We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A 71-year-old man was admitted for gradually difficult walking for 3 years along with memory impairment and urinary incontinence for 1 year. At first, this patient just complained of weakness while walking and dizziness. He was treated for arterial hypertension; however, no relief was obtained. He experienced more difficulties in walking and initiating steps. Besides these symptoms, his memory and thinking ability declined. His wife found that he responded slowly with personality change from a talkative and considerative gentleman to a silent man with apathy. The patient often felt urinary urgency, sometimes with incontinence. It was considered as symptoms of prostate hypertrophy. He was referred to a neurologist and MRI reported some lacunar infarctions and brain atrophy (retrospectively, lateral ventricles enlargement already existed). His Mini-Mental State Examination (MMSE) score was 18 points. Lumbar puncture (LP) was performed and cerebrospinal fluid (CSF) results were normal. The patient was diagnosed as having vascular dementia, hypertension and treated with neuroprotective agents and antihypertensives. After hospitalization, his symptoms were temporarily and partially relieved. His MMSE score was improved to 24 points when he was discharged.
Limited literatures report the management of congenital left atrial appendage aneurysm (LAAA) which is extremely rare. Chest X-ray firstly showed an enlarged left cardiac silhouette for a 3-year-old patient with pneumonia. Echocardiography and magnetic resonance imaging confirmed a large cyst attached to the left atrium. Aneurysmectomy was performed through lateral thoracotomy using step-by-step method and under the guidance of transoesophageal echocardiography. We aim to show the safety and efficacy of this approach applied to children associated with congenital LAAA.
The mortality of coronavirus disease 2019 (COVID-19) differs between countries and regions. This study aimed to clarify the clinical characteristics of imported and second-generation cases in Shaanxi. This study included 134 COVID-19 cases in Shaanxi outside Wuhan. Clinical data were compared between severe and non-severe cases. We further profiled the dynamic laboratory findings of some patients. In total, 34.3% of the 134 patients were severe cases, 11.2% had complications. As of 7 March 2020, 91.8% patients were discharged and one patient (0.7%) died. Age, lymphocyte count, C-reactive protein, erythrocyte sedimentation rate, direct bilirubin, lactate dehydrogenase and hydroxybutyrate dehydrogenase showed difference between severe and no-severe cases (all P < 0.05). Baseline lymphocyte count was higher in survived patients than in non-survivor case, and it increased as the condition improved, but declined sharply when death occurred. The interleukin-6 (IL-6) level displayed a downtrend in survivors, but rose very high in the death case. Pulmonary fibrosis was found on later chest computed tomography images in 51.5% of the pneumonia cases. Imported and second-generation cases outside Wuhan had a better prognosis than initial cases in Wuhan. Lymphocyte count and IL-6 level could be used for evaluating prognosis. Pulmonary fibrosis as the sequelae of COVID-19 should be taken into account.
CHD is closely related to respiratory system diseases (Mok Q, Front Pediatr 2017; 5: 2296–2360). Flexible fibreoptic bronchoscopy will diagnose anatomical lesions of the trachea and perform interventions at the same time for children with indications. We report a case of pulmonary artery sling with severe tracheostenosis in a 11-month-old boy. Tracheal stents were placed with good prognosis.
Unmanned aerial vehicle (UAV) was introduced for nondeterministic traffic monitoring, and a real-time UAV cruise route planning approach was proposed for road segment surveillance. First, critical road segments are defined so as to identify the visiting and unvisited road segments. Then, a UAV cruise route optimization model is established. Next, a decomposition-based multi-objective evolutionary algorithm (DMEA) is proposed. Furthermore, a case study with two scenarios and algorithm sensitivity analysis are conducted. The analysis result shows that DMEA outperforms other two commonly used algorithms in terms of calculation time and solution quality. Finally, conclusions and recommendations on UAV-based traffic monitoring are presented.
In mainland China, the clinical, epidemiological and genetic features of non-O1/non-O139 Vibrio cholerae (NOVC) bacteraemia have been scarcely investigated. Herein, we describe a patient with NOVC bacteraemia diagnosed in our hospital and present a retrospective analysis of literature reports of 32 other cases in China, detailing the clinical epidemiology, antibiotic resistance and molecular characteristics of isolates. Most patients were male (84.8%; median age, 53 years) and had predisposing factors, such as cirrhosis, malignant tumours, blood diseases and diabetes. In addition to fever, gastroenteritis was the most frequent presenting symptom. The mortality rate during hospitalisation was 12.1%. NOVC bacteraemia cases were more common in June–August, with the majority in coastal provinces and the Yangtze River basin. Only 42.4% of cases were attributed to consumption of marine (aquatic) products. Tetracycline, third-generation cephalosporins, and fluoroquinolones were the most effective antimicrobial agents, and the highest frequencies of resistance were recorded for ampicillin/sulbactam (37.5%), amoxicillin/clavulanic acid (33.3%), ampicillin (29.2%) and sulfamethoxazole (20%). Multi-drug resistant isolates were not detected. Limited data indicate that ctxAB and tcpA genes were absent in all NOVC isolates but other putative virulence genes (hlyA, toxR, hap and rtxA) were common. Ten multilocus sequence types were identified with marked genetic heterogeneity between different isolates. As clinical manifestations of NOVC bacteraemia may vary widely, and isolates exhibit genetic diversity, clinicians and public health experts should be alerted to the possibility of infection with this pathogen because of the high prevalence of liver disease in China.
The LiCoO2 films were directly deposited on stainless steel (SS) using medium-frequency magnetron sputtering, and the effects of annealing parameters, such as ambiences, temperatures, holding times, and heating rates, were systematically compared based on surface morphologies, crystal structures, and electrochemical properties. The results demonstrate that an aerobic atmosphere with 3.5 Pa is the most important parameter to maintain the performance of LiCoO2 films. The influence of the annealing temperature (>550 °C) ranks second because the formed (101) or (104) planes of LiCoO2 facilitate Li+ migration. A short holding time of 20 min and a moderate heating rate of 3 °C/min are selected to reduce the oxidation or inter-diffusion between the LiCoO2 films and the SS substrate. Finally, the optimal annealing process is confirmed and corresponds to the initial discharge capacity of 37.56 μA h/(cm2 μm) and the capacity retention of 83.81% at the 50th cycle.
Using ethanol adsorption calorimetry, the surface energetics of two carbon substrates and two products in microwave-assisted carbon nanotube (CNT) growth was studied. In this study, the ethanol adsorption enthalpies of the two graphene-based samples at 25 °C were measured successfully. Specifically, the near-zero differential enthalpies of ethanol adsorption are −75.7 kJ/mol for graphene and −63.4 kJ/mol for CNT-grafted graphene. Subsequently, the differential enthalpy curve of each sample becomes less exothermic until reaching a plateau, −55.8 kJ/mol for graphene and −49.7 kJ/mol for CNT-grafted graphene, suggesting favorable adsorbate–adsorbent binding. Moreover, the authors interpreted and discussed the partial molar entropy and chemical potential of adsorption as the ethanol surface coverage (loading) increases. Due to the low surface areas of carbon black–based samples, adsorption calorimetry could not be performed. This model study demonstrates that using adsorption calorimetry as a fundamental tool and ethanol as the molecular probe, the overall surface energetics of high–surface area carbon materials can be estimated.
Littering is a highly diffused anti-environmental and anti-social behavior, especially among young people. Furthermore, cigarette butts are one of the most littered items and are responsible for both severe environmental damages and high clean up expenses. The aim of this project is to design an interactive ashtray for the campus environment to limit the cigarette butts littering behavior in an engaging and effective way. Qualitative and quantitative data are collected. Coded observations were implemented through the research process, including the 2 pre (without the prototype) and 2 pros (with the prototype) sessions. Also, user experience test and one to one interview were conducted for deepening the understanding of the littering phenomenon and the reasons behind in the behavior among young people. The prototype indeed reduced the number of cigarette butts littering among observed behaviors of 156 students, especially in male sample. Final results indicate the behavior change of disposers is moderated by other factors, as the environmental cleanliness. Future development is also discussed.
The hot compression behavior of as-extruded AZ31 magnesium alloy was investigated to study the effect of compression temperature and strain on microstructure evolution, grain orientation, and texture evolution. The thermal compression tests of AZ31 Mg alloy were carried out on the Gleeble-3800 simulation device: With constant strain, the temperatures were 250, 300, 400, and 500 °C, respectively; at constant temperature, the strains were 0.2, 0.4, 0.6, and 0.8, respectively. After observation and analysis of compressed samples, it is found that with 0.65 strain and 0.05 s−1 strain rate, grains were equiaxed, well refined, and distributed uniformly at 400 °C. At this temperature, new orientation between {0001} and
$\left{\rm\char123} {12\bar{1}0} {\rm\char125} \right$
or
$\left{\rm\char123} {01\bar{1}0} {\rm\char125} \right$
appeared in grains; new texture components close to
$\left{\rm\char123} {\bar{1}\bar{1}22} {\rm\char125} \right$
and
$\left{\rm\char123} {1\bar{2}12} {\rm\char125} \right$
pyramidal textures were formed, but whole texture strength was weakened and anisotropy of the sample was reduced. With the increase of strain, grains became smaller and volume fraction of DRX grain became higher; the original basal texture was replaced by prismatic textures; after 0.4 strain, the increase of strain did not change the texture component, but only the pole density.
M3:2 high-speed steel (HSS) billets with or without Nb addition were prepared by spray deposition. The effects of Nb and post-thermal-mechanical processing (decomposition treatment and hot forging), as well as heat treatment, on the microstructure and properties of M3:2 HSS were investigated. The microstructure of the as-deposited M3:2 HSS consisted of equiaxed grains with a mean size of approximately 25 μm and discontinuous plate-like M2C and irregular MC carbides distributed along grain boundaries. 0.5% Nb addition can refine the M2C plates and spheroidize MC carbides. With 2% Nb addition, the refined grains with a mean size of approximately 12 μm and continuous net of M6C and a uniform distribution of NbC carbides were obtained. The decomposition of metastable M2C carbides can be accelerated with 0.5% Nb addition due to the refined size and lower thermodynamic stability of M2C plates. With the increased degree of decomposition of M2C carbide, the M6C and MC carbides became refined and more uniformly distributed after optimal thermal-mechanical processing and heat treatment, which leads to a significant increase in bend strength and toughness.
FM-to-AM (frequency modulation-to-amplitude modulation) conversion caused by nonuniform spectral transmission of broadband beam is harmful to high-power laser facility. Smoothing by spectral dispersion (SSD) beam is a special broadband beam for its monochromatic feature at the given time and space on the near field. The traditional method which uses the optical spectral transfer function as filters cannot accurately describe its AM characteristics. This paper presents the theoretical analysis of the etalon effect for SSD beam. With a low-order approximation, the analytic model of the temporal shape of SSD beam is obtained for the first time, which gives the detailed AM characteristics at local and integral aspects, such as the variation of ripples width and amplitude in general situation. We also analyze the FM-to-AM conversion on the focal plane; in the focusing process, the lens simply acts as an integrator to smooth the AM of SSD beam. Because AM control is necessary for the near field to avoid optics damage and for the far field to ensure an optimal interaction of laser–target, our investigations could provide some important phenomena and rules for pulse shape control.
In indirect drive, reducing peak intensity of a single beam and controlling overlap of multi-beams are two opposite requirements for laser focal spot design. In this paper, an improved laser spot design technique for indirect drive built upon the geometric structures of laser propagation into hohlraum has been introduced. The proposed technique is able to generate appropriate continuous phase plate (CPP) producing a special shaped spot that can balance the opposite requirements. The corresponding CPP does not bring difficulties to the design and fabrication. Phase aberrations are more sensitive to the special shaped spot; however, it can be tolerable for the current beam control level.
The Weihe River in central China is the largest tributary of the Yellow River and contains a well-developed strath terrace system. A new chronology for the past 1.11 Ma for a spectacular flight of strath terraces along the upper Weihe River near Longxi is defined based on field investigations of loess—paleosol sequences and magnetostratigraphy. All the strath terraces are strikingly similar, having several meters of paleosols that have developed directly on top of fluvial deposits located on the terrace treads. This suggests that the abandonment of each strath terrace by river incision occurred during the transition from glacial to interglacial climates. The average fluvial incision rates during 1.11—0.71 Ma and since 0.13 Ma are 0.35 and 0.32 m/ka, respectively. These incision rates are considerably higher than the average incision rate of 0.16 m/km for the intervening period between 0.71 and 0.13 Ma. Over all our results suggest that cyclic Quaternary climate change has been the main driving factor for strath terrace formation with enhanced episodic uplift.
This study aimed to describe the frequency and temporal profile of acute cerebral infarction (ACI) using a continuous glucose monitoring system (CGMS) in patients with and without type 2 diabetes mellitus (T2DM) and explore the impact of blood glucose fluctuations on the short-term prognosis of ACI.
Methods:
The subjects were divided into four groups: T2DM with acute cerebral infarction (DMCI, Group A, n=56); T2DM without acute cerebral infarction (DM-NCI, Group B, n=36); Acute cerebral infarction patients without T2DM (NDM-CI, Group C, n=54); Healthy control group (NG, Group D, n=36). The National Institutes of Health Stoke Scale (NIHSS) and modified Rankin scale (mRs) were collected in Group A and C. All subjects were monitored for 72 hours using the CGMS. Indices such as fasting blood glucose (FBG) and mean amplitude of glycemic excursions (MAGE) were calculated. Glycemic excursions were compared between Group A, B, C and Group D, respectively. Multiple linear regression analysis and logistic analysis was applied.
Results:
MAGE is related to NIHSS, homocysteine (HCY), HOMA-IR, FBG, CRP and IMT, while NIHSS is related to CRP, HCY, HOMA-IR, IMT. The factors impacting the short-term prognosis of ACI were NIHSS, HBA1C and MAGE.
Conclusion:
Larger glucose fluctuations are associated with more stroke risk factors and are associated with a poorer short-term prognosis. More attention should be paid to glucose fluctuations in patients with ACI and a history of T2DM.
Toxoplasma gondii is a major cause of congenital brain disease; however, the underlying mechanism of neuropathogenesis in brain toxoplasmosis remains elusive. To explore the role of T. gondii in the development of neural stem cells (NSCs), NSCs were isolated from GD14 embryos of ICR mice and were co-cultured with tachyzoites of T. gondii RH strain. We found that apoptosis levels of the NSCs co-cultured with 1×106 RH tachyzoites for 24 and 48 h significantly increased in a dose-dependent manner, as compared with the control. Western blotting analysis displayed that the protein level of C/EBP homologous protein (CHOP) was up-regulated, and caspase-12 and c-Jun N-terminal kinase (JNK) were activated in the NSCs co-cultured with the parasites. Pretreatment with endoplasmic reticulum stress (ERS) inhibitor (TUDCA) and caspase-12 inhibitor (Z-ATAD-FMK) inhibited the expression or activation of the key molecules involved in the ERS-mediated apoptotic pathway, and subsequently decreased the apoptosis levels of the NSCs induced by the T. gondii. The findings here highlight that T. gondii induced apoptosis of the NSCs through the ERS signal pathway via activation of CHOP, caspase-12 and JNK, which may constitute a potential molecular mechanism responsible for the cognitive disturbance in neurological disorders of T. gondii.
An energy measurement system in a Large-aperture high power laser experiment platform
is introduced. The entire measurement system includes five calorimeters, which carry
out the energy measurement of the fundamental frequency before the frequency
conversion unit, remaining fundamental frequency, remain second-harmonics, third
harmonics, as well as the energy balance measurement after the frequency conversion
unit. Combinational indirect calibration and direct calibration are employed to
calibrate the sampling coefficients of the calorimeters. The analysis of the data
showed that, regarding the energy balance coefficients, combinational calibration
approach gives a higher precision, and leads to an energy balance with 1%; and
regarding the energy sampling coefficients for the various wavelengths after the
frequency conversion, the results from direct and combinational calibration are
consistent. The uncertainties for all energy sampling coefficients are within 3%,
which guarantees the reliability of the energy measurement for the laser
facility.
A fully higher-order compact (HOC) finite difference scheme on the 9-point two-dimensional (2D) stencil is formulated for solving the steady-state laminar mixed convection flow in a lid-driven inclined square enclosure filled with water-Al2O3 nanofluid. Two cases are considered depending on the direction of temperature gradient imposed (Case I, top and bottom; Case II, left and right). The developed equations are given in terms of the stream function-vorticity formulation and are non-dimensionalized and then solved numerically by a fourth-order accurate compact finite difference method. Unlike other compact solution procedure in literature for this physical configuration, the present method is fully compact and fully higher-order accurate. The fluid flow, heat transfer and heat transport characteristics were illustrated by streamlines, isotherms and averaged Nusselt number. Comparisons with previously published work are performed and found to be in excellent agreement. A parametric study is conducted and a set of graphical results is presented and discussed to elucidate that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers.
The split Hopkinson pressure bar (SHPB) was used to study the compressibility of shear thickening fluid (STF) at high deformation rate. In this study, a steel bulk was introduced into the SHPB system to confine and load the STF. A series of STFs with different particle types (SiO2 and PSt-EA) and volume fractions (63 vol.% and 65 vol.%) were tested and the results were compared. The reliability of the results was proved by repeating the tests and the force balance in suspension. The bulk modulus was used to evaluate the compressibility of STF, which indicated that the SiO2-based STF exhibited a larger compressibility than the PSt-EA-based STF. It was found that the bulk modulus increases with increasing of the strain rate and the volume fraction shows little effect on the bulk modulus. The structure-dependent mechanical property was analyzed and the loading effect of bulk modulus was considered to be originated from the interparticle clustering.
Fast linear transformer driver (FLTD) has some advantages in repetitive operation compared with traditional pulsed power generators. However, different types of gas switches applied in the field of pulsed power technology in recent years cannot reach the requirements of repetitive operation of FLTD. Therefore, the capability of repetitive operation of a multigap gas switch has been investigated in a circuit similar to the basic discharge loop named as brick in this paper. The switch has been triggered more than 2000 times and the distribution of delay time and switch jitter are analyzed and reported. Also, the self-breakdown voltages of the switch during different segments of the triggered breakdown experiment have been tested. The experimental results indicate that the delay time obeys the Gauss distribution and the jitter of 2000 times of discharge is about 2.3 ns.