We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Meat quality is not only influenced by breed but also rearing environment. The aim of this study was to evaluate the influence of different housing environments on growth performance, carcase traits, meat quality, physiological response pre-slaughter and fatty acid composition in two pig breeds. A total of 120 growing pigs at 60-70 days of age were arranged in a 2 × 2 factorial design with the breeds (Duroc × Landrace × Large White [D × L × LW] and Duroc × Landrace × Min pig [D × L × M]) and environmental enrichment (barren concrete floor or enriched with straw bedding) as factors. Each treatment was performed in triplicate with ten pigs per replicate. The pigs housed in the enriched environment exhibited a higher average daily gain, average daily feed intake, saturated fatty acid percentage and backfat depth than the pigs reared in the barren environment. Plasma cortisol levels were lower and growth hormone higher in enriched compared to barren pens. The D × L × M pigs showed lower cooking loss compared with the D × L × LW pigs. Moreover, the D × L × M pigs exhibited poor growth performance but had a better water-holding capacity. Only carcase traits and meat quality interaction effects were observed. We concluded that an enriched environment can reduce preslaughter stress and improve the growth performance of pigs and modulate the fatty acid composition of pork products.
A recent experiment by Wang et al. (Soft Matt., vol. 17, 2021, pp. 2985–2993) shows that a self-propelled compound drop in a surfactant-laden solution can autonomously change its motion from a straight line to a spiraling trajectory, enhancing its capability for chemical detection, catalytic reaction and pollutant removal in a large fluid region. To understand the underlying physics of this peculiar motion, we develop a two-dimensional minimal model to study the swimming dynamics of a compound droplet driven by a self-generated Marangoni stress. We find that, depending on the Péclet number ($Pe$) and the viscosity and volume ratios of the two compound phases, the drop can swim in a variety of trajectories, including straight lines, circles, zigzag curves and chaotic trajectories. The drop moves in circles when its two components have comparable volumes. Otherwise, it shows other types of motions depending on $Pe$. Our simulation results for the circular motion at small $Pe$ are qualitatively comparable to the experiment. The transition between zigzag and circular trajectories is mainly determined by the orientation of high-order modes with respect to the drop's swimming direction. For most compound drops, the speed decays as $Pe^{-1/3}$ at high Péclet numbers as it does for a single-phase drop. A drop with two equal components undergoes a run-and-reorient motion due to the competition between the even and odd modes.
Apart from the psychiatric symptoms, cognitive deficits are also the core symptoms of schizophrenia. Brain network control theory provided information on the role of a specific brain region in the cognitive control process, helping understand the neural mechanism of cognitive impairment in schizophrenia.
Objectives
To characterize the control properties of functional brain network in first-episode untreated patients with schizophrenia and the relationships between controllability and psychiatric symptoms, as well as exploring the predictive value of controllability in differentiating patients from healthy controls (HCs).
Methods
Average and modal controllability of brain networks were calculated and compared between 133 first-episode untreated patients with schizophrenia and 135 HCs. The associations between controllability and clinical symptoms were evaluated using sparse canonical correlation analysis. Support vector machine (SVM) and SVM-recursive feature elimination combined with the controllability were performed to establish the individual prediction model.
Results
Compared to HCs, the patients with schizophrenia showed increased average controllability and decreased modal controllability in dorsal anterior cingulate cortex (dACC). Brain controllability predominantly in somatomotor, default mode, and visual networks was associated with the positive symptomatology of schizophrenia. The established model could identify patients with an accuracy of 0.68. Furthermore, the most discriminative features were located in dACC, medial prefrontal lobe, precuneus and superior temporal gyrus.
Conclusions
Altered controllability in dACC may play a critical role in the neuropathological mechanisms of cognitive deficit in schizophrenia, which could drive the brain function to different states to cope with varied cognitive tasks. As symptom-related biomarkers, controllability could be also beneficial to individual prediction in schizophrenia.
There is a growing consensus on brain networks that it is not immutable but rather a dynamic complex system for adapting environment. The neuroimaging research studying how brain regions work collaboratively with dynamic methods had demonstrated its effectiveness in revealing the neural mechanisms of schizophrenia.
Objectives
To investigate altered dynamic brain functional topology in first-episode untreated schizophrenia patients (SZs) and establish classification models to find objective brain imaging biomarkers.
Methods
Resting-state-functional magnetic resonance data for SZs and matched healthy controls were obtained(Table1).
Power-264-template was used to extract nodes and sliding-window approach was carried out to establish functional connectivity matrices. Functional topology was assessed by eigenvector centrality(EC) and node efficiency and its time-fluctuating was evaluated with coefficient of variation(CV). Group differences of dynamic topology and correlation analysis between Positive and Negative Syndrome Scale(PANSS) scores and topology indices showing group differences, which also were used in establishing classification models, was examed.
Results
The CV of node efficiency in angular and paracingulate gyrus was larger in SZs. There are 13 nodes assigned into several brain networks displaying altered CV of EC between groups(Figure1.A). Fluctuation of EC of the node in DMN, which was lower in SZs, showed negative correlation with PANSS total scores(Figure1.B). Dynamic functional topology of above nodes was used to train classification models and demonstrated 80% and 71% accuracy for support vector classification(SVC) and random forest(RF), respectively(Figure2).
Conclusions
Dynamic functional topology illustrated a capability in identifying SZs. Aberrated dynamics of DMN relevant to severity of patient’s symptoms could reveal the reason why it contributed to classification.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
This multi-method longitudinal study evaluated how changes in maternal sensitive parenting may operate as an indirect factor linking family instability and the development of child externalizing problems over time. This study also investigated how mothers’ stress reactivity within the sympathetic nervous system (SNS) may moderate the association between family instability and the development of maternal sensitivity. Participants were 235 families with a young child (Mage = 2.97 years at the first measurement occasion) and these families were followed for two annual measurement occasions. Maternal sensitivity was observed during two discipline tasks (i.e., forbidden toy, discipline discussion tasks), and maternal SNS stress reactivity was indicated by their salivary alpha-amylase (sAA) reactivity to an interpersonal stressor. Findings revealed significant direct effects of family instability and family instability-x-sAA reactivity interaction in association with the change in maternal sensitivity over time. For both tasks, mothers with greater sAA reactivity exhibited stronger associations between family instability and the growth of their sensitivity. Tests of indirect effects indicated that change in maternal sensitivity operated as an indirect factor between family instability-x-sAA reactivity interaction and the change in child externalizing problems. The present findings have important implications for understanding parental and child sequelae associated with unstable family contexts.
We empirically evaluate 20 prominent contributions across a broad range of areas in the empirical corporate finance literature. We assemble the necessary data and apply a single, simple econometric method, the connected-groups approach of Abowd et al. to appraise the extent to which prevailing empirical specifications explain variation of the dependent variable, differ in composition of fit arising from various classes of independent variables, and exhibit resistance to omitted variable bias and other endogeneity problems. We assess empirical performance across a wide spectrum of areas in corporate finance and indicate varying research opportunities for empiricists and theorists.
We describe a large outbreak of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) involving an acute-care hospital emergency department during December 2020 and January 2021, in which 27 healthcare personnel worked while infectious, resulting in multiple opportunities for SARS-CoV-2 transmission to patients and other healthcare personnel. We provide recommendations for improving infection prevention and control.
This study aimed to determine the probability of hearing recovery in patients with idiopathic sudden sensorineural hearing loss following salvage intratympanic steroids
Method
A retrospective review of all patients receiving salvage intratympanic steroid injections for idiopathic sudden sensorineural hearing loss was performed (January 2014 to December 2019). Twenty-two patients were identified, of whom 15 met inclusion criteria. Pre- and post-treatment audiograms were compared with the unaffected ear. Hearing recovery was categorised based on American Academy of Otolaryngology Head and Neck Surgery criteria.
Results
Only 1 patient out of 15 (6.7 per cent) made a partial recovery, and the remainder were non-responders. The median duration of time between symptom onset and first salvage intratympanic steroid treatment was 52 days (range, 14–81 days). No adverse reactions were observed.
Conclusion
‘Real world’ patients with idiopathic sudden sensorineural hearing loss present differently to those in the literature. Sudden sensorineural hearing loss should be diagnosed with care and intratympanic steroid injections initiated early if considered appropriate. Patients should make an informed decision on treatment based on prognostic factors and local success rates.
This paper presents a new approach to force fighting equalisation in a redundant active-active-active rudder actuation system that is used for the primary flight control system of a turboprop regional aircraft. The related coupled problem of force fighting scenario, and the hydraulic architecture of electronic-hydrostatic actuator (EHA) are analysed, the mathematical model of the EHA system is built. The virtual test bench is designed to evaluate the performance of the force fighting equalisation strategy. The proposed methodology is tested on an iron bird test rig. The physical experiment shows that the fighting force is minimised under all flight conditions, meets the low cost requirement and can be a very reliable system. The proposed methodology can be applied to other types of aircraft’ flight actuation systems.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
OBJECTIVES/GOALS: The goal of this study was to understand the impact of a high sodium diet on gene networks in the kidney that correlate with blood pressure in female primates, and translating findings to women. METHODS/STUDY POPULATION: Sodium-naïve female baboons (n=7) were fed a low-sodium (LS) diet for 6 weeks followed by a high sodium (HS) diet for 6 weeks. Sodium intake, serum 17 beta-estradiol, and ultrasound-guided kidney biopsies for RNA-Seq were collected at the end of each diet. Blood pressure was continuously measured for 64-hour periods throughout the study by implantable telemetry devices. Weighted gene coexpression network analysis was performed on RNA-Seq data to identify transcripts correlated with blood pressure on each diet. Network analysis was performed on transcripts highly correlated with BP, and in silico findings were validated by immunohistochemistry of kidney tissues. RESULTS/ANTICIPATED RESULTS: On the LS diet, Na+ intake and serum 17 beta-estradiol concentration correlated with BP. Cell type composition of renal biopsies was consistent among all animals for both diets. Kidney transcriptomes differed by diet; analysis by unbiased weighted gene co-expression network analysis revealed modules of genes correlated with BP on the HS diet. Network analysis of module genes showed causal networks linking hormone receptors, proliferation and differentiation, methylation, hypoxia, insulin and lipid regulation, and inflammation as regulators underlying variation in BP on the HS diet. Our results show variation in BP correlated with novel kidney gene networks with master regulators PPARG and MYC in female baboons on a HS diet. DISCUSSION/SIGNIFICANCE: Previous studies in primates to identify molecular networks dysregulated by HS diet focused on males. Current clinical guidelines do not offer sex-specific treatment plans for sodium sensitive hypertension. This study leveraged variation in BP as a first step to identify correlated kidney regulatory gene networks in female primates after a HS diet.
For a common micro-satellite, orbiting in a circular sun-synchronous orbit (SSO) at an altitude between 500 and 600km, the satellite attitude during off-nadir imaging and staring-imaging operations can be up to ±45 degree on roll and pitch angles. During these off-nadir pointing for both multi-trip operation and staring imaging operations, the spacecraft body is commonly subject to high-rate motion. This posts challenges for a spacecraft attitude determination subsystem called Gyro Stellar Inertial Attitude Estimate (GS IAE), which employs gyros and star sensors to maintain the required attitude knowledge, since star trackers will severely degrade attitude estimation accuracies when the spacecraft is subject to high-rate motion. This paper analyses the star motion-induced errors for a typical star tracker, models the star motion-induced errors to assess the performance impact on the attitude estimation accuracy, and investigates the adaptive extended Kalman filter design in the GS IAE while evaluating its effectiveness.
Identification of treatment-specific predictors of drug therapies for bipolar disorder (BD) is important because only about half of individuals respond to any specific medication. However, medication response in pediatric BD is variable and not well predicted by clinical characteristics.
Methods
A total of 121 youth with early course BD (acute manic/mixed episode) were prospectively recruited and randomized to 6 weeks of double-blind treatment with quetiapine (n = 71) or lithium (n = 50). Participants completed structural magnetic resonance imaging (MRI) at baseline before treatment and 1 week after treatment initiation, and brain morphometric features were extracted for each individual based on MRI scans. Positive antimanic treatment response at week 6 was defined as an over 50% reduction of Young Mania Rating Scale scores from baseline. Two-stage deep learning prediction model was established to distinguish responders and non-responders based on different feature sets.
Results
Pre-treatment morphometry and morphometric changes occurring during the first week can both independently predict treatment outcome of quetiapine and lithium with balanced accuracy over 75% (all p < 0.05). Combining brain morphometry at baseline and week 1 allows prediction with the highest balanced accuracy (quetiapine: 83.2% and lithium: 83.5%). Predictions in the quetiapine and lithium group were found to be driven by different morphometric patterns.
Conclusions
These findings demonstrate that pre-treatment morphometric measures and acute brain morphometric changes can serve as medication response predictors in pediatric BD. Brain morphometric features may provide promising biomarkers for developing biologically-informed treatment outcome prediction and patient stratification tools for BD treatment development.
Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen in neonatal intensive care units (NICU) that confers significant morbidity and mortality.
Objective:
Improving our understanding of MRSA transmission dynamics, especially among high-risk patients, is an infection prevention priority.
Methods:
We investigated a cluster of clinical MRSA cases in the NICU using a combination of epidemiologic review and whole-genome sequencing (WGS) of isolates from clinical and surveillance cultures obtained from patients and healthcare personnel (HCP).
Results:
Phylogenetic analysis identified 2 genetically distinct phylogenetic clades and revealed multiple silent-transmission events between HCP and infants. The predominant outbreak strain harbored multiple virulence factors. Epidemiologic investigation and genomic analysis identified a HCP colonized with the dominant MRSA outbreak strain who cared for most NICU patients who were infected or colonized with the same strain, including 1 NICU patient with severe infection 7 months before the described outbreak. These results guided implementation of infection prevention interventions that prevented further transmission events.
Conclusions:
Silent transmission of MRSA between HCP and NICU patients likely contributed to a NICU outbreak involving a virulent MRSA strain. WGS enabled data-driven decision making to inform implementation of infection control policies that mitigated the outbreak. Prospective WGS coupled with epidemiologic analysis can be used to detect transmission events and prompt early implementation of control strategies.
Low birth weight (LBW) neonates show impaired growth compared with normal birth weight (NBW) neonates. Glutamine (Gln) supplementation benefits growth of weaning piglets, while the effect on neonates is not sufficiently clear. We examined the effect of neonatal Gln supplementation on piglet growth, milk intake and metabolic parameters. Sow-reared pairs of newborn LBW (0·8–1·2 kg) and NBW (1·4–1·8 kg) male piglets received Gln (1 g/kg body mass (BM)/d; Gln-LBW, Gln-NBW; n 24/group) or isonitrogenous alanine (1·22 g/kg BM/d; Ala-LBW; Ala-NBW; n 24/group) supplementation at 1–5 or 1–12 d of age (daily in three equal portions at 07:00, 12:00 and 17:00 by syringe feeding). We measured piglet BM, milk intake (1, 11–12 d), plasma metabolite, insulin, amino acid (AA) and liver TAG concentrations (5, 12 d). The Gln-LBW group had higher BM (+7·5%, 10 d, P = 0·066; 11–12 d, P < 0·05) and milk intake (+14·7%, P = 0·015) than Ala-LBW. At 5 d, Ala-LBW group had higher plasma TAG (+34·7%, P < 0·1) and lower carnosine (–22·5%, P < 0·05) than Ala-NBW and Gln-LBW, and higher liver TAG (+66·9%, P = 0·029) than Ala-NBW. At 12 d, plasma urea was higher (+37·5%, P < 0·05) with Gln than Ala supplementation. Several proteinogenic AA in plasma were lower (P < 0·05) in Ala-NBW v. Gln-NBW. Plasma arginine was higher (P < 0·05) in Gln-NBW v Ala-NBW piglets (5, 12 d). Supplemental Gln moderately improved growth and milk intake and affected lipid metabolism in LBW piglets and AA metabolism in NBW piglets, suggesting effects on intestinal and liver function.