, K. L., Large, T. H. and Lefcort, F. (1998). Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR). Dev. Biol., 201, 90–100CrossRefGoogle Scholar
Harada, C., Harada, T., Nakamura, K.et al. (2006). Effect of p75 (NTR) on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Dev. Biol., 290(1), 57–65CrossRefGoogle ScholarPubMed
Harrison, P. K., Falugi, C., Angelini, C. and Whitaker, M. J. (2002). Muscarinic signaling affects intracellular calcium concentration during the first cell cycle of sea urchin embryos. Cell Calcium, 31(6), 289–97CrossRefGoogle ScholarPubMed
Haydar, T. F., Wang, F., Schwartz, M. L. and Rakic, P. (2000). Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci., 20, 5764–74CrossRefGoogle ScholarPubMed
Hayden, S. A., Mills, J. W. and Masland, R. M. (1980). Acetylcholine synthesis by displaced amacrine cells. Science, 210(4468), 435–7CrossRefGoogle ScholarPubMed
Johnson, J., Tian, N., Caywood, M. S.et al. (2003). Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J. Neurosci., 23, 518–29CrossRefGoogle ScholarPubMed
Kalcheim, C., Barde, Y. A., Thoenen, H. and Douarin, N. M. (1987). In vivo effect of brain-derived neurotrophic factor on the survival of developing dorsal root ganglion cells. EMBO J. 6(10), 2871–3Google ScholarPubMed
Karne, A., Oakley, D. M. and Wong, G. K. and Wong, R. O. (1997). Immunocytochemical localization of GABA, GABAA receptors, and synapse-associated proteins in the developing and adult ferret retina. Vis. Neurosci., 14(6), 1097–108CrossRefGoogle ScholarPubMed
Katz, B. and Miledi, R. (1977). Transmitter leakage from motor nerve endings. Proc. R. Soc. London B Biol. Sci., 196(1122), 59–72CrossRefGoogle ScholarPubMed
Keyser, K. T., Hughes, T. E., Whiting, P. J., Lindstrom, J. M. and Karten, H. J. (1988). Cholinoceptive neurons in the retina of the chick: an immunohistochemical study of the nicotinic acetylcholine receptors. Vis. Neurosci., 1(4), 349–66CrossRefGoogle ScholarPubMed
Kim, I. B., Park, D. K., Oh, S. J. and Chun, M. H. (1999). Horizontal cells of the rat retina show choline acetyltransferase- and vesicular acetylcholine transporter-like immunoreactivities during early postnatal developmental stages. Neurosci. Lett., 253(2), 83–6CrossRefGoogle Scholar
Kim, I. B., Lee, E. J., Kim, M. K., Park, D. K. and Chun, M. H. (2000). Choline acetyltransferase-immunoreactive neurons in the developing rat retina. J. Comp. Neurol., 427(4), 604–163.0.CO;2-C>CrossRefGoogle ScholarPubMed
Komuro, H.Rakic, P. (1993). Modulation of neuronal migration by NMDA receptors. Science, 260(5104), 95–7CrossRefGoogle ScholarPubMed
Komuro, H. and Rakic, P. (1996). Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron, 17(2), 275–85CrossRefGoogle ScholarPubMed
Komuro, H. and Rakic, P. (1998). Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J. Neurobiol., 37(1), 110–30. Review3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Laasberg, T. (1990). Ca2+-mobilizing receptors of gastrulating chick embryo. Comp. Biochem. Physiol. C, 97(1), 9–12CrossRefGoogle ScholarPubMed
Layer, P. G. (1991). Cholinesterases during development of the avian nervous system. Cell. Mol. Neurobiol., 11(1), 7–33. ReviewCrossRefGoogle ScholarPubMed
Lewin, G. R. and Barde, Y. A. (1996). Physiology of the neurotrophins. Annu. Rev. Neurosci., 19, 289–317CrossRefGoogle ScholarPubMed
Liets, L. C. and Chalupa, L. M. (2001). Glutamate-mediated responses in developing retinal ganglion cells. Prog. Brain Res., 134, 1–16CrossRefGoogle ScholarPubMed
Turco, Lo J. J., Owens, D. F., Heath, M. J., Davis, M. B. and Kriegstein, A. R. (1995). GABA and glutamate depolarise cortical progenitor cells and inhibit DNA synthesis. Neuron, 15(6), 1287–98Google Scholar
Maric, D., Liu, Q. Y., Grant, G. M.et al. (2000). Functional ionotropic glutamate receptors emerge during terminal cell division and early neuronal differentiation of rat neuroepithelial cells. J. Neurosci. Res., 61(6), 652–623.0.CO;2-J>CrossRefGoogle ScholarPubMed
Maric, D., Liu, Q., Maric, I.et al. (2001). GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl− channels. J. Neurosci., 21(7), 2343–60CrossRefGoogle Scholar
McKinnon, L. A. and Nathanson, N. M. (1995). Tissue-specific regulation of muscarinic acetylcholine receptor expression during embryonic development. J. Biol. Chem., 270(35), 20 636–42CrossRefGoogle ScholarPubMed
Mitchell, C. H. (2001). Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J. Physiol., 534, 193–202CrossRefGoogle ScholarPubMed
Moll, V., Weick, M., Milenkovic, I.et al. (2002). P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest. Ophthalmol. Vis. Sci., 43(3), 766–73Google ScholarPubMed
Morita, M., Higuchi, C., Moto, T.et al. (2003). Dual regulation of calcium oscillation in astrocytes by growth factors and pro-inflammatory cytokines via the mitogen-activated protein kinase cascade. J. Neurosci., 23(34), 10 944–52CrossRefGoogle ScholarPubMed
Murphy, S. N. and Miller, R. J. (1989). Two distinct quisqualate receptors regulate Ca2+ homeostasis in hippocampal neurons in vitro. Mol. Pharmacol., 35(5), 671–80Google ScholarPubMed
Nadler, L. S., Rosoff, M. L., Hamilton, S. E.et al. (1999). Molecular analysis of the regulation of muscarinic receptor expression and function. Life Sci., 64(6–7), 375–9. ReviewCrossRefGoogle ScholarPubMed
Naruoka, H., Kojima, R., Ohasa, M., Layer, P. G. and Saito, T. (2003). Transient muscarinic calcium mobilisation in transdifferentiating as in reaggregating embryonic chick retinae. Brain Res. Dev. Brain Res., 134(2), 233–44CrossRefGoogle Scholar
Newman, E. A. (2001). Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J. Neurosci., 21(7), 2215–23CrossRefGoogle ScholarPubMed
Nishi, S., Minota, S. and Karczmar, A. G. (1974). Primary afferent neurons: the ionic mechanism for GABA-mediated depolarisation. Neuropharmacology, 13, 215–19CrossRefGoogle Scholar
Ockel, M., Lewin, G. R. and Barde, Y. A. (1996). In vivo effects of neurotrophin-3 during sensory neurogenesis. Development, 122(1), 301–7Google ScholarPubMed
Ohmasa, M. and Saito, T. (2004). GABAA-receptor-mediated increase in intracellular Ca2+ concentration in the regenerating retina of adult newt. Neurosci. Res., 49, 219–27CrossRefGoogle ScholarPubMed
Oppenheim, R. W., Prevette, D., Yin, Q. W., Collins, F. and MacDonald, J. (1991). Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science, 251(5001), 1616–18CrossRefGoogle ScholarPubMed
Owens, D. F. and Kriegstein, A. R. (1998). Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone. J. Neurosci., 18(14), 5374–88CrossRefGoogle ScholarPubMed
Pannicke, T., Fischer, W., Biedermann, B.et al. (2000). P2X7 receptors in Müller glial cells from the human retina. J. Neurosci., 20, 5965–72CrossRefGoogle ScholarPubMed
Pearson, R., Catsicas, M., Becker, D. and Mobbs, P. (2002). Purinergic and muscarinic modulation of the cell cycle and calcium signaling in the chick retinal ventricular zone. J. Neurosci., 22, 7569–79CrossRefGoogle ScholarPubMed
Pearson, R. A., Catsicas, M., Becker, D. L. et al. (2004). Ca2+ signaling and gap junction coupling within and between pigment epithelium and neural retina in the developing chick. Eur. J. Neurosci., 19, 2435–45CrossRefGoogle Scholar
Pearson, R. A., Dale, N., Llaudet, E. and Mobbs, P. (2005a). ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron, 46, 731–44CrossRefGoogle Scholar
Pearson, R. A., Luneborg, N. L., Becker, D. and Mobbs, P. (2005b). Gap junctions modulate interkinetic nuclear migration in retinal progenitor cells. J. Neurosci., 25(46), 10803–14CrossRefGoogle Scholar
Pellegrini-Giampietro, D. E., Bennett, M. V. and Zukin, R. S. (1992). Are Ca2+-permeable kainate/AMPA receptors more abundant in immature brain?Neurosci. Lett., 144(1–2), 65–9CrossRefGoogle ScholarPubMed
Prada, C., Puga, J., Perez-Mendez, L., Lopez, R. and Ramirez, G. (1991). Spatial and temporal patterns of neurogenesis in the chick retina. Eur. J. Neurosci., 3, 559–69CrossRefGoogle ScholarPubMed
Pruss, R. M., Akeson, R. L., Racke, M. M. and Wilburn, J. L. (1991). Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron, 7(3), 509–18CrossRefGoogle ScholarPubMed
Purves, D., Snider, W. D. and Voyvodic, J. T. (1988). Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature, 336(6195), 123–8. ReviewCrossRefGoogle ScholarPubMed
Rajan, I., Witte, S. and Cline, H. T. (1999). NMDA receptor activity stabilizes pre-synaptic retinotectal axons and post-synaptic optic tectal cell dendrites in vivo. J. Neurobiol., 38(3), 357–683.0.CO;2-#>CrossRefGoogle Scholar
Rakic, P. and Komuro, H. (1995). The role of receptor/channel activity in neuronal cell migration. J. Neurobiol., 26(3), 299–315CrossRefGoogle ScholarPubMed
Reichling, D. B., Kyrozis, A., Wang, J. and MacDermott, A. B. (1994). Mechanisms of GABA and glycine depolarisation-induced calcium transients in rat dorsal horn neurons. J. Physiol., 476, 411–21CrossRefGoogle Scholar
Rodríguez-Tébar, A., Dechant, G. and Barde, Y. A. (1990). Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron, 4(4), 487–92CrossRefGoogle ScholarPubMed
Rodríguez-Tébar, A., Dechant, G., Gotz, R. and Barde, Y. A. (1992). Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J. 11(3), 917–22Google ScholarPubMed
Rodríguez-Tébar, A., Rosa, E. J. and Arribas, A. (1993). Neurotrophin-3 receptors in the developing chicken retina. Eur. J. Biochem., 211(3), 789–94CrossRefGoogle ScholarPubMed
Rorig, B. and Grantyn, R. (1994). Ligand- and voltage-gated ion channels are expressed by embryonic mouse retinal neurones. NeuroReport, 5(10), 1197–200CrossRefGoogle ScholarPubMed
Rudolph, U., Crestani, F. and Mohler, H. (2001). GABA(A) receptor sub-types: dissecting their pharmacological functions. Trends Pharmacol. Sci., 22(4), 188–94. ReviewCrossRefGoogle Scholar
Sakaki, Y., Fukuda, Y. and Yamashita, M. (1996). Muscarinic and purinergic Ca2+ mobilisations in the neural retina of early embryonic chick. Int. J. Dev. Neurosci., 14, 691–9CrossRefGoogle Scholar
Sanches, G., Alencar, L. S. and Ventura, A. L. (2002). ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade. Int. J. Dev. Neurosci., 20, 21–7CrossRefGoogle ScholarPubMed
Santella, L. (1998). The role of calcium in the cell cycle: facts and hypotheses. Biochem. Biophys. Res. Commun., 244(2), 317–24. ReviewCrossRefGoogle ScholarPubMed
Santella, L., Kyozuka, K., Riso, L. and Carafoli, E. (1998). Calcium, protease action, and the regulation of the cell cycle. Cell Calcium, 23(2–3), 123–30. ReviewCrossRefGoogle ScholarPubMed
Santos, A. A., Medina, S. V., Sholl-Franco, A. and Araujo, E. G. (2003). PMA decreases the proliferation of retinal cells in vitro: the involvement of acetylcholine and BDNF. Neurochem. Int., 42, 73–80CrossRefGoogle ScholarPubMed
Bredariol, Santos A. and Hamassaki-Britto, D. (2001). Ionotropic glutamate receptors during the development of the chick retina. J. Comp. Neurol., 441, 58–70CrossRefGoogle Scholar
Schwartz, E. A. (1987). Depolarisation without calcium can release gamma-aminobutyric acid from a retinal neuron. Science, 238(4825), 350–5CrossRefGoogle Scholar
Segal, M. and Barker, J. L. (1984). Rat hippocampal neurons in culture: properties of GABA-activated Cl− ion conductance. J. Neurophysiol., 51(3), 500–15CrossRefGoogle ScholarPubMed
Shatz, C. J. (1996). Emergence of order in visual system development. J. Physiol. Paris, 90(3–4), 141–50. ReviewCrossRefGoogle ScholarPubMed
Sherry, D. M., Wang, M. M., Bates, J. and Frishman, L. J. (2003). Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. J. Comp. Neurol., 465(4), 480–98CrossRefGoogle ScholarPubMed
Short, A. D., Winston, G. P. and Taylor, C. W. (2000). Different receptors use inositol trisphosphate to mobilize Ca(2+) from different intracellular pools. Biochem. J., 351(Pt 3), 683–6CrossRefGoogle ScholarPubMed
Somahano, F., Roberts, P. J. and Lopez-Colome, A. M. (1988). Maturational changes in retinal excitatory amino acid receptors. Dev. Brain Res., 42, 59–67CrossRefGoogle Scholar
Spitzer, N. C., Debaca, R. C., Allen, K. A. and Holliday, J. (1993). Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons. J. Comp. Neurol., 337(1), 168–75CrossRefGoogle ScholarPubMed
Stout, C. E., Costantin, J. L., Naus, C. C., and Charles, A. C. (2002). Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem., 277(12), 10 482–8CrossRefGoogle ScholarPubMed
Sugioka, M. and Yamashita, M. (2003). Calcium signaling to nucleus via store-operated system during cell cycle in retinal neuroepithelium. Neurosci. Res., 45, 447–58CrossRefGoogle ScholarPubMed
Sugioka, M., Fukuda, Y. and Yamashita, M. (1996). Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina. J. Physiol., 493(3), 855–63CrossRefGoogle ScholarPubMed
Sugioka, M., Fukuda, Y. and Yamashita, M. (1998). Development of glutamate-induced intracellular Ca2+ rise in the embryonic chick retina. J. Neurobiol., 34(2), 113–253.0.CO;2-5>CrossRefGoogle ScholarPubMed
Sugioka, M., Zhou, W. L., Hofmann, H. D. and Yamashita, M. (1999). Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int. J. Dev. Neurosci., 17, 135–44CrossRefGoogle ScholarPubMed
Syed, M. M., Lee, S., He, S. and Zhou, Z. J. (2004a). Spontaneous waves in the ventricular zone of developing mammalian retina. J. Neurophysiol., 91(5), 1999–2009CrossRefGoogle Scholar
Syed, M. M., Lee, S., Zheng, J. and Zhou, Z. J. (2004b). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J. Physiol., 560(2), 533–49CrossRefGoogle Scholar
Wada, E., Wada, K., Boulter, J.et al. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J. Comp. Neurol., 284(2), 314–35CrossRefGoogle ScholarPubMed
Warr, O., Takahashi, M. and Attwell, D. (1999). Modulation of extracellular glutamate concentration in rat brain slices by cystine-glutamate exchange. J. Physiol., 514(3), 783–93CrossRefGoogle ScholarPubMed
Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C., and Kriegstein, A. R. (2004). Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron, 43(5), 647–61CrossRefGoogle ScholarPubMed
Wheeler-Schilling, T. H., Marquordt, K., Kohler, K., Guenther, E. and Jabs, R. (2001). Identification of purinergic receptors in retinal ganglion cells. Brain Res. Mol. Brain Res., 92(1–2), 177–80CrossRefGoogle ScholarPubMed
Whitaker, M. and Larman, M. G. (2001). Calcium and mitosis. Semin. Cell Dev. Biol., 12(1), 53–8CrossRefGoogle ScholarPubMed
Wong, R. O. (1995a). Cholinergic regulation of [Ca2+]ⅰ during cell division and differentiation in the mammalian retina. J. Neurosci., 15(4), 2696–706CrossRefGoogle Scholar
Wong, R. O. (1995b). Effects of glutamate and its analogs on intracellular calcium levels in the developing retina. Vis. Neurosci., 12(5), 907–17CrossRefGoogle Scholar
Wong, R. O. (1999). Retinal waves: stirring up a storm. Neuron, 24(3), 493–5CrossRefGoogle ScholarPubMed
Wong, W. T., Sanes, J. R. and Wong, R. O. (1998). Developmentally regulated spontaneous activity in the embryonic chick retina. J. Neurosci., 18(21), 8839–52CrossRefGoogle ScholarPubMed
Wong, W. T., Myhr, K. L., Miller, E. D. and Wong, R. O. (2000). Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J. Neurosci., 20(1), 351–60CrossRefGoogle ScholarPubMed
Wu, G. Y. and Cline, H. T. (1998). Stabilisation of dendritic arbor structure in vivo by CaMKII. Science, 279(5348), 222–6CrossRefGoogle Scholar
Yamashita, M. and Fukuda, Y. (1993). Calcium channels and GABA receptors in the early embryonic chick retina. J. Neurobiol., 24(12), 1600–14CrossRefGoogle ScholarPubMed
Yamashita, M., Yoshimoto, Y. and Fukuda, Y. (1994). Muscarinic acetylcholine responses in the early embryonic chick retina. J. Neurobiol., 25(9), 1144–53CrossRefGoogle ScholarPubMed
Yang, H. and Kunes, S. (2004). Nonvesicular release of acetylcholine is required for axon targeting in the Drosophila visual system. Proc. Natl. Acad. Sci. U. S. A., 101(42), 15 213–8CrossRefGoogle ScholarPubMed
Zhang, L., Spigelman, I. and Carlen, P. L. (1991). Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. J. Physiol., 444, 25–49CrossRefGoogle ScholarPubMed
Zheng, J. Q. (2000). Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature, 403(6765), 89–93CrossRefGoogle ScholarPubMed
Zheng, J. Q., Felder, M., Connor, J. A. and Poo, M. M. (1994). Turning of nerve growth cones induced by neurotransmitters. Nature, 368(6467), 140–4CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×