We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding risk factors for death from Covid-19 is key to providing good quality clinical care. We assessed the presenting characteristics of the ‘first wave’ of patients with Covid-19 at Royal Oldham Hospital, UK and undertook logistic regression modelling to investigate factors associated with death. Of 470 patients admitted, 169 (36%) died. The median age was 71 years (interquartile range 57–82), and 255 (54.3%) were men. The most common comorbidities were hypertension (n = 218, 46.4%), diabetes (n = 143, 30.4%) and chronic neurological disease (n = 123, 26.1%). The most frequent complications were acute kidney injury (AKI) (n = 157, 33.4%) and myocardial injury (n = 21, 4.5%). Forty-three (9.1%) patients required intubation and ventilation, and 39 (8.3%) received non-invasive ventilation. Independent risk factors for death were increasing age (odds ratio (OR) per 10 year increase above 40 years 1.87, 95% confidence interval (CI) 1.57–2.27), hypertension (OR 1.72, 95% CI 1.10–2.70), cancer (OR 2.20, 95% CI 1.27–3.81), platelets <150 × 103/μl (OR 1.93, 95% CI 1.13–3.30), C-reactive protein ≥100 μg/ml (OR 1.68, 95% CI 1.05–2.68), >50% chest radiograph infiltrates (OR 2.09, 95% CI 1.16–3.77) and AKI (OR 2.60, 95% CI 1.64–4.13). There was no independent association between death and gender, ethnicity, deprivation level, fever, SpO2/FiO2, lymphopoenia or other comorbidities. These findings will inform clinical and shared decision making, including use of respiratory support and therapeutic agents.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter phenology in thirteen economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to four weeks after physiological maturity at multiple sites spread across fourteen states in the southern, northern, and mid-Atlantic U.S. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus species seed shatter was low (0 to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2 to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than ten percent of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to four weeks after maturity at multiple sites spread across eleven states in the southern, northern, and mid-Atlantic U.S. From soybean maturity to four weeks after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased as the states moved further north. At soybean maturity, the percent of seed shatter ranged from 1 to 70%. That range had shifted to 5 to 100% (mean: 42%) by 25 days after soybean maturity. There were considerable differences in seed shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output at during certain years.
Indium tin oxide (ITO) has become a very useful plasmonic and nonlinear optical material because of its highly tunable electrical and optical properties and strong optical nonlinearity. In this work, the authors conducted detailed fabrication process studies by using high-temperature reactive sputtering to finely tune the optical properties of ITO thin films, particularly the epsilon-near-zero (ENZ) wavelength in the near and mid-IR spectrum. Sputtered ITO thin films are characterized by using spectroscopic ellipsometry, surface profilometry, Hall measurements, and 4-point probe testing. Additionally, the effect of post-deposition annealing of ITO films is also investigated.
Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.
Nick Martin is a pioneer in recognizing the need for large sample size to study the complex, heterogeneous and polygenic disorders of common mental disorders. In the predigital era, questionnaires were mailed to thousands of twin pairs around Australia. Always quick to adopt new technology, Nick’s studies progressed to phone interviews and then online. Moreover, Nick was early to recognize the value of collecting DNA samples. As genotyping technologies improved over the years, these twin and family cohorts were used for linkage, candidate gene and genome-wide association studies. These cohorts have underpinned many analyses to disentangle the complex web of genetic and lifestyle factors associated with mental health. With characteristic foresight, Nick is chief investigator of our Australian Genetics of Depression Study, which has recruited 16,000 people with self-reported depression (plus DNA samples) over a time frame of a few months — analyses are currently ongoing. The mantra of sample size, sample size, sample size has guided Nick’s research over the last 30 years and continues to do so.
The Meeting Centre Support Programme (MCSP) is a community-based approach to support people living with dementia and their families. It was developed in the Netherlands and has been implemented in other European Countries (Italy, Poland and the UK) within the JPND-MEETINGDEM project.
Aims
To assess the relationship between background characteristics of people with dementia participating in MCSP, mood, quality of life (QoL) and experienced stigma, and to explore if and how the experienced stigma changed after 6 months of participation in MCSP.
Methods
A pretest (M1) post-test (M7) control group design with matched groups regarding severity of dementia was applied. In each country, a minimum of 25 participants using MCSP were compared with people with dementia receiving ‘usual care’. Data were collected with the Stigma Impact Scale, Cornell Scale for Depression in Dementia, Global Deterioration Scale and two QoL scales (QoL-AD & DQoL). Differences in background characteristics were taken into account in the analyses.
Results
The preliminary analysis on 116 participants at baseline shows that the level of stigma was low to moderate. People felt more socially rejected in the UK than in Poland and Italy. The level of perceived stigmatization appeared negatively correlated with QoL areas and positively correlated with negative mood. Changes after 6 months will be presented.
Conclusions
It is expected that after 6 months people living with dementia participating in MCSP will experience less stigma, as in contrast with usual care MCSP promotes social integration of people with dementia and person-centered support.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Propagating inhomogeneous electromagnetic waves called surface plasmon polaritons (SPPs) can be excited by free-space beams on corrugated conducting surfaces at resonance angles determined by corrugation period, permittivity, and optical frequency. SPPs are coupled to and co-propagate with surface charge displacements. Complete electrical isolation of individual conducting corrugations prevents the charge displacement necessary to sustain an SPP, such that excitation resonances of traveling SPPs are absent. However, SPPs can be excited via electric induction if a smooth conducting surface exists below and nearby the isolated conducting corrugations. The dependence of SPP excitation resonances on that separation is experimentally investigated here at long-wave infrared wavelengths. We find that excitation resonances for traveling SPPs broaden and disappear as the dielectric’s physical thickness is increased beyond ~1% of the free-space wavelength. The resonance line width increases with refractive index and optical thickness of the dielectric.
The science of studying diamond inclusions for understanding Earth history has developed significantly over the past decades, with new instrumentation and techniques applied to diamond sample archives revealing the stories contained within diamond inclusions. This chapter reviews what diamonds can tell us about the deep carbon cycle over the course of Earth’s history. It reviews how the geochemistry of diamonds and their inclusions inform us about the deep carbon cycle, the origin of the diamonds in Earth’s mantle, and the evolution of diamonds through time.
Small mountain glaciers are an important part of the cryosphere and tend to respond rapidly to climate warming. Historically, mapping very small glaciers (generally considered to be <0.5 km2) using satellite imagery has often been subjective due to the difficulty in differentiating them from perennial snowpatches. For this reason, most scientists implement minimum size-thresholds (typically 0.01–0.05 km2). Here, we compare the ability of different remote-sensing approaches to identify and map very small glaciers on imagery of varying spatial resolutions (30–0.25 m) and investigate how operator subjectivity influences the results. Based on this analysis, we support the use of a minimum size-threshold of 0.01 km2 for imagery with coarse to medium spatial resolution (30–10 m). However, when mapping on high-resolution imagery (<1 m) with minimal seasonal snow cover, glaciers <0.05 km2 and even <0.01 km2 are readily identifiable and using a minimum threshold may be inappropriate. For these cases, we develop a set of criteria to enable the identification of very small glaciers and classify them as certain, probable or possible. This should facilitate a more consistent approach to identifying and mapping very small glaciers on high-resolution imagery, helping to produce more comprehensive and accurate glacier inventories.
The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.
The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarctica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n. gen. n. sp. from craniodental remains. Five ornithopodan genera are now named from Victoria. Galleonosaurus dorisae n. gen. n. sp. is known from five maxillae, from which the first description of jaw growth in an Australian dinosaur is provided. The holotype of Galleonosaurus dorisae n. gen. n. sp. is the most complete dinosaur maxilla known from Victoria. Micro-CT imagery of the holotype reveals the complex internal anatomy of the neurovascular tract and antorbital fossa. We confirm that Q. intrepidus is uniquely characterized by a deep foreshortened dentary. Two dentaries originally referred to Q. intrepidus are reassigned to Q. ?intrepidus and a further maxilla is referred to cf. Atlascopcosaurus loadsi Rich and Rich, 1989. A further ornithopod dentary morphotype is identified, more elongate than those of Q. intrepidus and Q. ?intrepidus and with three more tooth positions. This dentary might pertain to Galleonosaurus dorisae n. gen. n. sp. Phylogenetic analysis recovered Cretaceous Victorian and Argentinian nonstyracosternan ornithopods within the exclusively Gondwanan clade Elasmaria. However, the large-bodied taxon Muttaburrasaurus langdoni Bartholomai and Molnar, 1981 is hypothesised as a basal iguanodontian with closer affinities to dryomorphans than to rhabdodontids.
Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a dielectric of thickness t, and thin separated metal top-surface structures of dimension l. The fundamental resonance wavelength is predicted by an analytic standing-wave model based on t, l, and the dielectric refractive index spectrum. For the dielectrics SiO2, AlN, and TiO2, values for l of a few microns give fundamental resonances in the 8-12 μm long-wave infrared (LWIR) wavelength region. Agreement with theory is better for t/l exceeding 0.1. Harmonics at shorter wavelengths were already known, but we show that there are additional resonances in the far-infrared 20 - 50 μm wavelength range in MIM structures designed to have LWIR fundamental resonances. These new resonances are consistent with the model if far-IR dispersion features in the index spectrum are considered. LWIR fundamental absorptions are experimentally shown to be optimized for a ratio t/l of 0.1 to 0.3 for SiO2- and AlN-based MIM absorbers, respectively, with TiO2-based MIM optimized at an intermediate ratio.
Although most hospitals report very high levels of hand hygiene compliance (HHC), the accuracy of these overtly observed rates is questionable due to the Hawthorne effect and other sources of bias. In the study, we aimed (1) to compare HHC rates estimated using the standard audit method of overt observation by a known observer and a new audit method that employed a rapid (<15 minutes) “secret shopper” method and (2) to pilot test a novel feedback tool.
Design
Quality improvement project using a quasi-experimental stepped-wedge design.
Setting
This study was conducted in 5 acute-care hospitals (17 wards, 5 intensive care units) in the Midwestern United States.
Methods
Sites recruited a hand hygiene observer from outside the acute-care units to rapidly and covertly observe entry and exit HHC during the study period, October 2016–September 2017. After 3 months of observations, sites received a monthly feedback tool that communicated HHC information from the new audit method.
Results
The absolute difference in HHC estimates between the standard and new audit methods was ~30%. No significant differences in HHC were detected between the baseline and feedback phases (OR, 0.92; 95% CI, 0.84–1.01), but the standard audit method had significantly higher estimates than the new audit method (OR, 9.83; 95% CI, 8.82–10.95).
Conclusions
HHC estimates obtained using the new audit method were substantially lower than estimates obtained using the standard audit method, suggesting that the rapid, secret-shopper method is less subject to bias. Providing feedback using HHC from the new audit method did not seem to impact HHC behaviors.
Important Bird and Biodiversity Areas (IBAs) are sites identified as being globally important for the conservation of bird populations on the basis of an internationally agreed set of criteria. We present the first review of the development and spread of the IBA concept since it was launched by BirdLife International (then ICBP) in 1979 and examine some of the characteristics of the resulting inventory. Over 13,000 global and regional IBAs have so far been identified and documented in terrestrial, freshwater and marine ecosystems in almost all of the world’s countries and territories, making this the largest global network of sites of significance for biodiversity. IBAs have been identified using standardised, data-driven criteria that have been developed and applied at global and regional levels. These criteria capture multiple dimensions of a site’s significance for avian biodiversity and relate to populations of globally threatened species (68.6% of the 10,746 IBAs that meet global criteria), restricted-range species (25.4%), biome-restricted species (27.5%) and congregatory species (50.3%); many global IBAs (52.7%) trigger two or more of these criteria. IBAs range in size from < 1 km2 to over 300,000 km2 and have an approximately log-normal size distribution (median = 125.0 km2, mean = 1,202.6 km2). They cover approximately 6.7% of the terrestrial, 1.6% of the marine and 3.1% of the total surface area of the Earth. The launch in 2016 of the KBA Global Standard, which aims to identify, document and conserve sites that contribute to the global persistence of wider biodiversity, and whose criteria for site identification build on those developed for IBAs, is a logical evolution of the IBA concept. The role of IBAs in conservation planning, policy and practice is reviewed elsewhere. Future technical priorities for the IBA initiative include completion of the global inventory, particularly in the marine environment, keeping the dataset up to date, and improving the systematic monitoring of these sites.
Red Supergiant Stars (RSGs) are important probes of stellar and chemical evolution in star-forming environments. They represent the brightest near-IR stellar components of external galaxies and probe the most recent stellar population to provide robust, independent abundance estimates. The Local Group dwarf irregular galaxy, NGC6822, is a reasonably isolated galaxy with an interesting structure and turbulent history. Using RSGs as chemical abundance probes, we estimate metallicities in the central region of NGC6822, finding a suggestion of a metallicity gradient (in broad agreement with nebular tracers), however, this requires further study for confirmation. With intermediate resolution Multi-object spectroscopy (from e.g. KMOS, EMIR, MOSFIRE) combined with state-of-the-art stellar model atmospheres, we demonstrate how RSGs can be used to estimate stellar abundances in external galaxies. In this context, we compare stellar and nebular abundance tracers in NGC 6822 and by combining stellar and nebular tracers we estimate an abundance gradient of −0.18 ± 0.05 dex/kpc.
Malignant gliomas (MG) are highly invasive and aggressive brain tumors. Despite the current standard of care, the prognosis for patients with MG is abysmal– highlighting the need for novel, more effective treatment options to combat this aggressive disease. Oncolytic virus (OV) therapy is an advancing treatment option that harnesses tumor-selective viruses to kill cancer cells while simultaneously facilitating a systemic anti-tumor immune response. Many studies have noted synergistic effects when OV’s are combined with radiotherapy in preclinical cancer models, warranting further investigation of this multi-modal approach. Image-guided radiotherapy (IGRT) uses computer-modulated imaging techniques to precisely deliver ionizing radiation to treat cancer. Despite the precision IGRT offers, cancer cells can still be ‘missed’ due to tumor microextensions or radioresistant cell populations– such as glioma stem cells or therapy-induced senescent cancer cells –and may contribute to recurrence or progression. Here we propose to combine our mCherry-tagged mutant vaccinia virus (deltaF4L-deltaJ2R-mCherry), which exhibits tumor-selectivity due to mutations in key viral nucleotide biosynthesis genes, with IGRT executed using state-of-the-art Small Animal Radiation Research Platform (SARRP) technology. We hypothesize that combining deltaF4L-deltaJ2R-mCherry with IGRT will produce better tumor control than either modality alone, by generating additive or synergistic effects in which IGRT destroys the majority of the tumor mass while our OV seeks out and targets any remaining cancer cells that have been missed or are resistant to radiotherapy.
Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.