We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Plans for allocation of scarce life-sustaining resources during the coronavirus disease 2019 (COVID-19) pandemic often include triage teams, but operational details are lacking, including what patient information is needed to make triage decisions.
Methods:
A Delphi study among Washington state disaster preparedness experts was performed to develop a list of patient information items needed for triage team decision-making during the COVID-19 pandemic. Experts proposed and rated their agreement with candidate information items during asynchronous Delphi rounds. Consensus was defined as ≥80% agreement. Qualitative analysis was used to describe considerations arising in this deliberation. A timed simulation was performed to evaluate feasibility of data collection from the electronic health record.
Results:
Over 3 asynchronous Delphi rounds, 50 experts reached consensus on 24 patient information items, including patients’ age, severe or end-stage comorbidities, the reason for and timing of admission, measures of acute respiratory failure, and clinical trajectory. Experts weighed complex considerations around how information items could support effective prognostication, consistency, accuracy, minimizing bias, and operationalizability of the triage process. Data collection took a median of 227 seconds (interquartile range = 205, 298) per patient.
Conclusions:
Experts achieved consensus on patient information items that were necessary and appropriate for informing triage teams during the COVID-19 pandemic.
This article argues that state government actors concerned about gun violence prevention should prioritize enactment of robust firearm purchaser regimes at the state level. First, the article outlines the empirical evidence base for purchaser licensing. Then, the article describes how state governments can design this policy. Next, the article assesses the likelihood that purchaser licensing legislation will continue to be upheld by federal courts. Finally, the article addresses the implications of this policy, aimed at curbing gun deaths, for equally important racial justice priorities. Taken together, these various considerations indicate that purchaser licensing policies are among the most effective firearm-focused laws state governments can enact to reduce gun deaths within the existing federal legislative and legal frameworks.
To make a power spectrum (PS) detection of the 21-cm signal from the Epoch of Reionisation (EoR), one must avoid/subtract bright foreground sources. Sources such as Fornax A present a modelling challenge due to spatial structures spanning from arc seconds up to a degree. We compare modelling with multi-scale (MS) CLEAN components to ‘shapelets’, an alternative set of basis functions. We introduce a new image-based shapelet modelling package, SHAMFI. We also introduce a new CUDA simulation code (WODEN) to generate point source, Gaussian, and shapelet components into visibilities. We test performance by modelling a simulation of Fornax A, peeling the model from simulated visibilities, and producing a residual PS. We find the shapelet method consistently subtracts large-angular-scale emission well, even when the angular resolution of the data is changed. We find that when increasing the angular resolution of the data, the MS CLEAN model worsens at large angular scales. When testing on real Murchison Widefield Array data, the expected improvement is not seen in real data because of the other dominating systematics still present. Through further simulation, we find the expected differences to be lower than obtainable through current processing pipelines. We conclude shapelets are worthwhile for subtracting extended galaxies, and may prove essential for an EoR detection in the future, once other systematics have been addressed.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.
Background: Biallelic variants in POLR1C are associated with POLR3-related leukodystrophy (POLR3-HLD), or 4H leukodystrophy (Hypomyelination, Hypodontia, Hypogonadotropic Hypogonadism), and Treacher Collins syndrome (TCS). The clinical spectrum of POLR3-HLD caused by variants in this gene has not been described. Methods: A cross-sectional observational study involving 25 centers worldwide was conducted between 2016 and 2018. The clinical, radiologic and molecular features of 23 unreported and previously reported cases of POLR3-HLD caused by POLR1C variants were reviewed. Results: Most participants presented between birth and age 6 years with motor difficulties. Neurological deterioration was seen during childhood, suggesting a more severe phenotype than previously described. The dental, ocular and endocrine features often seen in POLR3-HLD were not invariably present. Five patients (22%) had a combination of hypomyelinating leukodystrophy and abnormal craniofacial development, including one individual with clear TCS features. Several cases did not exhibit all the typical radiologic characteristics of POLR3-HLD. A total of 29 different pathogenic variants in POLR1C were identified, including 13 new disease-causing variants. Conclusions: Based on the largest cohort of patients to date, these results suggest novel characteristics of POLR1C-related disorder, with a spectrum of clinical involvement characterized by hypomyelinating leukodystrophy with or without abnormal craniofacial development reminiscent of TCS.
We provide the first in situ measurements of antenna element beam shapes of the Murchison Widefield Array. Most current processing pipelines use an assumed beam shape, which can cause absolute and relative flux density errors and polarisation ‘leakage’. Understanding the primary beam is then of paramount importance, especially for sensitive experiments such as a measurement of the 21-cm line from the epoch of reionisation, where the calibration requirements are so extreme that tile to tile beam variations may affect our ability to make a detection. Measuring the primary beam shape from visibilities is challenging, as multiple instrumental, atmospheric, and astrophysical factors contribute to uncertainties in the data. Building on the methods of Neben et al. [Radio Sci., 50, 614], we tap directly into the receiving elements of the telescope before any digitisation or correlation of the signal. Using ORBCOMM satellite passes we are able to produce all-sky maps for four separate tiles in the XX polarisation. We find good agreement with the beam model of Sokolowski et al. [2017, PASA, 34, e062], and clearly observe the effects of a missing dipole from a tile in one of our beam maps. We end by motivating and outlining additional on-site experiments.
We describe the motivation and design details of the ‘Phase II’ upgrade of the Murchison Widefield Array radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the Murchison Widefield Array in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing array core. These new tiles enhance the surface brightness sensitivity of the array and will improve the ability of the Murchison Widefield Array to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ∼3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u, v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of Murchison Widefield Array continuum images. The upgrade retains all of the features that have underpinned the Murchison Widefield Array’s success (large field of view, snapshot image quality, and pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies.
In Cameroon, there is a national programme engaged in the control of schistosomiasis and soil-transmitted helminthiasis. In certain locations, the programme is transitioning from morbidity control towards local interruption of parasite transmission. The volcanic crater lake villages of Barombi Mbo and Barombi Kotto are well-known transmission foci and are excellent context-specific locations to assess appropriate disease control interventions. Most recently they have served as exemplars of expanded access to deworming medications and increased environmental surveillance. In this paper, we review infection dynamics through time, beginning with data from 1953, and comment on the short- and long-term success of disease control. We show how intensification of local control is needed to push towards elimination and that further environmental surveillance, with targeted snail control, is needed to consolidate gains in preventive chemotherapy as well as empower local communities to take ownership of interventions.
The current emphasis of schistosomiasis control is placed on preventive chemotherapy using praziquantel. However, reinfection may occur rapidly in the absence of complementary interventions. Recent studies from Senegal suggest that predatory prawns might feed on intermediate host snails and thus impact on schistosomiasis transmission. We designed a study with four repeated cross-sectional surveys pertaining to prawns and snails, coupled with a single cross-sectional parasitological survey among humans. We assessed for potential associations between the presence/density of prawns and snails and correlation with Schistosoma infection in a composite sample of school-aged children and adults. The study was carried out between October 2015 and December 2016 in 24 villages located near the Agnéby and Mé coastal river systems in south-eastern Côte d'Ivoire. At each site, snails and prawns were collected, and in each village, 150 individuals were subjected to stool and urine examination for the diagnosis of Schistosoma mansoni and S. haematobium. We found peaks of relative abundance of intermediate host snails in the villages of the Agnéby River system, while predatory prawns were predominantly recorded in the Mé River system. A negative association was observed between intermediate host snail densities and riverine prawns; however, no pattern was found between this trend in the predator–prey relationship and the prevalence of human schistosomiasis.
The study of parasites typically crosses into other research disciplines and spans across diverse scales, from molecular- to populational-levels, notwithstanding promoting an understanding of parasites set within evolutionary time. Today, the 2030 Sustainable Development Goals (SDGs) help frame much of contemporary parasitological research, since parasites can be found in all ecosystems, blighting human, animal and plant health. In recognition of the multi-disciplinary nature of parasitological research, the 2017 Autumn Symposium of the British Society for Parasitology was held in London to provide a forum for novel exchange across medical, veterinary and wildlife fields of study. Whilst the meeting was devoted to the topic of parasitism, it sought to foster mutualism, the antithesis perhaps of parasitism, by forging new academic connections and social networks to exchange novel ideas. The meeting also celebrated the longstanding career of Professor David Rollinson, FLS in the award of the International Federation for Tropical Medicine Medal for his efforts spanning 40 years of parasitological research. Indeed, David has done so much to explore and promote the fascinating biology of parasitism, as exemplified by the 15 manuscripts contained within this Special Issue.
With the push towards control and elimination of soil-transmitted helminthiasis and schistosomiasis in low- and middle-income countries, there is a need to develop alternative diagnostic assays that complement the current in-country resources, preferably at a lower cost. Here, we describe a novel high-resolution melt (HRM) curve assay with six PCR primer pairs, designed to sub-regions of the nuclear ribosomal locus. Used within a single reaction and dye detection channel, they are able to discriminate Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Ascaris lumbricoides, Trichuris trichiuria and Schistosoma spp. by HRM curve analysis. Here we describe the primers and the results of a pilot assessment whereby the HRM assay was tested against a selection of archived fecal samples from Ghanaian children as characterized by Kato–Katz and real-time PCR analysis with species-specific TaqMan hydrolysis probes. The resulting sensitivity and specificity of the HRM was 80 and 98.6% respectively. We judge the assay to be appropriate in modestly equipped and resourced laboratories. This method provides a potentially cheaper alternative to the TaqMan method for laboratories in lower resource settings. However, the assay requires a more extensive assessment as the samples used were not representative of all target organisms.
Helminth infections have large negative impacts on production efficiency in ruminant farming systems worldwide, and their effective management is essential if livestock production is to increase to meet future human needs for dietary protein. The control of helminths relies heavily on routine use of chemotherapeutics, but this approach is unsustainable as resistance to anthelmintic drugs is widespread and increasing. At the same time, infection patterns are being altered by changes in climate, land-use and farming practices. Future farms will need to adopt more efficient, robust and sustainable control methods, integrating ongoing scientific advances. Here, we present a vision of helminth control in farmed ruminants by 2030, bringing to bear progress in: (1) diagnostic tools, (2) innovative control approaches based on vaccines and selective breeding, (3) anthelmintics, by sustainable use of existing products and potentially new compounds, and (4) rational integration of future control practices. In this review, we identify the technical advances that we believe will place new tools in the hands of animal health decision makers in 2030, to enhance their options for control and allow them to achieve a more integrated and sustainable approach to helminth control in support of animal welfare and production.
On August 25, 2017, Hurricane Harvey made landfall near Corpus Christi, Texas. The ensuing unprecedented flooding throughout the Texas coastal region affected millions of individuals.1 The statewide response in Texas included the sheltering of thousands of individuals at considerable distances from their homes. The Dallas area established large-scale general population sheltering as the number of evacuees to the area began to amass. Historically, the Dallas area is one familiar with “mega-sheltering,” beginning with the response to Hurricane Katrina in 2005.2 Through continued efforts and development, the Dallas area had been readying a plan for the largest general population shelter in Texas. (Disaster Med Public Health Preparedness. 2019;13:33–37)
Escherichia coli O157 are zoonotic bacteria for which cattle are an important reservoir. Prevalence estimates for E. coli O157 in British cattle for human consumption are over 10 years old. A new baseline is needed to inform current human health risk. The British E. coli O157 in Cattle Study (BECS) ran between September 2014 and November 2015 on 270 farms across Scotland and England & Wales. This is the first study to be conducted contemporaneously across Great Britain, thus enabling comparison between Scotland and England & Wales. Herd-level prevalence estimates for E. coli O157 did not differ significantly for Scotland (0·236, 95% CI 0·166–0·325) and England & Wales (0·213, 95% CI 0·156–0·283) (P = 0·65). The majority of isolates were verocytotoxin positive. A higher proportion of samples from Scotland were in the super-shedder category, though there was no difference between the surveys in the likelihood of a positive farm having at least one super-shedder sample. E. coli O157 continues to be common in British beef cattle, reaffirming public health policy that contact with cattle and their environments is a potential infection source.
We present new software to cross-match low-frequency radio catalogues: the Positional Update and Matching Algorithm. The Positional Update and Matching Algorithm combines a positional Bayesian probabilistic approach with spectral matching criteria, allowing for confusing sources in the matching process. We go on to create a radio sky model using Positional Update and Matching Algorithm based on the Murchison Widefield Array Commissioning Survey, and are able to automatically cross-match ~ 98.5% of sources. Using the characteristics of this sky model, we create simple simulated mock catalogues on which to test the Positional Update and Matching Algorithm, and find that Positional Update and Matching Algorithm can reliably find the correct spectral indices of sources, along with being able to recover ionospheric offsets. Finally, we use this sky model to calibrate and remove foreground sources from simulated interferometric data, generated using OSKAR (the Oxford University visibility generator). We demonstrate that there is a substantial improvement in foreground source removal when using higher frequency and higher resolution source positions, even when correcting positions by an average of 0.3 arcmin given a synthesised beam-width of ~ 2.3 arcmin.
Older people with dementia are at increased risk of physical decline and falls. Balance and mood are significant predictors of falls in this population. The aim of this study was to determine the effect of a tailored home-based exercise program in community-dwelling older people with dementia.
Methods:
Forty-two participants with mild to moderate dementia were recruited from routine health services. All participants were offered a six-month home-based, carer-enhanced, progressive, and individually tailored exercise program. Physical activity, quality of life, physical, and psychological assessments were administered at the beginning and end of the trial.
Results:
Of 33 participants (78.6%) who completed the six-month reassessment ten (30%) reported falls and six (18%) multiple falls during the follow-up period. At reassessment, participants had better balance (sway on floor and foam), reduced concern about falls, increased planned physical activity, but worse knee extension strength and no change in depression scores. The average adherence to the prescribed exercise sessions was 45% and 22 participants (52%) were still exercising at trial completion. Those who adhered to ≥70% of prescribed sessions had significantly better balance at reassessment compared with those who adhered to <70% of sessions.
Conclusions:
This trial of a tailored home-based exercise intervention presents preliminary evidence that this intervention can improve balance, concern about falls, and planned physical activity in community-dwelling older people with dementia. Future research should determine whether exercise interventions are effective in reducing falls and elucidate strategies for enhancing uptake and adherence in this population.
The anticipated release of EnlistTM cotton, corn, and soybean cultivars likely will increase the use of 2,4-D, raising concerns over potential injury to susceptible cotton. An experiment was conducted at 12 locations over 2013 and 2014 to determine the impact of 2,4-D at rates simulating drift (2 g ae ha−1) and tank contamination (40 g ae ha−1) on cotton during six different growth stages. Growth stages at application included four leaf (4-lf), nine leaf (9-lf), first bloom (FB), FB + 2 wk, FB + 4 wk, and FB + 6 wk. Locations were grouped according to percent yield loss compared to the nontreated check (NTC), with group I having the least yield loss and group III having the most. Epinasty from 2,4-D was more pronounced with applications during vegetative growth stages. Importantly, yield loss did not correlate with visual symptomology, but more closely followed effects on boll number. The contamination rate at 9-lf, FB, or FB + 2 wk had the greatest effect across locations, reducing the number of bolls per plant when compared to the NTC, with no effect when applied at FB + 4 wk or later. A reduction of boll number was not detectable with the drift rate except in group III when applied at the FB stage. Yield was influenced by 2,4-D rate and stage of cotton growth. Over all locations, loss in yield of greater than 20% occurred at 5 of 12 locations when the drift rate was applied between 4-lf and FB + 2 wk (highest impact at FB). For the contamination rate, yield loss was observed at all 12 locations; averaged over these locations yield loss ranged from 7 to 66% across all growth stages. Results suggest the greatest yield impact from 2,4-D occurs between 9-lf and FB + 2 wk, and the level of impact is influenced by 2,4-D rate, crop growth stage, and environmental conditions.
We have compiled a catalogue of H ii regions detected with the Murchison Widefield Array between 72 and 231 MHz. The multiple frequency bands provided by the Murchison Widefield Array allow us identify the characteristic spectrum generated by the thermal Bremsstrahlung process in H ii regions. We detect 306 H ii regions between 260° < l < 340° and report on the positions, sizes, peak, integrated flux density, and spectral indices of these H ii regions. By identifying the point at which H ii regions transition from the optically thin to thick regime, we derive the physical properties including the electron density, ionised gas mass, and ionising photon flux, towards 61 H ii regions. This catalogue of H ii regions represents the most extensive and uniform low frequency survey of H ii regions in the Galaxy to date.
A substantial population of red quasars has been discovered in a complete sample of flat-spectrum radio sources. Dust is the most likely cause of the reddening in this sample. The location of the dust is poorly known, but may either be in the line-of-sight to the quasar, or in the immediate quasar environment. In this paper we are interested in models where the dust is located in the line of sight to the quasar. We calculate the probability distribution of the optical depth in galactic dust as a function of source redshift, using a range of parameters which might describe real galaxies. We compare these results with those found for our sample of radio quasars. If the dust content is unevolving, then it is not possible to account for all the observed reddening in the quasar sample using these models. Our minimum dust model predicts that 15% of background quasars to z ~ 5 will have a line of sight within 5 kpc of a galaxy’s centre, and would therefore be reddened out of B-band flux-limited samples.
Several extragalactic HI surveys using a λ21 cm 13-beam focal plane array will begin in early 1997 using the Parkes 64 m telescope. These surveys are designed to detect efficiently nearby galaxies that have failed to be identified optically because of low optical surface brightness or high optical extinction. We discuss scientific and technical aspects of the multibeam receiver, including astronomical objectives, feed, receiver and correlator design and data acquisition. A comparison with other telescopes shows that the Parkes multibeam receiver has significant speed advantages for any large-area λ21 cm galaxy survey in the velocity range range 0–14000 km s−1.