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Abstract

Echinococcus shiquicus is peculiar to the Qinghai–Tibet plateau of China. Research on this
parasite has mainly focused on epidemiological surveys and life cycle studies. So far, limited
laboratory studies have been reported. Here, experimental infection of E. shiquicus metaces-
tode in BALB/c mice and Mongolian jirds (Meriones unguiculatus) was carried out to estab-
lish alternative laboratory animal models. Intraperitoneal inoculation of metacestode material
containing protoscoleces (PSCs) obtained from infected plateau pikas were conducted on
BALB/c mice. Furthermore, metacestode material without PSCs deriving from infected
BALB/c mice was intraperitoneally inoculated to Mongolian jirds. Experimental animals
were dissected for macroscopic and histopathological examination. The growth of cysts in
BALB/c mice was infiltrative, and they invaded the murine entire body. Most of the metaces-
tode cysts were multicystic, but a few were unilocular. The cysts contained sterile vesicles,
which had no PSCs. The metacestode materials were able to successfully infect new mice.
In the jirds model, E. shiquicus cysts were typically formed freely in the peritoneal cavity;
the majority of these cysts were free while a small portion adhered loosely to nearby organs.
The proportion of fertile cysts was high, and contained many PSCs. The PSCs produced in
Mongolian jirds also successfully infected new ones, which confirms that jirds can serve as
an alternative experimental intermediate host. In conclusion, a laboratory animal infection
was successfully established for E. shiquicus using BALB/c mice and Mongolian jirds.
These results provide new models for the in-depth study of Echinococcus metacestode survival
strategy, host interactions and immune escape mechanism.

Introduction

Echinococcosis is one of the deadly zoonotic helminth diseases caused by the larval stages of
taeniid cestodes belonging to the genus Echinococcus (Wen et al., 2019; Wang et al., 2021). It
not only endangers human health, but also seriously affects the healthy development of animal
husbandry, and the economic cost incurred is approximately US$ 3 billion per year (Yu et al.,
2018; Fu et al., 2020). China is one of the countries with the most serious epidemic of echi-
nococcosis, with a threatened population of approximately 60 million and an average preva-
lence rate of 0.51% (Wu et al., 2018; Han et al., 2022). In China, Qinghai-Tibet Plateau is a
highly endemic area of echinococcosis, and about 80% of cases in China occur in this region
(Wu et al., 2018; Craig et al., 2019). Due to its distinct geological, geomorphic and climatic
features, the Qinghai-Tibet Plateau has emerged as one of the most important endemic regions
of echinococcosis in the world (Xiao et al., 2006; Craig et al., 2019). Therefore, the in-depth
study of echinococcosis and its pathogen in Qinghai-Tibet Plateau is of great significance
for the prevention and control of this disease.

Echinococcus shiquicus, as a new species of the genus Echinococcus spp. currently limited
and endemic to the Qinghai-Tibet plateau region of China, had been mistaken for E. multi-
locularis variant because of its morphologically similar presentation to E. multilocularis, and
was not identified as a separate species until 2005 based on morphological, molecular genetics,
geographical distribution and species evolution characteristics (Xiao et al., 2005, 2006; Yan
et al., 2021). Echinococcus shiquicus shares a closer evolutionary phylogenetic relationship
with E. multilocularis, which makes E. shiquicus a sister species to E. multilocularis (Nakao
et al., 2007; Knapp et al., 2011). However, the preference for intermediate hosts, the tissue
and organ tropism of Echinococcus metacestodes and the method of cyst proliferation, differ
significantly between these 2 Echinococcus species. Meanwhile, there are speculations that
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the speciation between both of them is a passive host transform-
ation as a result of the evolution of their intermediate hosts, which
eventually led to their ecological isolation and gave rise to 2 dis-
tinct species (Wang et al., 2020; Wu et al., 2021). Rodents, for
instance, plateau pika (Ochotona curzoniae), the plateau vole
(Neodon fuscus) and carnivorous’ mammals, predominantly
Tibetan foxes (Vulpes ferrilata) serve as intermediate and defini-
tive hosts, respectively (Jiang et al., 2012; Li et al., 2018, 2019; Han
et al., 2019). At present, E. shiquicus infection has been found in a
variety of wild animals such as plateau pika, plateau vole, lacus-
trine vole (Microtus limnophilus), Blyth’s mountain vole
(Phaiomys leucurus) and Tibetan foxes in Sichuan Province,
Qinghai Province, Tibet Autonomous Region, Gansu Province
and other provinces/autonomous regions in the Qinghai-Tibet
Plateau area, China (Boufana et al., 2013; Fan et al., 2016;
Wang et al., 2018; Weng et al., 2020; Zhu et al., 2020).
Although there has been no case reports of E. shiquicus infection
in humans and livestock to date, the zoonotic potential of this
species should not be overlooked (Weng et al., 2020; Zhu et al.,
2020; Yan et al., 2021). Currently, our understanding of E. shiqui-
cus is mainly based on epidemiological surveys and life cycle stud-
ies. So far, laboratory studies have not been reported due to the
lack of suitable laboratory animal research model.

Animal model plays a crucial role in the search for novel drugs,
immunological patterns and vaccine development (Zhang et al.,
2017). An ideal experimental model should be based on the nat-
ural host of the parasite, but domesticating plateau pika into an
experimental animal model is almost an impossible task.
Therefore, the establishment of alternative experimental animal
models for E. shiquicus metacestode would be of great significance
in understanding its growth and development, biological character-
istics and disease pathogenesis (Zhang et al., 2017). The common
secondary infection modes of laboratory models of Echinococcus
include intraperitoneal, intrahepatic, subcutaneous, chest and
brain injection of metacestode material. Intraperitoneal inoculation
of protoscoleces (PSCs) is easy to operate and easy to observe, and
is currently the most widely used animal model of echinococcosis
(Romig and Bilger, 1999).

In this study, we focused on establishing a stable and predict-
able growth pattern animal laboratory model of E. shiquicusmeta-
cestode by secondary infection of PSCs into the peritoneum of
BALB/c mice and Mongolian jirds, small rodent models com-
monly used in laboratories, which can provide a guarantee for
future studies on the biology and developmental biology of E.
shiquicus.

Materials and methods

Experimental animals

Plateau pikas were captured by traps in Shiqu County (Sichuan
Province, China) for the collection of cysts from infected lung tis-
sues. Mongolian jirds were purchased from Zhejiang Academy of
Medical Sciences and raised in the animal facility of Lanzhou
Veterinary Research Institute, Chinese Academy of Agricultural
Sciences (CAAS). BALB/c mice (25 g) were obtained from the
experimental animal centre of Lanzhou Veterinary Research
Institute, CAAS.

Collection and identification of protoscoleces

Cysts were collected from the lungs of infected plateau pika. Outer
cyst surfaces were rinsed with 70% ethanol, and then the cysts
were soaked in Dulbecco’s Phosphate Buffered Saline (DPBS)
containing 100 UmL− penicillin and 100 μg mL−p streptomycin
(DPBS-PS) (Gibco, USA), and immediately transported to the

lab for treatment. The following procedures were all completed
in a sterile setting. The fresh tissues preserved in DPBS were
first processed and the cysts were placed in a biosafety cabinet.
After 5–6 times of careful washing with DPBS, the cysts were
placed in a 60 mm cell culture dish (Corning, USA). Using sterile
ophthalmic scissors, cysts were opened to collect the contents
mainly including PSCs in 50 mL falcon tubes (Corning, USA).
The metacestode suspension was filtered using a 100 μm pore
size stainless-steel mesh, thus separating the PSCs from large
pieces of metacestode tissue. The flow through was filtered
through a 40 μm pore size cell strainer, separating the PSCs
from single cells and small cell clumps. The PSCs were then
washed off the cell strainer with DPBS, the PSCs in suspension
were picked out under a light microscope, and finally the collected
PSCs were washed 5 times with DPBS to pellet for 20 minutes
(Brehm et al., 2003). In the end, the precipitants (PSCs with a
few micro-vesicles and fragments) were kept in DPBS-PS. The
viability of PSCs was determined by staining with 0.1% methylene
blue, with dead PSCs staining blue.

Genomic DNA was extracted from the germinal layer of the
cysts according to the manufacturer’s instructions of the DNA
extraction kit (Qiagen, Germany). Amplification of the mitochon-
drial cox1 gene (471 bp) using forward primer (5′-GCT TTA AGT
GCG TGA CTT TTA ATC CC-3′) and reverse primer (5′-CAT
CAA AAC CAG CAC TAA TAC TCA-3′) was carried out for
all isolates. Positive control was also used (Liu et al., 2015). The
PCR condition was conducted according to the methods
described by Liu et al (Liu et al., 2015). Sequences of isolates suc-
cessfully sequenced (Beijing Tsingke Biotechnology Co., Ltd.,
Beijing, China) were performed with BLASTN analysis and com-
pared with those previously stored in GenBank. The remaining
intact cysts were fixed with 4% paraformaldehyde, embedded in
paraffin wax, and sections (4 μm) were stained with hematoxylin
and eosin (H&E) and periodic acid-Schiff (PAS), respectively.

Experimental inoculation of BALB/c mice

PSCs were injected intraperitoneally into 15 BALB/c mice (200
PSCs per mouse). Mice were kept at 20–24°C and 12:12 dark:
light photoperiod. The animals were euthanized at 1, 3 and 6
months’ post inoculation (p.i.) respectively, and necropsy was car-
ried out. The abdominal cavity was examined for the presence of
cysts and their growth and development were recorded.
Metacestodes were identified, and cyst contents were collected.
Briefly, the cysts were removed and rinsed with DPBS and the
outer surface of the cysts was blotted with filter paper. The
cysts were punctured, their contents were collected, and whether
PSCs exists in the cyst fluid precipitants under light microscopy
was observed. Also, the status of PSCs was recorded. Genomic
DNA was extracted from cysts’ contents for molecular identifica-
tion. Metacestode material (0.2 mL per mouse) was subsequently
serially passaged to new BALB/c mice to maintain the strain.
Furthermore, histopathological examination of E. shiquicus meta-
cestode was also conducted.

Experimental inoculation of Mongolian jirds

Subsequently, the metacestode material derived from infected
BALB/c mice was transferred by intraperitoneal inoculation into
15 Mongolian jirds (1 ml per jird) aged about 3 months. Those
animals were also kept at same environment similar to the
mice. The animals were euthanized at 2, 6, 12 months’ p.i., and
necropsy was carried out. The abdominal cavity was examined
for presence or absence of cysts. Metacestodes were separated,
and cyst contents were collected. PSCs were observed under
microscopic. Genomic DNA was extracted from PSCs for
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molecular identification as mentioned above. The PSCs (2000
PSCs per jird) were serially passaged to new Mongolian jirds.
Histopathologic examination of E. shiquicus metacestode was
also performed. Total content of cyst containing PSCs were col-
lected. Then its 10 μl were transferred to microscopic slide, and
it was covered with cover slip. Number of PSCs was examined
and counted under 40 × microscope. Finally, the total number
of PSCs per experimental animal was calculated.

Image acquisition and analysis

Bright field and histopathological images were acquired using an
inverted microscope (ZEISS, Axio Vert A1) equipped with a CCD
camera (ZEISS, Axiocam 305 colour). ZEN software (ZEISS
Corporation) and SPSS 12.0 (SPSS Inc.) were employed for
image acquisition and statistical data analysis, respectively.
Results are presented as the mean ± S.D.

Results

Collection and identification of protoscoleces

The cystic lesions of E. shiquicus in plateau pikas were enclosed
and separated by the internal division of fluid-filled cysts to
form multichambered cyst mass, and characterized by either
multilocular- or unilocular-cystic structures (Fig. 1a–c). The

surface of the cyst was smooth and whitish with clear cystic
fluid. The peripheral fibrous layer formed by the host appeared
to be thin that is why the cysts were easy to peel off. When trans-
ected in situ, the laminated layer of the cysts was visually observed
to be thin, and the fertile cysts (3–10 mm in diameter sized) were
observed overflowing from the metacestode cysts (Fig. 1d). The
PSCs were produced individually or in groups either directly
from the germinal layer of the cysts (Fig. 1e), and more than
95% of the PSCs were motile (Fig. 1f). Furthermore, most of
the PSCs were formed within brood capsulesin the metacestodes
shown in the sections stained with H&E (Fig. 1g), and the lami-
nated layers of the cysts were positive for PAS staining (Fig. 1h).
Amplification of the cox1 gene yielded a PCR product of approxi-
mately 471 bp, consistent with the positive control, and subse-
quent sequencing results indicated that DNA molecules
obtained from the germinal layer of the cyst confirmed infection
with E. shiquicus (Fig. 1i).

BALB/c mice as alternative experimental intermediate host

Metacestode of E. shiquicus in the mice model frequently attached
to adjacent organs. After 1 month p.i., the mice were dissected,
and cysts were seen in the mesentery near the small intestine,
and the weight of cysts in each mouse was about 0.5 g
(Table 1). These cysts contained milky white to yellow porridge-

Figure 1. Collection and identification of PSCs of Echinococcus shiquicus in plateau pikas. Macroscopical finding in the infected plateau pikas showed the cystic
lesions (arrowhead) were all found in the lungs, including single cyst (a), cysts in small groups (b) or cysts in dense aggregations (c), metacestode materials col-
lected in the dish (d), scale bar: 5 mm. Light microscopic of the fertile cysts (e), methylene blue-staining image of PSCs (f) demonstrated that those with no
absorbed dye were considered potentially viable (white arrow) and otherwise, they were recorded as dead (yellow arrow). H&E staining of metacestode revealed
brood capsules within the cysts (black arrow), and green arrow indicates the germinal layers in the metacestode tissue, scale bar: 100 μm (g). PAS staining of meta-
cestode revealed the laminated layers (blue arrow) (h). Agarose gel electrophoretogram displaying PCR amplified cox1 fragments from germinal layer of the cysts.
M: Molecular marker 100–2000 bp; Lane 1: test sample; Lane 2, positive control (DNA of E. shiquicus); Lane 3, negative control (i).
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like fluid up on opening the cyst, however, light microscopy and
histological investigation failed to detect PSCs in the cyst contents
(Fig. 2a–e).

At 3 month p.i., cysts grew rapidly, increased several times in
size, and began to infiltrate adjacent organs such as liver, spleen
and kidney, where the cyst’s surface became smooth whitish
with clear cystic fluid. The average weight of cysts in each
mouse increased over 9 times (3.78 ± 1.34 g) as indicated in the
table. Using light microscopy and histopathology, no PSCs were
found in the cyst contents, but micro-vesicles were observed
(Fig. 2f–j).

After 6 month p.i., the cysts invaded the whole body of mice
and the average weight of cysts in each mouse were measured
to be 7.34 ± 0.84 g (Table 1). Most of the metacestode cysts were
multicystic or multilocular while a few were unilocular, and the
cysts contained micro-vesicles, but no PSCs were observed
(Fig. 2k–o and Fig. 3a–d). Identification of DNA molecules

obtained from the germinal layer were successfully amplified
(Fig. 4) and sequenced, which confirmed all isolates as E. shiqui-
cus up on BLASTN analysis. Overall specific data statistics for all
experimental animals are shown in the table. The data implied
that the metacestode material containing mainly PSCs of E. shi-
quicus could successfully develop in cysts in mice. And although
the weight of cysts increased with the duration of infection,
mature PSCs were not observed in our study. On the other
hand, the collected metacestode materials were able to success-
fully infect mice for about 9 generations (data not shown).

Mongolian jirds as an alternative experimental intermediate
host

In the Mongolian jirds model, because metacestode grew too
slowly during the early phase of infection, data were presented
at 2, 6 and 12 months’ p.i. E. shiquicus cysts were typically

Table 1. Overall specific data statistics for all experimental animals

Species of
animal

Inoculation time
(month)

No. of
animals

No. of
positives

Average weight (g) of
cysts (Σx ± S.D)

Average No. of protoscolices per
experimental animal (Σx ± S.D)

BALB/c mice 1 5 3 0.41 ± 0.16 –

3 5 5 3.78 ± 1.34 –

6 5 5 7.34 ± 0.84 –

Mongolian
jirds

2 5 5 5.67 ± 1.44 –

6 5 3 19.62 ± 2.39 120 000 ± 2,828

12 5 5 47.32 ± 4.99 400 000 ± 5,567

Figure 2. BALB/c mice anatomy after the intraperitoneal injection of Echinococcus shiquicus PSCs after 1 (a–e), 3 (f–j) and 6 (k–o) months. After 1 month p.i., cysts
lesions (arrowhead) attached to mesentery (a). The contents of the cysts have no PSCs and vesicles (b). After 3 month p.i., cystic lesions infiltrated multiple organs
in the abdominal cavity (f). Collected cyst contents were observed to contain a lot of micro-vesicles (red arrow) under light microscopy (g). After 6 month p.i., cystic
lesions almost occupied the entire abdominal cavity and organs were severely extruded (k), and micro-vesicles could be observed in the cyst contents (l). H&E
staining indicating that metacestode tissue contained sterile cysts (c, h and m). Green arrow indicates the germinal layers of the larvae. Images ‘d’, ‘i’ and ‘n’
are the higher magnification images of the boxed areas in ‘c’, ‘h’ and ‘m’, respectively. PAS staining indicating the laminated layers (blue arrow) of images ‘e’,
‘j’ and ‘o’. Scale bar: 100 μm.
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developed freely in the peritoneal cavity of Mongolian jirds unlike
to those in mice model where they were attached to adjacent
organs. Light microscopy and histological investigation at 2
month p.i. revealed that the inoculated metacestode material
had begun producing cysts, with an average weight of cysts per
jird 5.67 ± 1.44 g (Table 1). PSCs were not observed (Fig. 5a–f).

At 6 month p.i., the development of cysts changed significantly
with rapid cyst growth and weight gain, with average weight of
cysts per jird being 19.62 ± 2.39 g. Moreover, light microscopy
showed the PSCs isolated from the cyst fluid were evaginated or
invaginated, and had highly motile. The average number of
PSCs in each jird was about 120 000. Histopathological findings
demonstrated that the brood capsules appeared as honeycomb-
like that were closely arranged, and PSCs were observed in the
brood capsules (Fig. 3e–h, 5g–l). Regarding the thickness of the
cyst laminated layer, it was thinner in mice than in jird’s
(Fig. 3d, h). The germinal layer of the cysts also proliferated out-
wards in a budding manner, and it was the first time that it has
been documented that E. shiquicus metacestodes can multiply
by budding before forming multilocular cysts (Fig. 3b, f).

At 12 month p.i., the cysts were larger in size, and contained a
large number of brood capsules and PSCs, with an average weight
of cysts increased about 8 times compared to 2 month p.i. (47.32 ±
4.99 g, Table 1). And the average number of PSCs in each jird was
about 400 000. However, there was no organ invasion and upon
incision. Brood capsules (mean diameter of 300 μm) overflowed

from the metacestode (Fig. 5m–r). Similar to the mice model,
molecular identification of the isolates implied that they are E. shi-
quicus (Fig. 4). The PSCs collected from Mongolian jirds were able
to successfully infect jirds for about 6 generations (data not shown).
The overall experiment showed that metacestode material in mice
developed into cysts and produced PSCs in Mongolian jirds, and
the weight and size of cysts and the number of PSCs increased
with the duration of infection.

Discussion

As a pathogen of potential zoonotic parasitic diseases, E. shiquicus
infection in humans and livestock has not been reported so far. It
is hypothesized that it may be connected to the species’ late dis-
covery and recognition, the lack of sufficient experimental mate-
rials, etc. (Nakao et al., 2013). Several obstacles including the cost
of husbandry, management, labour and space availability hinder
the establishment of natural intermediate host in the laboratory
(Kandil et al., 2020). However, the establishment of parasites out-
side their natural hosts is a significant requirement for under-
standing their development. Consequently, to better understand
E. shiquicus and address the potential disease threat in the future,
it is important to build a practical, adequate and controllable
experimental animal model (Kandil et al., 2020). The present
study is the first attempt to establish a secondary infection labora-
tory model of E. shiquicus metacestode with commonly used
experimental animals.

Due to the low host specificity of Echinococcus spp. in the
metacestode stage, a wide range of mammal species are known
to be natural intermediate hosts, consequently, a long list of spe-
cies has been used for experimental infections (Breijo et al., 1998).
The experimental model for secondary echinococcosis established
in rodents and lagomorphs by intraperitoneal injection of PSCs
into the peritoneum has been proven to be useful in studying
basic aspects of Echinococcus spp., such as immunobiology, inves-
tigating in vivo differentiation process of their secondary cysts in a
host and the early local interactions between host and parasite
during this process, and testing new chemotherapeutic agents or
therapeutical protocols, vaccine candidates and diagnostics or
follow-up tools (Dempster et al., 1991; Breijo et al., 1998;
Cucher et al., 2013; Wang et al., 2018; Miles et al., 2020).
Similarly, infection of laboratory model of E. shiquicus

Figure 3. Metacestode tissues of Echinococcus shiquicus in the BALB/c mice (a–d) and Mongolian jirds (e–h) 6 month post injection. Black arrow showing cysts
observed under light microscope without PSC in mice (a, b), and fertile cysts with PSCs (red arrow) in Mongolian jirds (e, f). Purple arrow showing budding capsule
observed under light microscope without PSC in mice (b), and with PSCs in Mongolian jirds (f); Green arrow in the H&E staining showing the germinal layer of the
larvae (c, g), and black arrow showing brood capsules with PSCs (red arrow) in Mongolian jirds (g). Blue arrow in the PAS staining showing laminated layer (d, h).
Scale bar: 100 μm.

Figure 4. Agarose gel electrophoretogram showing PCR amplified cox1 fragments
from cysts of BALB/c mice and Mongolian jirds. M: Molecular marker 100–2000 bp;
Lanes 1–3, test samples at 1-, 3- and 6-month’s post-injection, respectively (BALB/c
mice); Lane 4, positive control (Echinococcus shiquicus); Lane 5, negative control;
Lanes 6–8, test samples at 2-, 6- and 12-month’s post-injection, respectively
(Mongolian jirds), Lane 9, positive control (E. shiquicus); Lane10, negative control.
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metacestode has been successfully established by means of sec-
ondary infection through intraperitoneal injection.

Various strains of mice and Mongolian jirds have been used as
E. granulosus metacestode model hosts. The cysts usually develop
free in the peritoneal cavity, but may be attached to or grow into
neighbouring organs. Previous report showed that growth is slow
in BALB/c mice and most cysts remain sterile even after 15
months of infection (Romig and Bilger, 1999). PSCs can
de-differentiate into cysts with laminated layers in white mice
after about 1 month, and the germinal layers of cysts can differ-
entiate into PSCs and brood capsules at about 6 months p.i.
(Heath, 1970). In Mongolian jirds, cysts grow slowly, and gener-
ally do not obtain fertile cysts until 9–12 months p.i. (Thompson,
1976; Garcia-Llamazares et al., 1998). Although not all experi-
mental animals can serve as suitable hosts for E. granulosus,
and the time taken for fertile cysts to develop and yield reasonable
numbers of PSCs is considerable. Once the infection is success-
fully established, sufficient experimental materials can be obtained
by serial passage through model animals (Thompson, 1976).
Similarly, injection of homogenized metacestode material into
the peritoneal cavity is a widely used method in establishing sec-
ondary alveolar echinococcosis (AE) in rodents. Meanwhile stud-
ies on animal models for E. multilocularis, which can produce
numerous PSCs, including Mongolian jirds, cotton rats and com-
mon voles (M. arvalis) have been conducted, where the most
rapid growth was demonstrated in Mongolian jirds (Romig and
Bilger, 1999). Various strains of mice such as C57L, C57BL/6,
AKR, BALB/c and severe combined immunodeficiency mice
show considerable differences in metacestode development.
BALB/c mouse was considered to be the most suitable host for
E. multilocularis (Gottstein and Felleisen, 1995). According to
previous records of Echinococcus infection models, published
results from various host species are contradictory in some
cases, and the reasons for this result may be related to host

specificity, the source and isolate of the parasite material and
mode of infection (Romig and Bilger, 1999).

The development of E. shiquicus in an attempt to investigate
secondary cysts infection through intraperitoneal metacestode
material injection in different laboratory animal models shows
that mice and jirds are able to support the development of E. shi-
quicus larva despite some differences in cyst characteristics, for
example, cysts from mice do not produce PSCs, while cysts pro-
duced by jirds can produce large numbers of PSCs (Sato et al.,
1998; Miles et al., 2020). In the present study in Mongolian
jirds, as the duration of post infection increases, the size of the
cyst as well as the production of PSC increased. The production
of PSCs in jirds suggests them as an appropriate model for inves-
tigating the growth of secondary cysts. And the 2 animal models of
E. shiquicus metacestode in the present study will provide suffi-
cient experimental materials for future investigations on the bio-
logical characteristics and growth and development of E.
shiquicus. Infection of different intermediate hosts with the
same Echinococcus species produces 2 forms of cysts, the fertile
and sterile cysts, which may be related to host specificity and
immune response to the parasites (Romig and Bilger, 1999;
Miles et al., 2020). Previous studies have shown that once metaces-
todes have been established, both fertile and sterile cysts can grow
normally as long as the laminated layer remains intact and
whether PSCs are produced or not (Hidalgo et al., 2019). It was
found that metacestode materials from both animal models,
whether producing PSCs or not, were able to infect new experi-
mental animals and keep the strain from one generation to the
next, possibly because the germinal layer of cysts contains neo-
blasts, a kind of pluripotent stem cells, which underlie larval devel-
opment (Brehm and Koziol, 2014; Cheng et al., 2019; Kowsari
et al., 2021).Our results suggested that cysts from mice have a rela-
tively thin laminated layer, which makes it vulnerable to attack by
the host immune system resulting in jelly like cystic contents that

Figure 5. Mongolian jirds anatomy after the intraperitoneal injection of Echinococcus shiquicus metacestode materials after 2 (a–f), 6 (g–l) and 12 (m–r) months.
After 2 month p.i., cystic lesions (arrowhead) attached to mesentery or free in abdominal cavity (a, b). The contents of metacestode materials had no PSCs and
brood capsules (c). H&E staining showed the metacestode had germinal layers (green arrow) (d, e). Blue arrow in the PAS staining showing laminated layer (f). After
6 month p.i., multichambered cystic lesions adhered gently to mesentery but did not infiltrate other organs (g, h). Lots of PSCs (red arrow) in collected cysts con-
tents (i). H&E staining of metacestode revealed fertile cysts within brood capsules (black arrow) ( j). Enlarged view of the brood capsule in ‘j’ showed the PSCs in the
cysts. Green arrow in the HE staining indicates the germinal layers of the larvae ( j, p), and blue arrow in the PAS staining showing laminated layer (l, r). After 12
month p.i., multichambered cystic lesions occupy almost the entire abdominal cavity but did not infiltrate other organs (m, n). H&E staining of metacestode
revealed more fertile cysts. Image ‘e’, ‘k’ and ‘q’ is the higher magnification images of the boxed areas in ‘d’, ‘j’ and ‘p’, respectively. Scale bar: 100 μm.
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eventually lead to calcification and then do not produce PSCs
(Bortoletti and Ferretti, 1978; Hidalgo et al., 2019). Meanwhile
cysts in jirds have not only thicker laminated layer but also it
has been reported that they lack effective regulatory immune
responses as indicated by Romig and Bilger (1999), which could
have led to the production of PSCs (Bortoletti and Ferretti,
1978; Romig and Bilger, 1999). Our models will provide sufficient
experimental materials for studying host tropism of E. shiquicus.

Previous reports have demonstrated that cysts of E. shiquicus ori-
gin found in the livers of pikas were essentially unilocular, although
an oligovesicular cyst has also been reported (Xiao et al., 2005). Our
present study confirmed similar unilocular feature in plateau pika as
well as multicystic metacestodes, so that the disease caused by E. shi-
quicus may be multicystic echinococcosis. Our established experi-
mental animal model of secondary infection validated this result.

In conclusion, we attempt to develop an alternative experimental
animal model for E. shiquicus using BALB/c mice and Mongolian
jirds by means of secondary intraperitoneal infection. Although,
there were significant differences in growth patterns between
BALB/c mice and Mongolian jirds models, unilocular, multilocular
and multicystic cysts were observed in both experimental models
indicating that both experimental animals could be infected by E.
shiquicus. The established murine model mostly produced sterile
cysts unlike the jirds. Whereas, the Mongolian jirds model produced
fertile cysts, indicating that they may be more suitable for acting as
one kind of experimental animal for E. shiquicus metacestode.
These animal models not only lay a foundation for maintaining
E. shiquicus in laboratory conditions, but also provide opportunity
to investigate its biological and medical significance, and useful
experimental materials for studying the developmental differences
of the same parasite in different hosts, parasite-host interaction
and drug screening against echinococcosis.
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