Skip to main content Accessibility help
×
Home

British Escherichia coli O157 in Cattle Study (BECS): to determine the prevalence of E. coli O157 in herds with cattle destined for the food chain

  • M. K. HENRY (a1), S. C. TONGUE (a1), J. EVANS (a1), C. WEBSTER (a1), I. J. McKENDRICK (a2), M. MORGAN (a3), A. WILLETT (a3), A. REEVES (a1), R. W. HUMPHRY (a1), D. L. GALLY (a4), G. J. GUNN (a1) and M. E. CHASE-TOPPING (a5)...

Summary

Escherichia coli O157 are zoonotic bacteria for which cattle are an important reservoir. Prevalence estimates for E. coli O157 in British cattle for human consumption are over 10 years old. A new baseline is needed to inform current human health risk. The British E. coli O157 in Cattle Study (BECS) ran between September 2014 and November 2015 on 270 farms across Scotland and England & Wales. This is the first study to be conducted contemporaneously across Great Britain, thus enabling comparison between Scotland and England & Wales. Herd-level prevalence estimates for E. coli O157 did not differ significantly for Scotland (0·236, 95% CI 0·166–0·325) and England & Wales (0·213, 95% CI 0·156–0·283) (P = 0·65). The majority of isolates were verocytotoxin positive. A higher proportion of samples from Scotland were in the super-shedder category, though there was no difference between the surveys in the likelihood of a positive farm having at least one super-shedder sample. E. coli O157 continues to be common in British beef cattle, reaffirming public health policy that contact with cattle and their environments is a potential infection source.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      British Escherichia coli O157 in Cattle Study (BECS): to determine the prevalence of E. coli O157 in herds with cattle destined for the food chain
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      British Escherichia coli O157 in Cattle Study (BECS): to determine the prevalence of E. coli O157 in herds with cattle destined for the food chain
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      British Escherichia coli O157 in Cattle Study (BECS): to determine the prevalence of E. coli O157 in herds with cattle destined for the food chain
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Author for correspondence: S. C. Tongue, Epidemiology Research Unit (Inverness campus), Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK. (Email: sue.tongue@sruc.ac.uk)

References

Hide All
1. Karmali, MA, et al. The association between idiopathic haemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli . The Journal of Infectious Diseases 1985; 151: 775782.
2. Willlshaw, GA, et al. Verocytotoxin-producing Escherichia coli (VTEC) O157 and other VTEC from human infections in England and Wales: 1995–1998. Journal of Medical Microbiology 2001; 50: 135142.
3. Schering, J, Andreoli, SP, Zimmerhacki, LB. Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). Pediatric Nephrology 2008; 23: 17491760.
4. Trevena, WB, et al. Transmission of Vero cytotoxin producing Escherichia coli O157 infection from farm animals to humans in Cornwall and west Devon. Communicable Disease and Public Health 1999; 2: 263268.
5. O'Brien, SJ, Adak, GK, Gilham, C. Contact with farming environment as a major risk factor for Shiga toxin (Vero cytotoxin)-producing Escherichia coli O157 infection in humans. Emerging Infectious Diseases 2001; 7: 10491051.
6. Friesema, I. Geographical association between livestock density and human shiga toxin-producing escherichia coli O157 infections. Epidemiology and Infection 2011; 139: 10811087.
7. Matthews, L, et al. Super-shedding cattle and the transmission dynamics of Escherichia coli O157. Epidemiology and Infection 2006; 134: 131142.
8. Chase-Topping, M, et al. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nature Reviews Microbiology 2008; 6: 904912.
9. Matthews, L, et al. Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proceedings of the National Academy of Sciences of the United States of America 2013; 110: 1626516270.
10. Dallman, TJ, et al. Applying phylogenomics to understand the emergence of shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microbial Genomics 2015; 1: 113.
11. Gunn, GJ, et al. An investigation of factors associated with the prevalence of verocytotoxin producing Escherichia coli O157 shedding in Scottish beef cattle. The Veterinary Journal 2007; 174: 554564.
12. Pearce, MC, et al. Temporal and spatial patterns of bovine Escherichia coli O157 prevalence and comparison of temporal changes in the patterns of phage types associated with bovine shedding and human E. coli O157 cases in Scotland between 1998–2000 and 2002–2004. BMC Microbiology 2009; 9: 276.
13. Paiba, GA, et al. Prevalence of faecal excretion of verocytotoxigenic Escherichia coli 0157 in cattle in England and Wales. Veterinary Record 2003; 153: 347353.
14. Ellis-Iversen, J, et al. Identification of management risk factors for VTEC O157 in young-stock in England and Wales. Preventive Veterinary Medicine 2007; 82: 2941.
15. Smith, RP, Paiba, GA, Ellis-Iversen, J. Longitudinal study to investigate VTEC O157 shedding patterns in young cattle. Research in Veterinary Science 2010; 88: 411414.
16. Robinson, SE, et al. Intermittent and persistent shedding of Escherichia coli O157 in cohorts of naturally infected calves. Journal of Applied Microbiology 2004; 97: 10451053.
17. Locking, M, Cowden, J. Escherichia coli O157. British Medical Journal 2009; 339: b4076.
18. Naylor, SW, et al. Impact of the direct application of therapeutic agents to the terminal recta of experimentally colonized calves on Escherichia coli O157:H7 shedding. Applied and Environmental Microbiology 2007; 73: 14931500.
19. Halliday, JEB, et al. Herd-level risk factors associated with the presence of phage type 21/28 E. coli O157 on Scottish cattle farms. BMC Microbiology 2006; 6: 99.
20. Chase-Topping, ME, et al. Risk factors for the presence of high-level shedders of Escherichia coli O157 on Scottish farms. Journal of Clinical Microbiology 2007; 45: 15941603.
21. Naylor, SW, et al. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infection and Immunity 2003; 71: 15051512.
22. Pearce, MC, et al. Distribution of Escherichia coli O157 in bovine fecal pats and its impact on estimates of the prevalence of fecal shedding. Applied and Environmental Microbiology 2004; 70: 57375743.
23. Evans, J, et al. Prevalence of Escherichia coli O157: H7 and serogroups O26, O103, O111 and O145 in sheep presented for slaughter in Scotland. Journal of Medical Microbiology 2011; 60: 653660.
24. ISO/TS, 13136. Microbiology of food and animal feed. Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens. Horizontal method for the detection of Shiga-toxin producing Escherichia coli (STEC) and the determination of O157, O11. 2012.
25. SAS/STAT® . 13.1 User's Guide The Glimmix Procedure. Cary, NC: SAS Institute Inc, 2013, p. 379.
26. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2015 (https://www.R-project.org/). Accessed 30 January 2016.
27. Fox, J, Weisberg, S. An {R} Companion to Applied Regression, 2nd edn. Los Angeles: SAGE Publications, Inc., 2011.
28. Ripley, B, Lapsley, M. RODBC: ODBC Database Access. 2015 (https://CRAN.R-project.org/package=RODBC). Accessed 30 January 2016.
29. Wickham, H. Reshaping data with the reshape package. Journal of Statistical Software 2007; 21: 120.
30. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag, 2009.
31. Wickham, H, Francois, R: dplyr: A Grammar of Data Manipulation. 2015 (https://CRAN.R-project.org/package=dplyr). Accessed 30 January 2016.
32. European Parliament, Council of the European Union. Regulation (EC) No 1059/2003 of the European Parliament and of the Council of 26 May 2003 on the establishment of a common classification of territorial units for statistics (NUTS). Official Journal of the European Union L154 2003; 46: 141.
33. National Statistics. Results from the June 2015 Scottish Agricultural Census. 2015 (http://www.gov.scot/Publications/2015/10/6201/downloads). Accessed 30 July 2016.
34. Thrusfield, M. The nature of data – bias. In: Blackwell Science Ltd, ed. Veterinary Epidemiology. Oxford: Blackwell Publishing, 2007, p. 160.
35. Synge, BA, et al. Factors influencing the shedding of verocytotoxin-producing Escherichia coli O157 by beef suckler cows. Epidemiology and Infection 2003; 130: 301312.
36. Smith, RP, Pollitt, WJ, Paiba, GA. A longitudinal study of risk factors for shedding of VTEC O157 by young cattle in herds with known E. coli O157 carriage. Epidemiology and Infection 2016; 144: 18181829.
37. Kudva, IT, Blanch, K, Hovde, CJ. Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry. Applied and Environmental Microbiology 1998; 64: 31663174.
38. Fukushima, H, Hoshina, K, Gomyoda, M. Long-term survival of shiga toxin-producing Escherichia coli O26, O111, and O157 in bovine feces. Applied and Environmental Microbiology 1999; 65: 51775181.
39. Park, D, et al. Evolution of the stx2-encoding prophage in persistent bovine Escherichia coli O157:H7 strains. Applied and Environmental Microbiology 2013; 79: 15631572.
40. Spencer, SEF, et al. ‘Super’ or just ‘above average’? Supershedders and the transmission of Escherichia coli O157:H7 among feedlot cattle. Journal of the Royal Society Interface 2015; 12: 0446.
41. Widren, S, et al. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle herds. Preventive Veterinary Medicine 2015; 121: 343352.
42. Herbert, LJ, et al. E. coli O157 on Scottish cattle farms: evidence of local spread and persistence using repeat cross-sectional data. BMC Veterinary Research 2014; 10: 95.
43. Lupolova, N, et al. Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates. Proceedings of the National Academy of Sciences of the USA 2016; 113: 1131211371.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Henry et al. supplementary material
Henry et al. supplementary material 1

 Unknown (104 KB)
104 KB

British Escherichia coli O157 in Cattle Study (BECS): to determine the prevalence of E. coli O157 in herds with cattle destined for the food chain

  • M. K. HENRY (a1), S. C. TONGUE (a1), J. EVANS (a1), C. WEBSTER (a1), I. J. McKENDRICK (a2), M. MORGAN (a3), A. WILLETT (a3), A. REEVES (a1), R. W. HUMPHRY (a1), D. L. GALLY (a4), G. J. GUNN (a1) and M. E. CHASE-TOPPING (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed