Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T11:40:58.515Z Has data issue: false hasContentIssue false

11 - Programmed cell death

Published online by Cambridge University Press:  22 August 2009

Rafael Linden
Affiliation:
Instituto de BiofÍsica da UFRJ, CCS, bloco G, Cidade Universitaria, 21949-900, Rio de Janeiro, Brazil
Benjamin E. Reese
Affiliation:
Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

Interest in programmed cell death (PCD) emerged over a century ago (reviewed in Clarke and Clarke, 1996), and such naturally occurring cell death in the developing nervous system has been extensively documented (Oppenheim, 1991 for review). More recently, the concept of PCD has been the subject of some controversy mainly due to the overwhelming interest in one of its forms, apoptosis (Sloviter, 2002). For the purpose of this chapter, PCD is defined simply as a sequence of events based on cellular metabolism that leads to cell destruction (Lockshin and Zakeri, 2001; Guimarães and Linden, 2004), without commitment to particular morphological types.

Programmed cell death has been identified using a variety of techniques, though each of them is prone to errors when estimating the magnitude of cell loss. Estimating the size of the population based on counts of axons in developing nerves or tracts may be confounded by the simultaneous occurrence of both cell death and axonal ingrowth, and by the transient contaminating presence of other axonal populations. Estimates based on cell counts may be influenced by the continuous migration of differentiating cells into spatially delimited cell populations, as well as by the inclusion of other types of cells that are not so readily discriminable at earlier developmental stages. And while great progress has been made in understanding the molecular mechanisms of apoptosis in the last decade, multiple alternative pathways of PCD add a further degree of complexity in understanding developmental cell death and estimating its magnitude.

Type
Chapter
Information
Retinal Development , pp. 208 - 241
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, E. G. and Linden, R. (1993). Trophic factors produced by retinal cells increase the survival of retinal ganglion cells in vitro. Eur. J. Neurosci., 5, 1181–8CrossRefGoogle ScholarPubMed
Ary-Pires, R., Nakatani, M., Rehen, S. K. and Linden, R. (1997). Developmentally regulated release of intra-retinal neurotrophic factors in vitro. Int. J. Dev. Neurosci., 15, 239–57CrossRefGoogle Scholar
Baker, G. E. and Reese, B. E. (1993). The chiasmatic course of temporal retinal axons during development. J. Comp. Neurol., 330, 95–104CrossRefGoogle Scholar
Barber, A. J., Nakamura, M., Wolpert, E. B.et al. (2001). Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J. Biol. Chem., 276, 32814–21CrossRefGoogle ScholarPubMed
Becker, T. S., Burgess, S. M., Amsterdam, A. H., Allende, M. L. and Hopkins, N. (1998). not really finished is crucial for development of the zebrafish outer retina and encodes a transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. Development, 125, 4369–78Google ScholarPubMed
Bernard, R., Dieni, S., Rees, S. and Bernard, O. (1998). Physiological and induced neuronal death are not affected in NSE-bax transgenic mice. J. Neurosci. Res., 52, 247–593.0.CO;2-D>CrossRefGoogle Scholar
Bonfanti, L., Strettoi, E., Chierzi, S.et al. (1996). Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice over-expressing bcl-2. J. Neurosci., 16, 4186–94CrossRefGoogle Scholar
Borges, H. L. and Linden, R. (1999). Gamma irradiation leads to two waves of apoptosis in distinct cell populations of the retina of new-born rats. J. Cell Sci., 112, 4315–24Google Scholar
Borges, H. L., Chao, C., Xu, Y., Linden, R. and Wang, J. Y. J. (2004). Radiation-induced apoptosis in developing mouse retina exhibits dose-dependent requirement for ATM phosphorylation of p53. Cell Death Differ., 11, 494–502CrossRefGoogle ScholarPubMed
Bovolenta, P., Frade, J. M., Marti, E.et al. (1996). Neurotrophin-3 antibodies disrupt the normal development of the chick retina. J. Neurosci., 16, 4402–10CrossRefGoogle ScholarPubMed
Braekevelt, C. R., Beazley, S. D., Dunlop, S. A. and Darby, J. E. (1986). Numbers of axons in the optic nerve and of retinal ganglion cells during development in the marsupial Setonix brachyurus. Dev. Brain Res., 25, 117–25CrossRefGoogle Scholar
Bunch, S. T. and Fawcett, J. W. (1993). NMDA receptor blockade alters the topography of naturally occurring ganglion cell death in the rat retina. Dev. Biol., 160, 434–42CrossRefGoogle ScholarPubMed
Bunt, S. M. and Lund, R. D. (1981). Development of a transient retino-retinal pathway in hooded and albino rats. Brain Res., 211, 399–404CrossRefGoogle ScholarPubMed
Campos, C. B. L., Bédard, P. A. and Linden, R. (2003). Selective involvement of the PI3K/PKB/Bad pathway in retinal cell death. J. Neurobiol., 56, 171–7CrossRefGoogle ScholarPubMed
Castagne, V. and Clarke, P. G. (1996). Axotomy-induced retinal ganglion cell death in development: its time-course and its diminution by antioxidants. Proc. R. Soc. London B. Biol. Sci., 263, 1193–7CrossRefGoogle ScholarPubMed
Catsicas, S. and Thanos, S. and Clarke, P. G. H. (1987). Major role for neuronal death during brain development: refinement of topographical connections. Proc. Natl. Acad. Sci. U. S. A., 84, 8165–8CrossRefGoogle ScholarPubMed
Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. and Gruss, P. (1998). Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell, 94, 727–37CrossRefGoogle ScholarPubMed
Cellerino, A., Carroll, P., Thoenen, H. and Barde, Y. A. (1997). Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol. Cell. Neurosci., 9, 397–408CrossRefGoogle ScholarPubMed
Cellerino, A., Michaelidis, T., Barski, J. J.et al. (1999). Retinal ganglion cell loss after the period of naturally occurring cell death in bcl-2−/− mice. NeuroReport, 10, 1091–5CrossRefGoogle ScholarPubMed
Cellerino, A., Galli-Resta, L. and Colombaioni, L. (2000). The dynamics of neuronal death: a time-lapse study in the retina. J. Neurosci., 20: RC92 (1–5)CrossRefGoogle ScholarPubMed
Chalasani, S. H., Baribaud, F., Coughlan, C. M.et al. (2003). The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J. Neurosci., 23, 4601–12CrossRefGoogle ScholarPubMed
Chalupa, L. M. and Lia, B. (1991). The nasotemporal division of retinal ganglion cells with crossed and uncrossed projections in the fetal rhesus monkey. J. Neurosci., 11, 191–202CrossRefGoogle ScholarPubMed
Chau, B. N., Borges, H. L., Chen, T. T.et al. (2002). Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nat. Cell. Biol., 4, 757–65CrossRefGoogle ScholarPubMed
Chen, S. T., Garey, L. J. and Jen, L. S. (1994). Bcl-2 proto-oncogene protein immunoreactivity in normally developing and axotomised rat retinae. Neurosci. Lett., 172, 11–14CrossRefGoogle Scholar
Chiarini, L. B. and Linden, R. (2000). Tissue biology of apoptosis. Ref-1 and cell differentiation in the developing retina. Ann. New York Acad. Sci., 926, 64–78CrossRefGoogle ScholarPubMed
Chiarini, L. B., Freitas, F. G., Leal-Ferreira, M. L., Tolkovsky, A. M. and Linden, R. (2002). Cytoplasmic c-Jun N-terminal immunoreactivity: a hallmark of retinal apoptosis. Cell. Mol. Neurobiol., 22, 711–26CrossRefGoogle ScholarPubMed
Chiarini, L. B., Leal-Ferreira, M. L., Freitas, F. G. and Linden, R. (2003). Changing sensitivity to cell death during development of retinal photoreceptors. J. Neurosci. Res., 74, 875–83CrossRefGoogle ScholarPubMed
Clarke, P. G. H. (1985). Neuronal death in the development of the vertebrate nervous system. Trends Neurosci., 8, 345–9CrossRefGoogle Scholar
Clarke, P. G. H. and Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anat. Embryol. (Berl.), 193, 81–99CrossRefGoogle ScholarPubMed
Colello, R. J. and Guillery, R. W. (1990). The early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axonal course. Development, 108, 515–23Google ScholarPubMed
Cook, B., Portera-Cailliau, C. and Adler, R. (1998). Developmental neuronal death is not a universal phenomenon among cell types in the chick embryo retina. J. Comp. Neurol., 396, 12–193.0.CO;2-L>CrossRefGoogle Scholar
Cook, J. E. and Becker, D. L. (1991). Regular mosaics of large displaced and non-displaced ganglion cells in the retina of a cichlid fish. J. Comp. Neurol., 306, 668–84CrossRefGoogle ScholarPubMed
Cook, J. E. and Chalupa, L. M. (2000). Retinal mosaics: new insights into an old concept. Trends Neurosci., 23, 26–34CrossRefGoogle ScholarPubMed
Cooper, A. M. and Cowey, A. (1990). Development and retraction of a crossed retinal projection to the inferior colliculus in neonatal pigmented rats. Neuroscience, 35, 335–44CrossRefGoogle ScholarPubMed
Crespo, D., Leary, O' D. D. and Cowan, W. M. (1985). Changes in the numbers of optic nerve fibers during late prenatal and postnatal development in the albino rat. Brain Res., 351, 129–34CrossRefGoogle ScholarPubMed
Cryns, V. and Yuan, J. (1998). Proteases to die for. Genes Dev., 12, 1551–70CrossRefGoogle Scholar
Cuadros, M. A. and Rios, A. (1988). Spatial and temporal correlation between early nerve fiber growth and neuroepithelial cell death in the chick embryo retina. Anat. Embryol. (Berl.), 178, 543–51CrossRefGoogle ScholarPubMed
Cui, Q. and Harvey, A. R. (1995). At least two mechanisms are involved in the death of retinal ganglion cells following target ablation in neonatal rats. J. Neurosci., 15, 8143–55CrossRefGoogle ScholarPubMed
Cui, Q. and Harvey, A. R. (2000). NT-4/5 reduces cell death in inner nuclear as well as ganglion cell layers in neonatal rat retina. NeuroReport, 11, 3921–4CrossRefGoogle ScholarPubMed
Cunningham, T. J., Mohler, I. M. and Giordano, D. L. (1981). Naturally occurring neuron death in the ganglion cell layer of the neonatal rat: morphology and evidence for regional correspondence with neuron death in superior colliculus. Brain Res., 254, 203–15CrossRefGoogle ScholarPubMed
Cusato, K., Stagg, S. B. and Reese, B. E. (2001). Two phases of increased cell death in the inner retina following early elimination of the ganglion cell population. J. Comp. Neurol., 439, 440–9CrossRefGoogle ScholarPubMed
Cusato, K., Bosco, A., Linden, R. and Reese, B. E. (2002). Cell death in the inner nuclear layer of the retina is modulated by BDNF. Dev. Brain Res., 139, 325–30CrossRefGoogle ScholarPubMed
Cusato, K., Bosco, A., Rozental, R.et al. (2003). Gap junctions mediate bystander cell death in developing mammalian retina. J. Neurosci., 23, 6413–22CrossRefGoogle Scholar
Almeida, C. J. and Linden, R. (2005). Phagocytosis of apoptotic cells: a matter of balance. Cell. Mol. Life Sci., 62, 1532–46CrossRefGoogle ScholarPubMed
Rosa, E. J. and Pablo, F. (2000). Cell death in early neural development: beyond the neurotrophic theory. Trends Neurosci., 23, 454–8CrossRefGoogle ScholarPubMed
Rosa, E. J., Arribas, A., Frade, J. M. and Rodriguez-Tebar, A. (1994). Role of neurotrophins in the control of neural development: neurotrophin-3 promotes both neuron differentiation and survival of cultured chick retinal cells. Neuroscience, 58, 347–52CrossRefGoogle ScholarPubMed
Diem, R., Meyer, R., Weishaupt, J. H. and Bahr, M. (2001). Reduction of potassium currents and phosphatidylinositol 3-kinase-dependent AKT phosphorylation by tumor necrosis factor-(alpha) rescues axotomized retinal ganglion cells from retrograde cell death in vivo. J. Neurosci., 21, 2058–66CrossRefGoogle ScholarPubMed
Ding, J., Hu, B., Tang, L. S. and Yip, H. K. (2001). Study of the role of the low-affinity neurotrophin receptor p75 in naturally occurring cell death during development of the rat retina. Dev. Neurosci., 23, 390–8CrossRefGoogle ScholarPubMed
Drager, U. C. and Olsen, J. F. (1980). Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J. Comp. Neurol., 191, 383–412CrossRefGoogle ScholarPubMed
Dreher, B. and Robinson, S. R. (1988). Development of the retinofugal pathway in birds and mammals: evidence for a common ‘timetable’. Brain Behav. Evol., 31, 369–90CrossRefGoogle Scholar
Dubois-Dauphin, M., Poitry-Yamate, C., Bilbao, F., et al. (2000). Early postnatal Müller cell death leads to retinal but not optic nerve degeneration in NSE-Hu-Bcl-2 transgenic mice. Neuroscience, 95, 9–21CrossRefGoogle Scholar
Dunlop, S. A. (1998). Transient axonal side branches in the developing mammalian optic nerve. Cell Tissue Res., 291, 43–56CrossRefGoogle ScholarPubMed
Dunlop, S. A. and Beazley, L. D. (1987). Cell death in the developing retinal ganglion cell layer of the wallaby Setonix brachyurus. J. Comp. Neurol., 264, 14–23CrossRefGoogle ScholarPubMed
Egensperger, R., Maslim, J., Bisti, S., Hollander, H. and Stone, J. (1996). Fate of DNA from retinal cells dying during development: uptake by microglia and macroglia (Müller cells). Dev. Brain Res., 97, 1–8CrossRefGoogle Scholar
Eglen, S. J. and Willshaw, D. J. (2002). Influence of cell fate mechanisms upon retinal mosaic formation: a modeling study. Development, 129, 5399–408CrossRefGoogle Scholar
Eglen, S. J., Raven, M. A., Tamrazian, E. and Reese, B. E. (2003). Dopaminergic amacrine cells in the inner nuclear layer and ganglion cell layer comprise a single functional retinal mosaic. J. Comp. Neurol., 466, 343–55CrossRefGoogle ScholarPubMed
Ehrlich, R. B., Werneck, C. C., Mourao, P. A. and Linden, R. (2003). Major glycosaminoglycan species in the developing retina: synthesis, tissue distribution and effects upon cell death. Exp. Eye Res., 77, 157–65CrossRefGoogle Scholar
Enari, M., Sakahira, H., Yokoyama, H.et al. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43–50CrossRefGoogle ScholarPubMed
Eversole-Cire, P., Chen, J. and Simon, M. I. (2002). Bax is not the heterodimerization partner necessary for sustained anti-photoreceptor-cell-death activity of Bcl-2. Invest. Ophthalmol. Vis. Sci., 43, 1636–44Google Scholar
Farah, M. H. and Easter, S. S. (2005). Cell birth and death in the mouse retinal ganglion cell layer. J. Comp. Neurol., 489, 120–34CrossRefGoogle ScholarPubMed
Fawcett, J. W., Leary, O' D. D. and Cowan, W. M. (1984). Activity and the control of ganglion cell death in the rat retina. Proc. Natl. Acad. Sci. U. S. A., 81, 5589–93CrossRefGoogle ScholarPubMed
Feng, L., Rigatti, B. W., Novak, E. K., Gorin, M. B. and Swank, R. T. (2000). Genomic structure of the mouse Ap3b1 gene in normal and pearl mice. Genomics., 69, 370–9CrossRefGoogle ScholarPubMed
Fix, A. S., Horn, J. W., Hall, R. L., Johnson, J. A. and Tizzano, J. P. (1995). Progressive retinal toxicity in neonatal rats treated with D,L-2-amino-3-phosphonopropionate (D,L-AP3). Vet. Pathol., 32, 521–31CrossRefGoogle Scholar
Frade, J. M. and Barde, Y. A. (1998). Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron, 20, 35–41CrossRefGoogle ScholarPubMed
Frade, J. M. and Barde, Y. A. (1999). Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development, 126, 683–90Google ScholarPubMed
Frost, D. O. (1986). Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study. J. Comp. Neurol., 252, 95–105CrossRefGoogle ScholarPubMed
Fuhrmann, S., Heller, S., Rohrer, H. and Hofmann, H. D. (1998). A transient role for ciliary neurotrophic factor in chick photoreceptor development. J. Neurobiol., 37, 672–833.0.CO;2-1>CrossRefGoogle ScholarPubMed
Galli-Resta, L. and Ensini, M. (1996). An intrinsic time limit between genesis and death of individual neurons in the developing retinal ganglion cell layer. J. Neurosci., 16, 2318–24CrossRefGoogle ScholarPubMed
Galli-Resta, L. and Novelli, E. (2000). The effects of natural cell loss on the regularity of the retinal cholinergic arrays. J. Neurosci., 20, RC60CrossRefGoogle ScholarPubMed
Gan, L., Wang, S. W., Huang, Z. and Klein, W. H. (1999). POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Dev. Biol., 210, 469–80CrossRefGoogle Scholar
Garcia, M., Forster, V., Hicks, D. and Vecino, E. (2002). Effects of Müller glia on cell survival and neuritogenesis in adult porcine retina in vitro. Invest. Ophthalmol. Vis. Sci., 43, 3735–43Google ScholarPubMed
Garcia-Porrero, J. A. and Ojeda, J. L. (1979). Cell death and phagocytosis in the neuroepithelium of the developing retina. A TEM and SEM study. Experientia, 35, 375–376CrossRefGoogle ScholarPubMed
Gavrieli, Y. and Sherman, Y., Ben-Sasson, S. A. and (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol., 119, 493–501CrossRefGoogle ScholarPubMed
Geiger, L. K., Kortuem, K. R., Alexejun, C. and Levin, L. A. (2002). Reduced redox state allows prolonged survival of axotomized neonatal retinal ganglion cells. Neuroscience, 109, 635–42CrossRefGoogle ScholarPubMed
Georges, P., Madigan, M. C. and Provis, J. M. (1999). Apoptosis during development of the human retina: relationship to foveal development and retinal synaptogenesis. J. Comp. Neurol., 413, 198–2083.0.CO;2-J>CrossRefGoogle ScholarPubMed
Giardino, I., Fard, A. K., Hatchell, D. L. and Brownlee, M. (1998). Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes, 47, 1114–20CrossRefGoogle ScholarPubMed
Gonzalez-Hoyuela, M., Barbas, J. A. and Rodriguez-Tebar, A. (2001). The autoregulation of retinal ganglion cell number. Development, 128, 117–24Google ScholarPubMed
Goureau, O., Regnier-Ricard, F., Desire, L. and Courtois, Y. (1999). Role of nitric oxide in photoreceptor survival in embryonic chick retinal cell culture. J. Neurosci. Res., 55, 423–313.0.CO;2-3>CrossRefGoogle ScholarPubMed
Grunder, T., Kohler, K., Kaletta, A. and Guenther, E. (2000). The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. J. Neurobiol., 44, 333–423.0.CO;2-S>CrossRefGoogle ScholarPubMed
Guimarães, C. A. and Linden, R. (2004). Programmed cell deaths: apoptosis and alternative deathstyles. Eur. J. Biochem., 271, 1638–50CrossRefGoogle Scholar
Guimarães, C. A., Assreuy, J. and Linden, R. (2001). Paracrine anti-apoptotic function of nitric oxide in developing retina. J. Neurochem., 76, 1233–41CrossRefGoogle ScholarPubMed
Guimarães, C. A., Benchimol, M., Amarante-Mendes, G. and Linden, R. (2003). Alternative programs of cell death in retinal tissue. J. Biol. Chem., 278, 41938–46CrossRefGoogle ScholarPubMed
Gutierrez-Ospina, G., Gutierrez, Barrera A., Larriva, J. and Giordano, M. (2002). Insulin-like growth factor I partly prevents axon elimination in the neonate rat optic nerve. Neurosci. Lett., 325, 207–10CrossRefGoogle ScholarPubMed
Haberecht, M. F., Mitchell, C. K., Lo, G. J. and Redburn, D. A. (1997). N-methyl-D- aspartate-mediated glutamate toxicity in the developing rabbit retina. J. Neurosci. Res., 47, 416–263.0.CO;2-H>CrossRefGoogle ScholarPubMed
Hahn, P., Lindsten, T., Ying, G. S.et al. (2003). Proapoptotic bcl-2 family members, Bax and Bak, are essential for developmental photoreceptor apoptosis. Invest. Ophthalmol. Vis. Sci., 44, 3598–605CrossRefGoogle ScholarPubMed
Harman, A. M., Snell, L. L. and Beazley, S. D. (1989). Cell death in the inner and outer nuclear layers of the developing retina in the wallaby Setonix brachyurus (Quokka). J. Comp. Neurol., 289, 1–10CrossRefGoogle Scholar
Henderson, Z., Finlay, B. L. and Wikler, K. C. (1988). Development of ganglion cell topography in ferret retina. J. Neurosci., 8, 1194–205CrossRefGoogle ScholarPubMed
Herrup, K. and Sunter, K. (1987). Numerical matching during cerebellar development: quantitative analysis of granule cell death in staggerer mouse chimeras. J. Neurosci., 7, 829–36CrossRefGoogle ScholarPubMed
Herzog, K. H. and Bartheld, C. S. (1998). Contributions of the optic tectum and the retina as sources of brain-derived neurotrophic factor for retinal ganglion cells in the chick embryo. J. Neurosci., 18, 2891–906CrossRefGoogle ScholarPubMed
Herzog, K. H., Chen, S. C. and Morgan, J. I. (1999). c-jun is dispensable for developmental cell death and axogenesis in the retina. J. Neurosci., 19, 4349–59CrossRefGoogle ScholarPubMed
Herzog, K. H., Braun, J. S., Han, S. H. and Morgan, J. I. (2002). Differential post-transcriptional regulation of p21WAF1/Cip1 levels in the developing nervous system following gamma-irradiation. Eur. J. Neurosci., 15, 627–36CrossRefGoogle ScholarPubMed
Hicks, D. (1998). Putative functions of fibroblast growth factors in retinal development, maturation and survival. Semin. Cell Dev. Biol., 9, 263–9CrossRefGoogle Scholar
Hinds, J. W. and Hinds, P. L. (1983). Development of retinal amacrine cells in the mouse embryo: evidence for two modes of formation. J. Comp. Neurol., 213, 1–23CrossRefGoogle ScholarPubMed
Hughes, W. F. and Velle, A. (1975). The effects of early tectal lesions on development in the retinal ganglion cell layer of chick embryos. J. Comp. Neurol., 163, 265–83CrossRefGoogle Scholar
Hume, D. A., Perry, V. H. and Gordon, S. (1983). Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell Biol., 97, 253–7CrossRefGoogle Scholar
Huxlin, K. R., Carr, R., Schulz, M., Sefton, A. J. and Bennett, M. R. (1995). Trophic effect of collicular proteoglycan on neonatal rat retinal ganglion cells in situ. Dev. Brain Res., 84, 77–88CrossRefGoogle ScholarPubMed
Ikeda, S., Hawes, N. L., Chang, B.et al. (1999). Severe ocular abnormalities in C57BL/6 but not in 129/Sv p53-deficient mice. Invest. Ophthalmol. Vis. Sci., 40, 1874–8Google ScholarPubMed
Insausti, R., Blakemore, C. and Cowan, W. M. (1984). Ganglion cell death during development of ipsilateral retino-collicular projection in golden hamster. Nature, 308, 362–5CrossRefGoogle ScholarPubMed
Isenmann, S. and Bähr, M. (1997). Expression of c-Jun protein in degenerating retinal ganglion cells after optic nerve lesion in the rat. Exp. Neurol., 147, 28–36CrossRefGoogle ScholarPubMed
Isenmann, S., Cellerino, A., Gravel, C. and Bähr, M. (1999). Excess target-derived brain-derived neurotrophic factor preserves the transient uncrossed retinal projection to the superior colliculus. Mol. Cell. Neurosci., 14, 52–65CrossRefGoogle ScholarPubMed
Jacobson, S. G., Cideciyan, A. V., Aleman, T. S.et al. (2003). Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum. Mol. Genet., 12, 1073–8CrossRefGoogle Scholar
Jeffery, G. (1984). Retinal ganglion cell death and terminal field retraction in the developing rodent visual system. Dev. Brain Res., 13, 81–96CrossRefGoogle Scholar
Jeffery, G. (1998). The retinal pigment epithelium as a developmental regulator of the neural retina. Eye, 12, 499–503CrossRefGoogle ScholarPubMed
Jeyarasasingam, G., Snider, C. J., Ratto, G. M. and Chalupa, L. M. (1998). Activity-regulated cell death contributes to the formation of ON and OFF alpha ganglion cell mosaics. J. Comp. Neurol., 394, 335–433.0.CO;2-2>CrossRefGoogle Scholar
Johansson, K., Bruun, A., Torngren, M. and Ehinger, B. (2000). Development of glutamate receptor subunit 2 immunoreactivity in postnatal rat retina. Vis. Neurosci., 17, 737–42CrossRefGoogle ScholarPubMed
Johnson, P. T., Williams, R. R., Cusato, K. and Reese, B. E. (1999). Rods and cones project to the inner plexiform layer during development. J. Comp. Neurol., 414, 1–123.0.CO;2-G>CrossRefGoogle ScholarPubMed
Ju, W. K., Chung, I. W., Kim, K. Y.et al. (2001). Sodium nitroprusside selectively induces apoptotic cell death in the outer retina of the rat. NeuroReport, 12, 4075–9CrossRefGoogle ScholarPubMed
Kaiser, P. K. and Lipton, S. A. (1990). VIP-mediated increase in cAMP prevents tetrodotoxin-induced retinal ganglion cell death in vitro. Neuron, 5, 373–81CrossRefGoogle ScholarPubMed
Karlsson, M., Mayordomo, R., Reichardt, L. F.et al. (2001). Nerve growth factor is expressed by post-mitotic avian retinal horizontal cells and supports their survival during development in an autocrine mode of action. Development, 128, 471–9Google Scholar
Kermer, P., Klocker, N., Labes, M. and Bähr, M. (2000). Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 in vivo. J. Neurosci., 20, 2–8CrossRefGoogle ScholarPubMed
Kerr, J. F. R., Wyllie, A. H. and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26, 239–57CrossRefGoogle ScholarPubMed
Kirsch, M., Schulz-Key, S., Wiese, A., Fuhrmann, S. and Hofmann, H. (1998). Ciliary neurotrophic factor blocks rod photoreceptor differentiation from post-mitotic precursor cells in vitro. Cell Tissue Res., 291, 207–16CrossRefGoogle Scholar
Kobayashi, T. (1993). Delay of ganglion cell death by tetrodotoxin during retinal development in chick embryos. Neurosci. Res., 16, 187–94CrossRefGoogle ScholarPubMed
Konishi, A., Shimizu, S., Hirota, J.et al. (2003). Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell, 114, 673–88CrossRefGoogle ScholarPubMed
Koulen, P., Malitschek, B., Kuhn, R., Wassle, H. and Brandstatter, J. H. (1996). Group II and group III metabotropic glutamate receptors in the rat retina: distributions and developmental expression patterns. Eur. J. Neurosci., 8, 2177–87CrossRefGoogle ScholarPubMed
Lam, K., Sefton, A. J. and Bennett, M. R. (1982). Loss of axons from the optic nerve of the rat during early postnatal development. Dev. Brain Res., 3, 487–91CrossRefGoogle Scholar
Land, P. W. and Lund, R. D. (1979). Development of the rat's uncrossed retinotectal pathway and its relation to plasticity studies. Science, 205, 698–700CrossRefGoogle ScholarPubMed
Leventhal, A. G., Schall, J. D., Ault, S. J., Provis, J. M. and Vitek, D. J. (1988). Class-specific cell death shapes the distribution and pattern of central projection of cat retinal ganglion cells. J. Neurosci., 8, 2011–27CrossRefGoogle ScholarPubMed
Levin, L. A., Schlamp, C. L., Spieldoch, R. L., Geszvain, K. M. and Nickells, R. W. (1997). Identification of the bcl-2 family of genes in the rat retina. Invest. Ophthalmol. Vis. Sci., 38, 2545–53Google ScholarPubMed
Li, Y., Schlamp, C. L., Poulsen, K. P. and Nickells, R. W. (2000). Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. Exp. Eye Res., 71, 209–213CrossRefGoogle ScholarPubMed
Lia, B., Williams, R. W. and Chalupa, L. M. (1987). Formation of retinal ganglion cell topography during prenatal development. Science, 236, 848–51CrossRefGoogle ScholarPubMed
Libby, R. T., Lavallee, C. R., Balkema, G. W., Brunken, W. J. and Hunter, D. D. (1999). Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J. Neurosci., 19, 9399–411CrossRefGoogle ScholarPubMed
Linden, D. C., Guillery, R. W. and Cucchiaro, J. (1981). The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J. Comp. Neurol., 203, 189–211CrossRefGoogle ScholarPubMed
Linden, R. (1987). Competitive interactions and regulation of developmental neuronal death in the retina. In Developmental Neurobiology of Mammals ed. Chagas, C. and Linden, R.. The Vatican: Pontifical Academy of Sciences, pp. 109–40Google Scholar
Linden, R. (1992). Dendritic competition: a principle of retinal development. In The Visual System: From Genesis to Maturity, ed. Lent, R.. Boston: Birkhauser, pp. 86–103CrossRefGoogle Scholar
Linden, R. (1994). The survival of developing neurons: a review of afferent control. Neuroscience, 58, 671–82CrossRefGoogle ScholarPubMed
Linden, R. and Chiarini, L. B. (1999). Nuclear exclusion of transcription factors in retinal apoptosis. Braz. J. Med. Biol. Res., 32, 813–20CrossRefGoogle Scholar
Linden, R. and Pinto, L. H. (1985). Developmental genetics of the retina: evidence that the pearl mutation in the mouse affects the time course of natural neuronal death in the ganglion cell layer. Exp. Brain Res., 60, 79–86CrossRefGoogle Scholar
Linden, R. and Renteria, A. S. (1988). Afferent control of neuron numbers in the developing brain. Dev. Brain Res., 44, 291–5CrossRefGoogle ScholarPubMed
Linden, R., Cavalcante, L. A. and Barradas, P. C. (1986). Mononuclear phagocytes in the retina of developing rats. Histochemistry, 85, 335–40CrossRefGoogle ScholarPubMed
Linden, R., Rehen, S. K. and Chiarini, L. B. (1999). Apoptosis in developing retinal tissue. Prog. Retin. Eye Res., 18, 133–65CrossRefGoogle ScholarPubMed
Linden, R., Martins, R. A. and Silveira, M. S. (2005). Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog. Retin. Eye Res., 24, 457–91CrossRefGoogle ScholarPubMed
Lipton, S. A. (1986). Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc. Natl. Acad. Sci. U. S. A., 83, 9774–8CrossRefGoogle ScholarPubMed
Liu, J., Wilson, S. and Reh, T. (2003). BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev. Biol., 256, 34–48CrossRefGoogle ScholarPubMed
Lockshin, R. A. and Zakeri, Z. (2001). Programmed cell death and apoptosis: origins of the theory. Nat. Rev. Mol. Cell. Biol., 2, 545–50CrossRefGoogle Scholar
Ma, Y. T., Hsieh, T., Forbes, M. E., Johnson, J. E. and Frost, D. O. (1998). BDNF injected into the superior colliculus reduces developmental retinal ganglion cell death. J. Neurosci., 18, 2097–107CrossRefGoogle ScholarPubMed
Manabe, S. and Lipton, S. A. (2003). Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest. Ophthalmol. Vis. Sci., 44, 385–92CrossRefGoogle ScholarPubMed
Marotte, L. R. (1993). Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii). J. Comp. Neurol., 331, 1–13CrossRefGoogle Scholar
Martin, P. R. (1986). The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat. Exp. Brain Res., 62, 77–88CrossRefGoogle ScholarPubMed
Martin, P. R., Sefton, A. J. and Dreher, B. (1983). The retinal location and fate of ganglion cells which project to the ipsilateral superior colliculus in neonatal albino and hooded rats. Neurosci. Lett., 41, 219–26CrossRefGoogle ScholarPubMed
Martinou, J. C., Dubois-Dauphin, M., Staple, J. K.et al. (1994). Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron, 13, 1017–30CrossRefGoogle ScholarPubMed
Martins, R. A. P., Silveira, M. S., Curado, M. R., Police, A. I. and Linden, R. (2005). NMDA receptor activation modulates programmed cell death during early post-natal retinal development: a BDNF-dependent mechanism. J. Neurochem., 95, 244–53CrossRefGoogle ScholarPubMed
Maslim, J., Valter, K., Egensperger, R., Hollander, H. and Stone, J. (1997). Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors. Invest. Ophthalmol. Vis. Sci., 38, 1667–77Google ScholarPubMed
Mervin, K. and Stone, J. (2002). Developmental death of photoreceptors in the C57BL/6J mouse: association with retinal function and self-protection. Exp. Eye Res., 75, 703–13CrossRefGoogle ScholarPubMed
Ogilvie, Mosinger J., Deckwerth, T. L., Knudson, C. M. and Korsmeyer, S. J. (1998). Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice. Invest. Ophthalmol. Vis. Sci., 39, 1713–20Google Scholar
Munafo, D. B. and Colombo, M. I. (2001). A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J. Cell Sci., 114, 3619–29Google ScholarPubMed
Nichol, K. A., Schulz, M. W. and Bennett, M. R. (1995). Nitric oxide-mediated death of cultured neonatal retinal ganglion cells: neuroprotective properties of glutamate and chondroitin sulfate proteoglycan. Brain Res., 697, 1–16CrossRefGoogle ScholarPubMed
Leary, O' D. D., Fawcett, J. W. and Cowan, W. M. (1986). Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. J. Neurosci., 6, 3692–705CrossRefGoogle Scholar
Oppenheim, R. W. (1991). Cell death during development of the nervous system. Annu. Rev. Neurosci., 14, 453–501CrossRefGoogle Scholar
Pacione, L. R., Szego, M. J., Ikeda, S., Nishina, P. M. and McInnes, R. R. (2003). Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu. Rev. Neurosci., 26, 657–700CrossRefGoogle ScholarPubMed
Patel, J. I., Gentleman, S. M., Jen, L. S. and Garey, L. J. (1997). Nitric oxide synthase in developing retinae and after optic tract section. Brain Res., 761, 156–60CrossRefGoogle Scholar
Pennesi, M. E., Cho, J. H., Yang, Z.et al. (2003). BETA2/NeuroD1 null mice: a new model for transcription factor-dependent photoreceptor degeneration. J. Neurosci., 23, 453–61CrossRefGoogle ScholarPubMed
Pereira, S. P. and Araujo, E. G. (1997). Veratridine increases the survival of retinal ganglion cells in vitro. Braz. J. Med. Biol. Res., 30, 1467–70CrossRefGoogle ScholarPubMed
Perry, V. H., Henderson, Z. and Linden, R. (1983). Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J. Comp. Neurol., 219, 356–70CrossRefGoogle ScholarPubMed
Petrs-Silva, H., Freitas, F. G., Linden, R. and Chiarini, L. B. (2004). Early nuclear exclusion of the transcription factor Max is associated with retinal ganglion cell death independent of caspase activity. J. Cell. Physiol., 198, 179–87CrossRefGoogle ScholarPubMed
Petrs-Silva, H., Chiodo, V., Chiarini, L. B., Hauswirth, W. W. and Linden, R. (2005). Modulation of the expression of the transcription factor Max in rat retinal ganglion cells by a recombinant adeno-associated viral vector. Braz. J. Med. Biol. Res., 38, 375–9CrossRefGoogle ScholarPubMed
Politi, L. E., Rotstein, N. P. and Carri, N. G. (2001). Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci., 42, 3008–15Google ScholarPubMed
Pollock, G. S., Robichon, R., Boyd, K. A.et al. (2003). TrkB receptor signaling regulates developmental death dynamics, but not final number, of retinal ganglion cells. J. Neurosci., 23, 10137–45CrossRefGoogle Scholar
Potts, R. A., Dreher, B. and Bennett, M. R. (1982). The loss of ganglion cells in the developing retina of the rat. Dev. Brain Res., 3, 481–6CrossRefGoogle Scholar
Pow, D. V., Crook, D. K. and Wong, R. O. (1994). Early appearance and transient expression of putative amino acid neurotransmitters and related molecules in the developing rabbit retina: an immunocytochemical study. Vis. Neurosci., 11, 1115–34CrossRefGoogle Scholar
Protti, D. A., Gerschenfeld, H. M. and Llano, I. (1997). GABAergic and glycinergic IPSCs in ganglion cells of rat retinal slices. J. Neurosci., 17, 6075–85CrossRefGoogle ScholarPubMed
Provis, J. M. and Penfold, P. L. (1988). Cell death and the elimination of retinal axons during development. Prog. Neurobiol., 31, 331–47CrossRefGoogle ScholarPubMed
Rabacchi, S. A., Bonfanti, L., Liu, X. H. and Maffei, L. (1994). Apoptotic cell death induced by optic nerve lesion in the neonatal rat. J. Neurosci., 14, 5292–301CrossRefGoogle ScholarPubMed
Raff, M. C. (1992). Social controls on cell survival and cell death. Nature, 356, 397–400CrossRefGoogle ScholarPubMed
Rager, G. and Rager, U. (1978). Systems-matching by degeneration. I. A quantitative electron microscopic study of the generation and degeneration of retinal ganglion cells in the chicken. Exp. Brain Res., 33, 65–78CrossRefGoogle ScholarPubMed
Raven, M. A. and Reese, B. E. (2003). Mosaic regularity of horizontal cells in the mouse retina is independent of cone photoreceptor innervation. Invest. Ophthalmol. Vis. Sci., 44, 965–73CrossRefGoogle ScholarPubMed
Raven, M. A., Eglen, S. J., Ohab, J. J. and Reese, B. E. (2003). Determinants of the exclusion zone in dopaminergic amacrine cell mosaics. J. Comp. Neurol., 461, 123–36CrossRefGoogle ScholarPubMed
Raven, M. A., Stagg, S. B., Nassar, H. and Reese, B. E. (2005). Developmental improvement in the regularity and packing of mouse horizontal cells: implications for mechanisms underlying mosaic pattern formation. Vis. Neurosci., 22, 569–73CrossRefGoogle ScholarPubMed
Reese, B. E. (1986). The topography of expanded uncrossed retinal projections following neonatal enucleation of one eye: differing effects in dorsal lateral geniculate nucleus and superior colliculus. J. Comp. Neurol., 250, 8–32CrossRefGoogle ScholarPubMed
Reese, B. E. and Geller, S. F. (1995). Precocious invasion of the optic stalk by transient retinopetal axons. J. Comp. Neurol., 353, 572–84CrossRefGoogle ScholarPubMed
Reese, B. E. and Urich, J. L. (1994). Does early enucleation affect the decussation pattern of alpha cells in the ferret?Vis. Neurosci., 11, 447–54CrossRefGoogle ScholarPubMed
Reese, B. E., Thompson, W. F. and Peduzzi, J. D. (1994). Birthdates of neurons in the retinal ganglion cell layer in the ferret. J. Comp. Neurol., 41, 464–75CrossRefGoogle Scholar
Rehen, S. K., Varella, M. H., Freitas, F. G., Moraes, M. O. and Linden, R. (1996). Contrasting effects of protein synthesis inhibition and of cyclic AMP on apoptosis in the developing retina. Development, 122, 1439–48Google ScholarPubMed
Resta, V., Novelli, E., Virgilio, Di F. and Galli-Resta, L. (2005). Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development, 132, 2873–82CrossRefGoogle ScholarPubMed
Reuter, G. and Zilles, K. (1993). Reduction of naturally-occurring cell death by kainic acid in the retina of chicken embryos. Anat. Anz., 175, 243–51CrossRefGoogle ScholarPubMed
Rickman, D. W., Nacke, R. E. and Rickman, C. B. (1999). Characterization of the cell death promoter, Bad, in the developing rat retina and forebrain. Dev. Brain Res., 115, 41–7CrossRefGoogle ScholarPubMed
Robinson, S. R. (1988). Cell death in the inner and outer nuclear layers of the developing cat retina. J. Comp. Neurol., 267, 507–15CrossRefGoogle ScholarPubMed
Robinson, S. R., Dreher, B. and McCall, M. J. (1989). Nonuniform retinal expansion during the formation of the rabbit's visual streak: implications for the ontogeny of mammalian retinal topography. Vis. Neurosci., 2, 201–19CrossRefGoogle ScholarPubMed
Rocha, M., Martins, R. A. P. and Linden, R. (1999). Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: evidence for the involvement of neurotrophins. Brain Res., 827, 79–92CrossRefGoogle ScholarPubMed
Rohrer, B., LaVail, M. M., Jones, K. R. and Reichardt, L. F. (2001). Neurotrophin receptor TrkB activation is not required for the postnatal survival of retinal ganglion cells in vivo. Exp. Neurol., 172, 81–91CrossRefGoogle Scholar
Rothermel, A. and Layer, P. G. (2003). GDNF regulates chicken rod photoreceptor development and survival in reaggregated histotypic retinal spheres. Invest. Ophthalmol. Vis. Sci., 44, 2221–8CrossRefGoogle ScholarPubMed
Saavedra, H. I., Wu, L., Bruin, A.et al. (2002). Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb. Cell Growth Differ., 13, 215–25Google ScholarPubMed
Scheetz, A. J., Williams, R. W. and Dubin, M. W. (1995). Severity of ganglion cell death during early postnatal development is modulated by both neuronal activity and binocular competition. Vis. Neurosci., 12, 605–10CrossRefGoogle ScholarPubMed
Schonherr, E. and Hausser, H. J. (2000). Extracellular matrix and cytokines: a functional unit. Dev. Immunol., 7, 89–101CrossRefGoogle ScholarPubMed
Schraermeyer, U. and Heimann, K. (1999). Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res., 12, 219–36CrossRefGoogle ScholarPubMed
Schulz, M., Raju, T., Ralston, G. and Bennett, M. R. (1990). A retinal ganglion cell neurotrophic factor purified from the superior colliculus. J. Neurochem., 55, 832–41CrossRefGoogle ScholarPubMed
Schuster, N., Dunker, N. and Krieglstein, K. (2002). Transforming growth factor-beta induced cell death in the developing chick retina is mediated via activation of c-jun N-terminal kinase and downregulation of the anti-apoptotic protein Bcl-X(L). Neurosci. Lett., 330, 239–42CrossRefGoogle Scholar
Sedlak, T. W., Oltvai, Z. N., Yang, E.et al. (1995). Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. U. S. A., 92, 7834–8CrossRefGoogle ScholarPubMed
Seecharan, D. J., Kulkarni, A. L., Lu, L., Rosen, G. D. and Williams, R. W. (2003). Genetic control of interconnected neuronal populations in the mouse primary visual system. J. Neurosci., 23, 11179–88CrossRefGoogle ScholarPubMed
Sengelaub, D. R. and Finlay, B. L. (1982). Cell death in the mammalian visual system during normal development. I. Retinal ganglion cells, J. Comp. Neurol., 204, 311–17CrossRefGoogle ScholarPubMed
Serfaty, C. A., Reese, B. E. and Linden, R. (1990). Cell death and interocular interactions among retinofugal axons: lack of binocularly matched specificity. Dev. Brain Res., 56, 198–204CrossRefGoogle ScholarPubMed
Sharma, R. K. (2001). Expression of Bcl-2 during the development of rabbit retina. Curr. Eye Res., 22, 208–14CrossRefGoogle ScholarPubMed
Sheedlo, H. J., Brun-Zinkernagel, A. M., Oakford, L. X. and Roque, R. S. (2001). Rat retinal progenitor cells and a retinal pigment epithelial factor. Brain Res. Dev. Brain Res., 127, 185–7CrossRefGoogle Scholar
Sheedlo, H. J., Nelson, T. H., Lin, N.et al. (1998). RPE secreted proteins and antibody influence photoreceptor cell survival and maturation. Brain Res. Dev. Brain Res., 107, 57–69CrossRefGoogle ScholarPubMed
Sholl-Franco, A., Figueiredo, K. G. and Araujo, E. G. (2001). Interleukin-2 and interleukin-4 increase the survival of retinal ganglion cells in culture. NeuroReport, 12, 109–12CrossRefGoogle ScholarPubMed
Silveira, L. C., Yamada, E. S. and Picanco-Diniz, C. W. (1989). Displaced horizontal cells and biplexiform horizontal cells in the mammalian retina. Vis. Neurosci., 3, 483–8CrossRefGoogle ScholarPubMed
Silveira, M. S. and Linden, R. (2005). Neuroprotection by cAMP. In Brain Repair, ed. Bähr, M.. New York: Springer, pp. 164–76Google Scholar
Silveira, M. S., Costa, M. R., Bozza, M. and Linden, R. (2002). Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J. Biol. Chem., 277, 16075–80CrossRefGoogle ScholarPubMed
Silver, J. and Hughes, A. F. (1973). The role of cell death during morphogenesis of the mammalian eye. J. Morphol., 140, 159–70CrossRefGoogle ScholarPubMed
Simon, D. K. and Leary, O' D. D. (1992). Influence of position along the medial-lateral axis of the superior colliculus on the topographic targeting and survival of retinal axons. Dev. Brain Res., 69, 167–72CrossRefGoogle ScholarPubMed
Skeen, L. C., Due, B. R. and Douglas, F. E. (1986). Neonatal sensory deprivation reduces tufted cell number in mouse olfactory bulbs. Neurosci. Lett., 63, 5–10CrossRefGoogle ScholarPubMed
Slack, R. S., El-Bizri, H., Wong, J., Belliveau, D. J. and Miller, F. D. (1998). A critical temporal requirement for the retinoblastoma protein family during neuronal determination. J. Cell Biol., 140, 1497–509CrossRefGoogle ScholarPubMed
Sloviter, R. S. (2002). Apoptosis: a guide for the perplexed. Trends Pharmacol. Sci., 23, 19–24CrossRefGoogle ScholarPubMed
Smeyne, R. J., Vendrell, M., Hayward, M.et al. (1993). Continuous c-fos expression precedes programmed cell death in vivo. Nature, 363, 166–9CrossRefGoogle ScholarPubMed
Soderpalm, A. K., Fox, D. A., Karlsson, J. O. and Veen, T. (2000). Retinoic acid produces rod photoreceptor selective apoptosis in developing mammalian retina. Invest. Ophthalmol. Vis. Sci., 41, 937–47Google ScholarPubMed
Spira, A., Hudy, S. and Hannah, R. (1984). Ectopic photoreceptor cells and cell death in the developing rat retina. Anat. Embryol. (Berl.), 169, 293–301CrossRefGoogle ScholarPubMed
Sretavan, D. W. and Shatz, C. J. (1986). Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. J. Neurosci., 6, 234–51CrossRefGoogle ScholarPubMed
Steffen, M. A., Seay, C. A., Amini, B.et al. (2003). Spontaneous activity of dopaminergic retinal neurons. Biophys. J., 85, 2158–69CrossRefGoogle ScholarPubMed
Stone, J., Rapaport, D. H., Williams, R. W. and Chalupa, L. (1982). Uniformity of cell distribution in the ganglion cell layer of prenatal cat retina: implications for mechanisms of retinal development. Dev. Brain Res., 2, 231–42CrossRefGoogle Scholar
Stone, J., Maslim, J., Valter-Kocsi, K. (1999). Mechanisms of photoreceptor death and survival in mammalian retina. Prog. Retin. Eye Res., 18, 689–735CrossRefGoogle ScholarPubMed
Strettoi, E. and Volpini, M. (2002). Retinal organization in the bcl-2-over-expressing transgenic mouse. J. Comp. Neurol., 446, 1–10CrossRefGoogle Scholar
Strom, R. C. and Williams, R. W. (1998). Cell production and cell death in the generation of variation in neuron number. J. Neurosci., 18, 9948–53CrossRefGoogle ScholarPubMed
Sucher, N. J., Kohler, K., Tenneti, L.et al. (2003). N-methyl-D-aspartate receptor subunit NR3A in the retina: developmental expression, cellular localization, and functional aspects. Invest. Ophthalmol. Vis. Sci., 44, 4451–6CrossRefGoogle ScholarPubMed
Tanaka, H. and Landmesser, L. T. (1986). Cell death of lumbosacral motoneurons in chick, quail, and chick–quail chimera embryos: a test of the quantitative matching hypothesis of neuronal cell death. J. Neurosci., 6, 2889–99CrossRefGoogle ScholarPubMed
Tanito, M., Masutani, H., Nakamura, H., Ohira, A. and Yodoi, J. (2002). Cytoprotective effect of thioredoxin against retinal photic injury in mice. Invest. Ophthalmol. Vis. Sci., 43, 1162–7Google ScholarPubMed
Thompson, I. D. and Morgan, J. E. (1993). The development of retinal ganglion cell decussation patterns in postnatal pigmented and albino ferrets. Eur. J. Neurosci., 5, 341–56CrossRefGoogle ScholarPubMed
Ulshafer, R. J. and Clavert, A. (1979). Cell death and optic fiber penetration in the optic stalk of the chick. J. Morphol., 162, 67–76CrossRefGoogle ScholarPubMed
Varella, M. H., Correa, D. F., Campos, C. B. L., Chiarini, L. B. and Linden, R. (1997). Protein kinases selectively modulate apoptosis in the developing retina in vitro. Neurochem. Int., 31, 217–27CrossRefGoogle ScholarPubMed
Varella, M. H., Mello, F. G. and Linden, R. (1999). Evidence for an antiapoptotic role of dopamine in developing retinal tissue. J. Neurochem., 73, 485–92CrossRefGoogle ScholarPubMed
Wässle, H., Dacey, D. M., Haun, T.et al. (2000). The mosaic of horizontal cells in the macaque monkey retina: with a comment on biplexiform ganglion cells. Vis. Neurosci., 17, 591–608CrossRefGoogle ScholarPubMed
Wikler, K. C., Perez, C. and Finlay, B. L. (1989). Duration of retinogenesis: its relationship to retinal organization in two cricetine rodents. J. Comp. Neurol., 285, 157–76CrossRefGoogle ScholarPubMed
Williams, M. A., Piñòn, L. G. P., Linden, R. and Pinto, L. H. (1990). The pearl mutation accelerates the schedule of natural cell death in the early postnatal retina. Exp. Brain Res., 82, 393–400CrossRefGoogle ScholarPubMed
Williams, R. R., Cusato, K., Raven, M. A. and Reese, B. E. (2001). Organization of the inner retina following early elimination of the retinal ganglion cell population: effects on cell numbers and stratification patterns. Vis. Neurosci., 18, 233–44CrossRefGoogle ScholarPubMed
Wong, P., Smith, S. B., Bora, N. and Gentleman, S. (1994). The use of C0t-1 probe DNA for the detection of low levels of DNA fragmentation. Biochem. Cell Biol., 72, 649–53CrossRefGoogle ScholarPubMed
Wu, L. Y., Li, M., Hinton, D. R.et al. (2003). Microphthalmia resulting from MSX2-induced apoptosis in the optic vesicle. Invest. Ophthalmol. Vis. Sci., 44, 2404–12CrossRefGoogle ScholarPubMed
Wyllie, A. H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284, 555–6CrossRefGoogle ScholarPubMed
Yakura, T., Fukuda, Y. and Sawai, H. (2002). Effect of Bcl-2 over-expression on establishment of ipsilateral retinocollicular projection in mice. Neuroscience, 110, 667–73CrossRefGoogle Scholar
Yamada, H., Yamada, E., Ando, A.et al. (2001). Fibroblast growth factor-2 decreases hyperoxia-induced photoreceptor cell death in mice. Am. J. Pathol., 159, 1113–20CrossRefGoogle ScholarPubMed
Yhip, J. P. and Kirby, M. A. (1990). Topographic organization of the retinocollicular projection in the neonatal rat. Vis. Neurosci., 4, 313–29Google ScholarPubMed
Yokoyama, Y., Ozawa, S., Seyama, Y.et al. (1997). Enhancement of apoptosis in developing chick neural retina cells by basic fibroblast growth factor. J. Neurochem., 68, 2212–15CrossRefGoogle ScholarPubMed
Young, R. W. (1984). Cell death during differentiation of the retina in the mouse. J. Comp. Neurol., 229, 362–73CrossRefGoogle ScholarPubMed
Zhang, X., Chaudhry, A. and Chintala, S. K. (2003). Inhibition of plasminogen activation protects against ganglion cell loss in a mouse model of retinal damage. Mol. Vis., 9, 238–48Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Programmed cell death
    • By Rafael Linden, Instituto de BiofÍsica da UFRJ, CCS, bloco G, Cidade Universitaria, 21949-900, Rio de Janeiro, Brazil, Benjamin E. Reese, Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Programmed cell death
    • By Rafael Linden, Instituto de BiofÍsica da UFRJ, CCS, bloco G, Cidade Universitaria, 21949-900, Rio de Janeiro, Brazil, Benjamin E. Reese, Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Programmed cell death
    • By Rafael Linden, Instituto de BiofÍsica da UFRJ, CCS, bloco G, Cidade Universitaria, 21949-900, Rio de Janeiro, Brazil, Benjamin E. Reese, Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.013
Available formats
×