Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T04:50:42.978Z Has data issue: false hasContentIssue false

Kozłowskiite, ideally Ca4Fe2+Sn3(Si2O7)2(Si2O6OH)2, a new kristiansenite-type mineral from Szklarska Poręba, Lower Silesia, Poland

Published online by Cambridge University Press:  23 May 2022

Adam Pieczka*
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Sylwia Zelek-Pogudz
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Bożena Gołębiowska
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Katarzyna M. Stadnicka
Affiliation:
Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
R. James Evans
Affiliation:
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
*
*Author for correspondence: Adam Pieczka, Email: pieczka@agh.edu.pl

Abstract

Kozłowskiite, ideally Ca4(Fe2+Sn3)(Si2O7)2(Si2O6OH)2, is a new mineral isostructural with kristiansenite and silesiaite, found as a band in the core of a zoned silesiaite–kristiansenite crystal from the granitic pegmatite at Szklarska Poręba, Lower Silesia, Poland. In tiny pieces kozłowskiite is pale brownish, with a calculated density of 3.775 g⋅cm–3 and a mean refractive index ~1.727. The triclinic crystal structure was determined with space-group symmetry C1: a = 10.0183(2), b = 8.3861(1), c = 13.3395(2) Å, α = 89.956(1), β = 109.039(2), γ = 89.979(1)° and V = 1059.40(3) Å3, although, similarly to kristiansenite, it is metrically monoclinic (Laue group 2/m) with α and γ angles equal to 90° and a = 10.0170(3), b = 8.3860(2), c = 13.3421(4) Å, β = 109.050(3)° and V = 1059.40(5) Å3. The seven strongest reflections in the calculated powder X-ray diffraction pattern are [d in Å (I) hkl]: 5.190 (73.2) 111, 1$\bar{1}$1; 4.569 (30.0) $\bar{2}$02; 3.153 (64.7) 004; 3.094 (28.1) $\bar{3}$11, $\bar{3}\bar{1}$1; 3.089 (100) $\bar{2}\bar{2}$2, $\bar{2}$22; 2.595 (27.2) 2$\bar{2}$2, 222; and 2.141 (30.6) $\bar{3}$31, $\bar{3}\bar{3}$1. Electron microprobe analysis gave (in wt.%) SiO2 39.46, ZrO2 0.35, SnO2 31.13, Al2O3 0.35, Sc2O3 2.65, total Fe as Fe2O3 5.06 (= Fe2O3calc. 2.26; FeOcalc. 2.52), MnO 0.71, CaO 18.42 and H2Ocalc. 1.48, sum 99.33. The empirical formula on the basis of 26O + 2(OH) and 16 cations (Z = 2) is Ca4.00(Sn2.52Sc0.47Fe2+0.43Fe3+0.34Mn2+0.12Al0.08Zr0.03)Σ4.00(Si2.00O7)2(Si2.00O6OH)2. The crystal structure of kozłowskiite was refined to an R1 = 2.12% for 4887 reflections with Io>2σI. The Ca and Si sites are occupied solely by Ca and Si, respectively, and three of four M sites: M2, M3 and M4, are dominated by Sn. Four hydrogen atoms present in the kozłowskiite unit cell are shared among the O17–O27 and O47–O37 oxygen atoms where O17 and O47 are OH groups forming relatively strong hydrogen bonds.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ferdinando Bosi

References

Berg, G. (1923) Der Granit des Riesengebirges und seine Ganggesteine (Petrographische Studien). Abhandlungen der Preussischen Geologischen Landesanstalt N.F., 94. Berlin.Google Scholar
Borkowska, M. (1966) Petrography of Karkonosze granite. Geologia Sudetica, 2, 7119.Google Scholar
Evans, R.J., Gołębiowska, B., Groat, L.A. and Pieczka, A. (2018) Crystal structure of kristiansenite from Szklarska Poręba, southwestern Poland. Minerals, 8, 584.CrossRefGoogle Scholar
Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849854.CrossRefGoogle Scholar
Ferraris, G., Gula, A., Ivaldi, G., Nespolo, M. and Raade, G. (2001) Crystal structure of kristiansenite: a case of class IIB twinning by metric merohedry. Zeitschrift für Kristallographie, 216, 442448.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gaines, R.V., Skinner, H.C., Foord, E.E., Mason, B. and Rosenzweig, A. (1997) Dana's New Mineralogy, Eighth Edition. John Wiley & Sons, Inc., New York.Google Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Karwowski, Ł., Olszyński, W. and Kozłowski, A. (1973) Wolframite mineralization from the vicinity of Szklarska Poręba Huta. Przegląd Geologiczny, 21, 633637 [in Polish].Google Scholar
Kozłowski, A., Karwowski, Ł. and Olszyński, W. (1975) Tungsten-tin-molybdenum mineralization in the Karkonosze massif. Acta Geologica Polonica, 25, 415430.Google Scholar
Kryza, R., Pin, C., Oberc-Dziedzic, T., Crowley, Q.G. and Larionov, A. (2014) Deciphering the geochronology of a large granitoid pluton (Karkonosze Granite, SW Poland): an assessment of U–Pb zircon SIMS and Rb–Sr whole rock dates relative to U–Pb zircon CA–ID–TIMS. International Geology Review, 56, 756782.CrossRefGoogle Scholar
Kusiak, M.A., Williams, I.S., Dunkley, D.J., Konečný, P., Słaby, E. and Martin, H.M. (2014) Monazite to the rescue: U–Th–Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chemical Geology, 364, 7692.CrossRefGoogle Scholar
Machowiak, K. and Armstrong, R. (2007) SHRIMP U–Pb zircon age from the Karkonosze granite. Mineralogia – Special Papers, 31, 193196.Google Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mazur, S., Aleksandrowski, P., Turniak, K. and Awdankiewicz, M. (2007) Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. Granitoids in Poland, Archivum Mineralogiae Monograph, 1, 5987.Google Scholar
Mikulski, S.Z. (2007) Metal ore potential of the parent magma of granite – the Karkonosze massif example. Granitoids in Poland, Archivum Mineralogiae Monograph, 1, 123145.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Olszyński, W., Kozłowski, A. and Karwowski, Ł. (1976) Bismuth minerals from the Karkonosze massif. Acta Geologica Polonica, 26, 443449.Google Scholar
Pieczka, A. and Gołębiowska, B. (2012) Cuprobismutite homologues in granitic pegmatites from Szklarska Poręba, Karkonosze Massif, Southwestern Poland. The Canadian Mineralogist, 50, 313324.CrossRefGoogle Scholar
Pieczka, A., Szuszkiewicz, A., Szełęg, E., Janeczek, J. and Nejbert, K. (2015) Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7 th International Symposium on Granitic Pegmatites, Książ, Poland, June 17–19, 2015. Fieldtrip Guidebook C, pp. 73103.Google Scholar
Pieczka, A., Ma, C., Rossman, G.R., Evans, R.J., Groat, L.A. and Gołębiowska, B. (2017) Silesiaite, IMA 2017-064. CNMNC Newsletter No. 40, December 2017, page 1578. Mineralogical Magazine, 81, 15771581.Google Scholar
Pieczka, A., Zelek-Pogudz, S., Gołębiowska, B., Stadnicka, K.M. and Evans, R.J. (2022) Kozłowskiite, IMA 2021-081. CNMNC Newsletter 65; Mineralogical Magazine, 86, 354358, https://doi.org/10.1180/mgm.2022.14Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury DE, D.E., editors). Plenum Press, New York, NY, USA.Google Scholar
Putz, H. and Brandenburg, K. (2014) Diamond - Crystal and Molecular Structure Visualization. Crystal Impact, Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/diamondGoogle Scholar
Raade, G., Ferraris, G., Gula, A., Ivaldi, G. and Bernhard, F. (2002) Kristiansenite, a new calcium–scandium–tin sorosilicate from granite pegmatite in Tørdal, Telemark, Norway. Mineralogy and Petrology, 75, 8999.CrossRefGoogle Scholar
Rigaku Oxford Diffraction (2019) CrysAlisPro Software system, version 1.171.40.67a. Rigaku Corporation, Wroclaw, Poland.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Słaby, E. and Martin, H. (2008) Mafic and felsic magma interaction in granites: the Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49, 353391.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Supplementary material: File

Pieczka et al. supplementary material

Pieczka et al. supplementary material

Download Pieczka et al. supplementary material(File)
File 3 MB