Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-19T13:58:05.352Z Has data issue: false hasContentIssue false

2 - Formation of the eye field

Published online by Cambridge University Press:  22 August 2009

Michael E. Zuber
Affiliation:
Department of Ophthalmology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
William A. Harris
Affiliation:
Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

Vertebrate eyes originate from a single field of neuroectodermal cells in the anterior region of the neural plate called the eye field (sometimes referred to as the eye anlage, eye primordia or presumptive eye). The origins of the eye field can be traced back to the 32-cell-stage blastula in which a subset of blastomeres is competent, but not yet committed, to form retina. This chapter begins with a discussion of retinal competence and the maternal molecules and cell–cell interactions that take place in and bias early blastomeres toward a retinal fate. Transplantation experiments have shown that the entire presumptive neural plate of midgastrula embryos can form retina, demonstrating the remarkable coordination of neural development with eye formation. Neural induction and the neural patterning events critical for defining where the eye field forms in the developing nervous system will be addressed. Cultured amphibian anterior neural plates form eyes demonstrating that the eye field is specified (committed to form the eye) by the neural plate stage. A conserved set of transcription factors collectively referred to as eye field transcription factors are required for normal eye formation and are expressed in the eye field of the neural plate stage embryo. These genes and their functional interactions, which are required for and under some circumstances sufficient to drive eye field and eye formation will be described. A description of how the single vertebrate eye field separates to form the eye primordia that eventually give rise to the two eyes concludes this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelmann, H. B. (1929a). Experimental studies on the development of the eye. I. The effect of the removal of the median and lateral areas of the anterior end of the urodelan neural plate on the development of the eyes (Triton teniatus and Amblystoma punctatum). J. Exp. Zool., 54, 249–90CrossRefGoogle Scholar
Adelmann, H. B. (1929b). Experimental studies on the development of the eye. II. The eye-forming potencies of the urodelan neural plate (Triton teniatus and Amblystoma punctatum). J. Exp. Zool., 54, 291–317CrossRefGoogle Scholar
Adelmann, H. B. (1930). Experimental studies on the development of the eye. III. The effect of the (‘Unterlagerung’) on the heterotopic development of median and lateral strips of the anterior end of the neural plate of Amblystoma. J. Exp. Zool., 57, 223–81CrossRefGoogle Scholar
Adelmann, H. B. (1934). A study of cyclopia in Amblystoma punctatum, with special reference to the mesoderm. J. Exp. Zool., 67, 217–81CrossRefGoogle Scholar
Adelmann, H. B. (1936). The problem of cyclopia. Q. Rev. Biol., 11, 161–82CrossRefGoogle Scholar
Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E. and Barsacchi, G. (1999). Role of Xrx1 in Xenopus eye and anterior brain development. Development, 126, 2451–60Google ScholarPubMed
Andreazzoli, M., Gestri, , Cremisi, G., , F.et al. (2003). Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate. Development, 130, 5143–55CrossRefGoogle ScholarPubMed
Bailey, T. J., El-Hodiri, , Zhang, H., , L.et al. (2004). Regulation of vertebrate eye development by Rx genes. Int. J. Dev. Biol., 48, 761–70CrossRefGoogle ScholarPubMed
Barth, K. A. and Wilson, S. W. (1995). Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development, 121, 1755–68Google ScholarPubMed
Bernier, G., Panitz, , Zhou, F., , X.et al. (2000). Expanded retina territory by midbrain transformation upon over-expression of Six6 (Optx2) in Xenopus embryos. Mech. Dev., 93, 59–69CrossRefGoogle Scholar
Bertrand, V., Hudson, C., Caillol, D., Popovici, C. and Lemaire, P. (2003). Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell, 115, 615–27CrossRefGoogle Scholar
Bouwmeester, T., Kim, S., Sasai, Y., Lu, B. and Robertis, E. M. (1996). Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature, 382, 595–601CrossRefGoogle ScholarPubMed
Bovolenta, P., Mallamaci, A., Puelles, L. and Boncinelli, E. (1998). Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mech. Dev., 70, 201–3CrossRefGoogle ScholarPubMed
Brun, R. B. (1981). The movement of the prospective eye vesicles from the neural plate into the neural fold in Ambystoma mexicanum and Xenopus laevis. Dev. Biol., 88, 192–9CrossRefGoogle ScholarPubMed
Callaerts, P., Halder, G. and Gehring, W. J. (1997). PAX-6 in development and evolution. Annu. Rev. Neurosci., 20, 483–532CrossRefGoogle ScholarPubMed
Carl, M., Loosli, F. and Wittbrodt, J. (2002). Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development, 129, 4057–63Google ScholarPubMed
Casarosa, S., Andreazzoli, M., Simeone, A. and Barsacchi, G. (1997). Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mech. Dev., 61, 187–98CrossRefGoogle ScholarPubMed
Cavodeassi, F., Carreira-Barbosa, F.Young, R. M.et al. (2005). Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron, 47, 43–56CrossRefGoogle ScholarPubMed
Chen, R., Amoui, M., Zhang, Z. and Mardon, G. (1997). Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell, 91, 893–903CrossRefGoogle Scholar
Chiang, C., Litingtung, , Lee, Y., , E.et al. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383, 407–13CrossRefGoogle ScholarPubMed
Chow, R. L., Altmann, C. R., Lang, R. A. and Hemmati-Brivanlou, A. (1999). Pax6 induces ectopic eyes in a vertebrate. Development, 126, 4213–22Google Scholar
Chuang, J. C. and Raymond, P. A. (2001). Zebrafish genes rx1 and rx2 help define the region of forebrain that gives rise to retina. Dev. Biol., 231, 13–30CrossRefGoogle Scholar
Chuang, J. C. and Raymond, P. A. (2002). Embryonic origin of the eyes in teleost fish. BioEssays, 24, 519–29CrossRefGoogle ScholarPubMed
Chuang, J. C., Mathers, P. H. and Raymond, P. A. (1999). Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech. Dev., 84, 195–8CrossRefGoogle ScholarPubMed
Czerny, T., Halder, , Kloter, G., , U.et al. (1999). Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol. Cell, 3, 297–307CrossRefGoogle ScholarPubMed
Davenport, T. G., Jerome-Majewska, L. A. and Papaioannou, V. E. (2003). Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development, 130, 2263–73CrossRefGoogle ScholarPubMed
Eagleson, G. W. and Harris, W. A. (1990). Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J. Neurobiol., 21, 427–40CrossRefGoogle ScholarPubMed
Eagleson, G., Ferreiro, B. and Harris, W. A. (1995). Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. J. Neurobiol, 28, 146–58CrossRefGoogle ScholarPubMed
Ekker, S. C., Ungar, , Greenstein, A. R., , P.et al. (1995). Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol., 5, 944–55CrossRefGoogle ScholarPubMed
Esteve, P., Lopez-Rios, J. and Bovolenta, P. (2004). SFRP1 is required for the proper establishment of the eye field in the medaka fish. Mech. Dev., 121, 687–701CrossRefGoogle ScholarPubMed
Feldman, B., Gates, M. A., Egan, E. S.et al. (1998). Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature, 395, 181–5CrossRefGoogle ScholarPubMed
Fernandez-Garre, P., Rodriguez-Gallardo, L., Gallego-Diaz, V., Alvarez, I. S. and Puelles, L. (2002). Fate map of the chicken neural plate at stage 4. Development, 129, 2807–22Google ScholarPubMed
Gallagher, B. C., Hainski, A. M. and Moody, S. A. (1991). Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus. Development, 112, 1103–14Google ScholarPubMed
Goudreau, G., Petrou, P., Reneker, L. W.et al. (2002). Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc. Natl. Acad. Sci. U. S. A., 99, 8719–24CrossRefGoogle ScholarPubMed
Grinblat, Y., Gamse, J., Patel, M. and Sive, H. (1998). Determination of the zebrafish forebrain: induction and patterning. Development, 125, 4403–16Google ScholarPubMed
Grindley, J. C., Davidson, D. R. and Hill, R. E. (1995). The role of Pax-6 in eye and nasal development. Development, 121, 1433–42Google ScholarPubMed
Gritsman, K., Zhang, J., Cheng, S.et al. (1999). The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell, 97, 121–32CrossRefGoogle ScholarPubMed
Halder, G., Callaerts, P. and Gehring, W. J. (1995). Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science, 267, 1788–92CrossRefGoogle ScholarPubMed
Halder, G., Callaerts, P., Flister, S.et al. (1998). Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development, 125, 2181–91Google ScholarPubMed
Hammerschmidt, M., Pelegri, F., Mullins, M. C.et al. (1996). Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development, 123, 143–51Google ScholarPubMed
Harrelson, Z., Kelly, R. G., Goldin, S. N.et al. (2004). Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development, 131, 5041–52CrossRefGoogle ScholarPubMed
Hatta, K., Kimmel, C. B., Ho, R. K. and Walker, C. (1991). The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature, 350, 339–41CrossRefGoogle ScholarPubMed
Heisenberg, C. P. and Nusslein-Volhard, C. (1997). The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev. Biol., 184, 85–94CrossRefGoogle ScholarPubMed
Heisenberg, C. P., Brand, M., Jiang, Y. J.et al. (1996). Genes involved in forebrain development in the zebrafish, Danio rerio. Development, 123, 191–203Google ScholarPubMed
Heisenberg, C. P., Houart, C., Take-Uchi, M.et al. (2001). A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev., 15, 1427–34CrossRefGoogle ScholarPubMed
Hill, R. E., Favor, J., Hogan, B. L.et al. (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature, 354, 522–5CrossRefGoogle Scholar
Hirsch, N. and Harris, W. A. (1997). Xenopus Pax-6 and retinal development. J. Neurobiol., 32, 45–613.0.CO;2-E>CrossRefGoogle ScholarPubMed
Hollemann, T., Bellefroid, E. and Pieler, T. (1998). The Xenopus homologue of the Drosophila gene tailless has a function in early eye development. Development, 125, 2425–32Google Scholar
Houart, C., Westerfield, M. and Wilson, S. W. (1998). A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature, 391, 788–92CrossRefGoogle ScholarPubMed
Houart, C., Caneparo, L., Heisenberg, C.et al. (2002). Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron, 35, 255–65CrossRefGoogle ScholarPubMed
Hsu, D. R., Economides, A. N., Wang, X., Eimon, P. M. and Harland, R. M. (1998). The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell, 1, 673–83CrossRefGoogle ScholarPubMed
Huang, S. and Moody, S. A. (1993). The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. J. Neurosci., 13, 3193–210CrossRefGoogle ScholarPubMed
Inoue, T., Nakamura, S. and Osumi, N. (2000). Fate mapping of the mouse prosencephalic neural plate. Dev. Biol., 219, 373–83CrossRefGoogle ScholarPubMed
Isaacs, H. V., Andreazzoli, M. and Slack, J. M. (1999). Anteroposterior patterning by mutual repression of orthodenticle and caudal-type transcription factors. Evol. Dev., 1, 143–52CrossRefGoogle ScholarPubMed
Kimmel, C. B., Warga, R. M. and Schilling, T. F. (1990). Origin and organization of the zebrafish fate map. Development, 108, 581–94Google ScholarPubMed
Klein, P. S. and Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. U. S. A., 93, 8455–9CrossRefGoogle ScholarPubMed
Krauss, S., Concordet, J. P. and Ingham, P. W. (1993). A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell, 75, 1431–44CrossRefGoogle ScholarPubMed
Kumar, J. P. and Moses, K. (2001). EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell, 104, 687–97CrossRefGoogle ScholarPubMed
Kuroda, H., Wessely, O. and Robertis, E. M. (2004). Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol., 2, E92CrossRefGoogle ScholarPubMed
Lagutin, O., Zhu, C. C., Furuta, Y.et al. (2001). Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Dev. Dyn., 221, 342–9CrossRefGoogle ScholarPubMed
Lagutin, O. V., Zhu, C. C., Kobayashi, D.et al. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev., 17, 368–79CrossRefGoogle ScholarPubMed
Lewis, W. H. (1907). Experiments on the origin and differentiation of the optic vesicle in amphibia. Am. J. Anat., 7, 259–76CrossRefGoogle Scholar
Li, H. S., Yang, J. M., Jacobson, R. D., Pasko, D. and Sundin, O. (1994). Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev. Biol., 162, 181–94CrossRefGoogle Scholar
Li, H., Tierney, C., Wen, L., Wu, J. Y. and Rao, Y. (1997). A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development, 124, 603–15Google ScholarPubMed
Li, X., Perissi, V., Liu, F., Rose, D. W. and Rosenfeld, M. G. (2002). Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science, 297, 1180–3Google ScholarPubMed
Logan, C. Y. and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol., 20, 781–810CrossRefGoogle ScholarPubMed
Loosli, F., Winkler, S. and Wittbrodt, J. (1999). Six3 over-expression initiates the formation of ectopic retina. Genes Dev., 13, 649–54CrossRefGoogle Scholar
Loosli, F., Winkler, S., Burgtorf, C.et al. (2001). Medaka eyeless is the key factor linking retinal determination and eye growth. Development, 128, 4035–44Google ScholarPubMed
Loosli, F., Staub, W., Finger-Baier, K. C.et al. (2003). Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep., 4, 894–9CrossRefGoogle ScholarPubMed
Lopashov, G. V. and Stroeva, O. G. (1964). Development of the Eye; Experimental Studies. New York, NY: D. DaveyGoogle Scholar
Macdonald, R., Barth, K. A., Xu, Q.et al. (1995). Midline signaling is required for Pax gene regulation and patterning of the eyes. Development, 121, 3267–78Google ScholarPubMed
Mangold, O. (1931). Das Determinationsproblem. III. Das Wirbeltierauge in der Entwicklung und Regeneration. Ergeb Biol., 7, 196–403Google Scholar
Mao, B., Wu, W., Li, Y.et al. (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 411, 321–5CrossRefGoogle ScholarPubMed
Marlow, F., Zwartkruis, F., Malicki, J.et al. (1998). Functional interactions of genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primordium in zebrafish. Dev. Biol., 203, 382–99CrossRefGoogle ScholarPubMed
Mathers, P. H., Grinberg, A., Mahon, K. A. and Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature, 387, 603–7CrossRefGoogle ScholarPubMed
Maurus, D., Heligon, C., Burger-Schwarzler, A., Brandli, A. W. and Kuhl, M. (2005). Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis. EMBO J., 24, 1181–91CrossRefGoogle ScholarPubMed
Mikkola, I., Bruun, J. A., Holm, T. and Johansen, T. (2001). Superactivation of Pax6-mediated transactivation from paired domain-binding sites by DNA-independent recruitment of different homeodomain proteins. J. Biol. Chem., 276, 4109–18CrossRefGoogle ScholarPubMed
Moens, C. B., Yan, Y. L., Appel, B., Force, A. G. and Kimmel, C. B. (1996). valentino: a zebrafish gene required for normal hindbrain segmentation. Development, 122, 3981–90Google ScholarPubMed
Moody, S. A. (1987). Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev. Biol., 122, 300–19CrossRefGoogle ScholarPubMed
Moore, K. B. and Moody, S. A. (1999). Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus. Dev. Biol., 212, 25–41CrossRefGoogle ScholarPubMed
Muller, F., Albert, S., Blader, P.et al. (2000). Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development, 127, 3889–97Google ScholarPubMed
Nasevicius, A. and Ekker, S. C. (2000). Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet., 26, 216–20CrossRefGoogle ScholarPubMed
Nieuwkoop, P. D. (1963). Pattern formation in artificially activated ectoderm (Rana pipiens and Ambystoma punctatum). Dev. Biol., 7, 255–79CrossRefGoogle Scholar
Nieuwkoop, P. D. and Nigtevecht, G. V. (1954). Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in urodeles. J. Embryol. Exp. Morphol., 2, 175–93Google Scholar
Nieuwkoop, P. D., Botterenbrood, E. C., Kremer, A.et al. (1952). Activation and organization of the central nervous system in Amphibians. J. Exp. Zool., 120, 1–108CrossRefGoogle Scholar
Nomura, M. and Li, E. (1998). Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature, 393, 786–90CrossRefGoogle ScholarPubMed
Odenthal, J. and Nusslein-Volhard, C. (1998). Fork head domain genes in zebrafish. Dev. Genes Evol., 208, 245–58CrossRefGoogle ScholarPubMed
Ohuchi, H., Tomonari, S., Itoh, H., Mikawa, T. and Noji, S. (1999). Identification of chick rax/rx genes with overlapping patterns of expression during early eye and brain development. Mech. Dev., 85, 193–5CrossRefGoogle ScholarPubMed
Oliver, G., Mailhos, A., Wehr, R.et al. (1995). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development, 121, 4045–55Google ScholarPubMed
Oliver, G., Loosli, F., Koster, R., Wittbrodt, J. and Gruss, P. (1996). Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev., 60, 233–9CrossRefGoogle ScholarPubMed
Papaioannou, V. E. (2001). T-box genes in development: from hydra to humans. Int. Rev. Cytol., 207, 1–70CrossRefGoogle Scholar
Pera, E. M. and Kessel, M. (1997). Patterning of the chick forebrain anlage by the prechordal plate. Development, 124, 4153–62Google ScholarPubMed
Perron, M., Boy, S., Amato, M. A.et al. (2003). A novel function for Hedgehog signaling in retinal pigment epithelium differentiation. Development, 130, 1565–77CrossRefGoogle ScholarPubMed
Piccolo, S., Agius, E., Leyns, L.et al. (1999). The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature, 397, 707–10CrossRefGoogle ScholarPubMed
Pignoni, F., Hu, B., Zavitz, K. H.et al. (1997). The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell, 91, 881–91CrossRefGoogle Scholar
Pogoda, H. M., Solnica-Krezel, L., Driever, W. and Meyer, D. (2000). The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr. Biol., 10, 1041–9CrossRefGoogle ScholarPubMed
Porter, F. D., Drago, J., Xu, Y.et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development, 124, 2935–44Google ScholarPubMed
Punzo, C., Plaza, S., Seimiya, M.et al. (2004). Functional divergence between eyeless and twin of eyeless in Drosophila melanogaster. Development, 131, 3943–53. Erratum in Development 2004 Sep, 131, 4635CrossRefGoogle ScholarPubMed
Quiring, R., Walldorf, U., Kloter, U. and Gehring, W. J. (1994). Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science, 265, 785–9CrossRefGoogle ScholarPubMed
Rasmussen, J. T., Deardorff, M. A., Tan, C.et al. (2001). Regulation of eye development by frizzled signaling in Xenopus. Proc. Natl. Acad. Sci. U. S. A., 98, 3861–6CrossRefGoogle ScholarPubMed
Rebagliati, M. R., Toyama, R., Haffter, P. and Dawid, I. B. (1998). Cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. U. S. A., 95, 9932–7CrossRefGoogle ScholarPubMed
Richard-Parpaillon, L., Heligon, C., Chesnel, F., Boujard, D. and Philpott, A. (2002). The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev. Biol., 244, 407–17CrossRefGoogle ScholarPubMed
Roessler, E., Belloni, E., Gaudenz, K.et al. (1996). Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet., 14, 357–60CrossRefGoogle ScholarPubMed
Saha, M. S. and Grainger, R. M. (1992). A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus. Neuron, 8, 1003–14CrossRefGoogle ScholarPubMed
Sampath, K., Rubinstein, A. L., Cheng, A. M.et al. (1998). Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signaling. Nature, 395, 185–9CrossRefGoogle Scholar
Seimiya, M. and Gehring, W. J. (2000). The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development, 127, 1879–86Google ScholarPubMed
Seo, H. C., Drivenes, O.Ellingsen, S. and Fjose, A. (1998). Expression of two zebrafish homologs of the murine Six3 gene demarcates the initial eye primordia. Mech. Dev., 73, 45–57CrossRefGoogle Scholar
Shimamura, K. and Rubenstein, J. L. (1997). Inductive interactions direct early regionalization of the mouse forebrain. Development, 124, 2709–18Google ScholarPubMed
Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. and Rubenstein, J. L. (1995). Longitudinal organization of the anterior neural plate and neural tube. Development, 121, 3923–33Google ScholarPubMed
Shinya, M., Eschbach, C., Clark, M., Lehrach, H. and Furutani-Seiki, M. (2000). Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech. Dev., 98, 3–17CrossRefGoogle ScholarPubMed
Silva, A. C., Filipe, M., Kuerner, K. M., Steinbeisser, H. and Belo, J. A. (2003). Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development, 130, 4943–53CrossRefGoogle ScholarPubMed
Song, J., Oh, S. P., Schrewe, H.et al. (1999). The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev. Biol., 213, 157–169CrossRefGoogle ScholarPubMed
Spemann, H. (1901). Uber Correlationen in der Entwickelung des Auges. Verh. Anat. Ges., 15, 61–79Google Scholar
Stenman, J., Yu, R. T., Evans, R. M. and Campbell, K. (2003). Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development, 130, 1113–22CrossRefGoogle ScholarPubMed
Stern, C. D. (2002). Induction and initial patterning of the nervous system – the chick embryo enters the scene. Curr. Opin. Genet. Dev., 12, 447–51CrossRefGoogle ScholarPubMed
Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. and Stern, C. D. (2000). Initiation of neural induction by FGF signaling before gastrulation. Nature, 406, 74–8CrossRefGoogle ScholarPubMed
Takabatake, Y., Takabatake, T., Sasagawa, S. and Takeshima, K. (2002). Conserved expression control and shared activity between cognate T-box genes Tbx2 and Tbx3 in connection with Sonic hedgehog signaling during Xenopus eye development. Dev. Growth Differ., 44, 257–71CrossRefGoogle ScholarPubMed
Toy, J. and Sundin, O. H. (1999). Expression of the optx2 homeobox gene during mouse development. Mech. Dev., 83, 183–6CrossRefGoogle ScholarPubMed
Toy, J., Yang, J. M., Leppert, G. S. and Sundin, O. H. (1998). The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc. Natl. Acad. Sci. U. S. A., 95, 10643–8CrossRefGoogle ScholarPubMed
Tucker, P., Laemle, L., Munson, A.et al. (2001). The eyeless mouse mutation (ey1) removes an alternative start codon from the Rx/rax homeobox gene. Genesis, 31, 43–53CrossRefGoogle ScholarPubMed
Uren, A., Reichsman, F., Anest, V.et al. (2000). Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem., 275, 4374–82CrossRefGoogle ScholarPubMed
Water, S., Wetering, M.Joore, J.et al. (2001). Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development, 128, 3877–88Google ScholarPubMed
Varga, Z. M., Wegner, J. and Westerfield, M. (1999). Anterior movement of ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development, 126, 5533–46Google ScholarPubMed
Viczian, A. S., Bang, A. G., Harris, W. A. and Zuber, M. E. (2006). Expression of Xenopus laevis Lhx2 during eye development and evidence for divergent expression among vertebrates. Dev. Dyn., 235, 1133–41CrossRefGoogle ScholarPubMed
Voronina, V. A., Kozhemyakina, E. A., Kernick, O' C. M.et al. (2004). Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum. Mol. Genet., 13, 315–22CrossRefGoogle Scholar
Walther, C. and Gruss, P. (1991). Pax-6, a murine paired box gene, is expressed in the developing CNS. Development, 113, 1435–49Google ScholarPubMed
Wargelius, A., Seo, H. C., Austbo, L. and Fjose, A. (2003). Retinal expression of zebrafish six3.1 and its regulation by Pax6. Biochem. Biophys. Res. Commun., 309, 475–81CrossRefGoogle ScholarPubMed
Wawersik, S. and Maas, R. L. (2000). Vertebrate eye development as modeled in Drosophila. Hum. Mol. Genet., 9, 917–25CrossRefGoogle ScholarPubMed
Wilson, S. I. and Edlund, T. (2001). Neural induction: toward a unifying mechanism. Nat. Neurosci., 4 (Suppl.), 1161–8CrossRefGoogle Scholar
Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. and Edlund, T. (2000). An early requirement for FGF signaling in the acquisition of neural cell fate in the chick embryo. Curr. Biol., 10, 421–9CrossRefGoogle ScholarPubMed
Winkler, S., Loosli, F., Henrich, T., Wakamatsu, Y. and Wittbrodt, J. (2000). The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development, 127, 1911–19Google Scholar
Woo, K. and Fraser, S. E. (1995). Order and coherence in the fate map of the zebrafish nervous system. Development, 121, 2595–609Google ScholarPubMed
Yu, R. T., Chiang, M. Y., Tanabe, T.et al. (2000). The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision. Proc. Natl. Acad. Sci. U. S. A., 97, 2621–5CrossRefGoogle ScholarPubMed
Zhang, L., Mathers, P. H. and Jamrich, M. (2000). Function of Rx, but not Pax6, is essential for the formation of retinal progenitor cells in mice. Genesis, 28, 135–423.0.CO;2-P>CrossRefGoogle Scholar
Zhou, X., Hollemann, T., Pieler, T. and Gruss, P. (2000). Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mech. Dev., 91, 327–30CrossRefGoogle ScholarPubMed
Zuber, M. E., Perron, M., Philpott, A., Bang, A. and Harris, W. A. (1999). Giant eyes in Xenopus laevis by over-expression of XOptx2. Cell, 98, 341–52CrossRefGoogle Scholar
Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. and Harris, W. A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development, 130, 5155–67CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Formation of the eye field
    • By Michael E. Zuber, Department of Ophthalmology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA, William A. Harris, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Formation of the eye field
    • By Michael E. Zuber, Department of Ophthalmology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA, William A. Harris, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Formation of the eye field
    • By Michael E. Zuber, Department of Ophthalmology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA, William A. Harris, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.004
Available formats
×