We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inorganic gel and allophane collected from basaltic saprolite on Maui, Hawaii, and studied by Patterson in 1964 were reexamined. The main constituent of the gel is imogolite, and gibbsite and allophane are the minor constituents. Electron and X-ray diffraction patterns, DTA curve, and an infrared spectrum of the gel are characteristic of imogolite. The allophane is virtually noncrystalline to X-rays but contains a small amount of imogolite in relatively short threads. High-resolution electron micrographs indicate differences in structural organization between allophane and imogolite and suggest crystallization of imogolite from allophane.
The occurrence of imogolite as a weathering product has been reported in many localities from pyroclastic materials but not from massive rocks. Probably the exceptionally high rainfall, excellent subsurface permeability of the weathered material, and the low pH and high organic content of the leaching solution provide favorable conditions for formation of imogolite from basalt on Maui.
Small-angle X-ray powder diffraction analyses and high-resolution electron microscopy of allophane samples (SiO2/Al2O3 ratio, 1.12 to 1.68) showed that allophanes consist of nearly identical spherical particles with diameters of about 40 Å and retain their characteristic “hollow” spherical morphology at different ambient moisture and even after dehydroxylation by heating at 500° to 600°C. Unheated allophane samples gave another X-ray powder diffraction band whose maximum position varied from 12.3 to 14.5 A depending on their SiO2/Al2O3 ratio. The appearance of this band may denote some long-range ordering in the structure of allophane. Unlike the spherical particles of allophane, the tube unit of imogolite collapsed on dehydroxylation. This observation suggests that imogolite and allophane are different in their framework structures and that a Si- or Si(Al)-tetrahedral sheet rather than an Al-octahedral sheet constitutes the framework structure of allophane, irrespective of its SiO2/Al2O3 ratio.
With the recent discovery of a dozen dusty star-forming galaxies and around 30 quasars at z > 5 that are hyper-luminous in the infrared (μ LIR > 1013 L⊙, where μ is a lensing magnification factor), the possibility has opened up for SPICA, the proposed ESA M5 mid-/far-infrared mission, to extend its spectroscopic studies toward the epoch of reionisation and beyond. In this paper, we examine the feasibility and scientific potential of such observations with SPICA’s far-infrared spectrometer SAFARI, which will probe a spectral range (35–230 μm) that will be unexplored by ALMA and JWST. Our simulations show that SAFARI is capable of delivering good-quality spectra for hyper-luminous infrared galaxies at z = 5 − 10, allowing us to sample spectral features in the rest-frame mid-infrared and to investigate a host of key scientific issues, such as the relative importance of star formation versus AGN, the hardness of the radiation field, the level of chemical enrichment, and the properties of the molecular gas. From a broader perspective, SAFARI offers the potential to open up a new frontier in the study of the early Universe, providing access to uniquely powerful spectral features for probing first-generation objects, such as the key cooling lines of low-metallicity or metal-free forming galaxies (fine-structure and H2 lines) and emission features of solid compounds freshly synthesised by Population III supernovae. Ultimately, SAFARI’s ability to explore the high-redshift Universe will be determined by the availability of sufficiently bright targets (whether intrinsically luminous or gravitationally lensed). With its launch expected around 2030, SPICA is ideally positioned to take full advantage of upcoming wide-field surveys such as LSST, SKA, Euclid, and WFIRST, which are likely to provide extraordinary targets for SAFARI.
Measurements in the infrared wavelength domain allow direct assessment of the physical state and energy balance of cool matter in space, enabling the detailed study of the processes that govern the formation and evolution of stars and planetary systems in galaxies over cosmic time. Previous infrared missions revealed a great deal about the obscured Universe, but were hampered by limited sensitivity.
SPICA takes the next step in infrared observational capability by combining a large 2.5-meter diameter telescope, cooled to below 8 K, with instruments employing ultra-sensitive detectors. A combination of passive cooling and mechanical coolers will be used to cool both the telescope and the instruments. With mechanical coolers the mission lifetime is not limited by the supply of cryogen. With the combination of low telescope background and instruments with state-of-the-art detectors SPICA provides a huge advance on the capabilities of previous missions.
SPICA instruments offer spectral resolving power ranging from R ~50 through 11 000 in the 17–230 μm domain and R ~28.000 spectroscopy between 12 and 18 μm. SPICA will provide efficient 30–37 μm broad band mapping, and small field spectroscopic and polarimetric imaging at 100, 200 and 350 μm. SPICA will provide infrared spectroscopy with an unprecedented sensitivity of ~5 × 10−20 W m−2 (5σ/1 h)—over two orders of magnitude improvement over what earlier missions. This exceptional performance leap, will open entirely new domains in infrared astronomy; galaxy evolution and metal production over cosmic time, dust formation and evolution from very early epochs onwards, the formation history of planetary systems.
In the collapsing phase of a molecular cloud, the molecular gas temperature is a key to understand the evolutionary process from a dense molecular cloud to stars. In order to know this, mapping observations in NH3 lines are required. Therefore, we made them based on the FUGIN (FOREST Unbiased Galactic plane Imaging survey with Nobeyama 45m telescope). The 6 maps were observed in NH3 (J,K) = (1,1), (2,2), (3,3) and H2O maser lines and obtained temperature maps; some show temperature gradient in a cloud. Additionally 72 cores were observed. These candidates were called as KAGONMA or KAG objects as abbreviation of KAgoshima Galactic Object survey with Nobeyama 45-M telescope in Ammonia lines. We show the results of two regions in W33 and discuss their astrophysical properties.
Poorly crystalline inorganic materials were removed from soil clays of different origin and mineral composition by successive treatments with sodium dithionite, 2 % Na2CO3 and 0·5 N NaOH. Techniques are described whereby difference spectra representing the infrared absorption of the materials removed by the treatments can be obtained. These spectra indicate that the materials dissolved are related to the mineral composition of the soil clay. Dissolution of allophanes of different composition was only proved for two volcanic ash soil clays in which these dominated. Layer silicates, probably including kaolin, were dissolved from the clay fractions of the red-brown earth and krasnozem studied. In addition, alumina-rich gel-like material and gibbsite, but no allophanes, were dissolved from another volcanic ash soil clay in which gibbsite and layer silicates are present in considerable amounts.
An intergradient 14 Å mineral showing X-ray diffraction features of “chloritized” vermiculite in a Korean Ultisol was studied. The structural formula of the whole 2:1 layer-silicate (14 Å mineral and mica) in the Na+-saturated 0·2–0·5 µm fraction was obtained by elemental, thermogravimetric and 29Si and 27Al nuclear magnetic resonance spectroscopic analyses in combination with extraction of the interlayer material from the 14 Å mineral by hot 1/3 m sodium citrate treatment. This formula showed: (1) the 2 : 1 layer contains nearly one Al3+ in four tetrahedral positions, and Al3+ is the dominant cation in the octahedral sheet; (2) K+, exchangeable Na+ and sodium citrate extractable 1 : 1 layer occupy the interlayer space of the 14 Å mineral in similar proportions. Very little interlayer K was replaced by Na+ during the citrate treatment. Possible schemes of alteration of the 2 : 1 layer to the 1 : 1 layer as its interlayer material are discussed.
The acid strength and the number of acid sites on various clays were determined by observing the colouration of Hammett indicators adsorbed on them and by titrating benzene suspensions of them with n-butylamine, respectively. H(Al)-saturated allophane behaves as a strong acid (Ho; −5·6 ∼ 1·5) in a relatively dry environment (relative humidity 10-55%), but its acid strength is very much reduced either by increasing its water content or by saturating it with alkali or alkali earth metal cations. Imogolite shows only a very weak acidity (Ho; 4·6 ∼ 6·8) under medium dry to moist conditions (relative humidity; 30-100%). Both allophane and imogolite show a marked enhancement of acidity (Ho; −8·2 ∼ 1·5) when they have been dried over P2O5 or heated to result in dehydroxylation. H(Al)-saturated montmorillonite, kaolinite and halloysite show stronger acidities (Ho; −5·6 ∼ 1·5) than allophane (Ho; 1·5 ∼ 6·8) in a relatively moist environment (relative humidity; >60%). The n-butylamine titre and CEC show a good agreement for montmorillonite, but a poor agreement for allophane. The latter discrepancy which is larger for allophane when it has been heated at 150 and 300°C, is also found for imogolite when similarly heated. In these titrations, excess butylamine is found in supernatants at end-points. Therefore, the n-butylamine titre as such can not be used for the estimation of the number of acid sites on imogolite and allophane. The origin, structure and transformation of the acid sites on these clays is discussed.
Imogolite, protoimogolite and two synthetic allophanes (A and B) with very different Si/Al ratios have been pyrolysed over a range of temperatures, and the reactions followed by high-resolution solid-state 27AI and 29Si nuclear magnetic resonance (NMR) spectroscopy. The Si(OAloct)3OH groups of protoimogolite are destroyed at relatively low (∼ 200°C temperatures, whereas the same structures in imogolite are stable to ∼ 300°C. During pyrolysis of both materials there is little change in the observed coordination of AI at temperatures of < 500°C but at 500°C or higher, ∼25% of the NMR-visible Al is converted to tetrahedral coordination. The mechanism of decomposition of both protoimogolite and imogolite is shown to involve the formation of highly branched Si-O-Si chains. As far as can be discerned by 27Al and 29Si NMR, allophanes A and B both appear to produce products similar to protoimogolite on pyrolysis.
The mid-infrared range contains many spectral features associated with large molecules and dust grains such as polycyclic aromatic hydrocarbons and silicates. These are usually very strong compared to fine-structure gas lines, and thus valuable in studying the spectral properties of faint distant galaxies. In this paper, we evaluate the capability of low-resolution mid-infrared spectroscopic surveys of galaxies that could be performed by SPICA. The surveys are designed to address the question how star formation and black hole accretion activities evolved over cosmic time through spectral diagnostics of the physical conditions of the interstellar/circumnuclear media in galaxies. On the basis of results obtained with Herschel far-infrared photometric surveys of distant galaxies and Spitzer and AKARI near- to mid-infrared spectroscopic observations of nearby galaxies, we estimate the numbers of the galaxies at redshift z > 0.5, which are expected to be detected in the polycyclic aromatic hydrocarbon features or dust continuum by a wide (10 deg2) or deep (1 deg2) blind survey, both for a given observation time of 600 h. As by-products of the wide blind survey, we also expect to detect debris disks, through the mid-infrared excess above the photospheric emission of nearby main-sequence stars, and we estimate their number. We demonstrate that the SPICA mid-infrared surveys will efficiently provide us with unprecedentedly large spectral samples, which can be studied further in the far-infrared with SPICA.
IR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ~ 6.
High dietary energy density (ED) has been associated with weight gain. However, little is known about the long-term effects of ED on weight changes among free-living subjects, particularly in Japanese and other Asian populations. In this study, we assessed dietary habits and weight changes in participants (5778 males and 7440 females, 35–69 years old) of the Takayama study. ED was estimated using a validated FFQ at baseline only. Information on body weight (BW) was obtained by self-administered questionnaires at baseline and follow-up. Mean BW difference in 9·8 years was 17 (se 4221) g for men and −210 (se 3889) g for women. In men, ED was positively associated with BW at follow-up after controlling for age, BW, height, physical activity score, alcohol consumption, energy intake, years of education at the baseline and change of smoking status during the follow-up. On average, men in the highest quartile of ED (>5·322 kJ/g (>1·272 kcal/g)) gained 138 (se 111) g, whereas men in the lowest ED (<1·057) lost 22 (se 111) g (Pfor trend=0·01). The association between ED and BW gain was stronger in men with normal weight. In women, the association between ED and weight change was not statistically significant. In conclusion, contrary to some studies that report an association between ED and weight gain in the overweight only, our data suggest that high-ED diets may be associated with weight gain in the lean population as well, at least in male subjects.
The kinetics of Ge lateral overgrowth on SiO2 with line-shaped Si seeds is examined. The growth process is described by the difference between the growth rates of Ge on (100) planes (GR100) and <311> facets (GR311). The theoretical calculations well reproduce the growth kinetics. It is shown that narrowing the line-seeds helps Ge coalescence and flat film formation.
In this study, in order to investigate biocompatibility of nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) film coating segmented polyurethane (SPU) scaffold fiber sheet (a-C:H:N-Scaffold) in in-vitro test, mouse fibroblasts (NIH 3T3) cells were grown on the a-C:H:N-Scaffold. The cell behavior was monitored by time-lapse imaging system. Additionally, the a-C:H:N-Scaffold was implanted at partial aorta descendens of a goat for 35 days. The surface morphology, composition, and wettability of the a-C:H:N-scaffold was estimated by Scanning Electron Microscope (SEM), X-ray photoelectron spectrometer (XPS), and contact angle measurement. In in-vitro test, it was observed that a-C:H:N film coating had a facilitatory effect on cell motility and cell growth. In in-vivo test, it was observed that the a-C:H:N-Scaffold surface was uniformly covered by neointima. The a-C:H:N-Scaffold surface had no thrombus formation as an inflammatory reaction and it was shown that the a-C:H:N film coating had a good blood compatibility. These results suggest that a-C:H:N film coating has good cytocompatibility and blood compatibility and it is a promising approach for improvement of biocompatibility of biomaterial surfaces.
Crystallinity of area-selective Ge layer with a (0 0 1) surface grown on Si substrate has been investigated by means of diffractometry using a parallel X-ray microbeam. The measured lattice parameters of 〈0 0 1〉 direction were about 0.17% smaller than that of bulk Ge crystal. This tensile strain value was almost the same as the simulated ones that used the finite-element method.
To investigate two clusters of diarrhoea cases observed in our geriatric hospital wards, the faecal specimens were analysed. Reversed passive latex agglutination assay revealed that 63·2% and 41·7% of the faecal specimens from each cluster were positive for Clostridium perfringens enterotoxin. PCR assay revealed that 71·4% and 68·8% of C. perfringens isolates from each cluster were positive for the enterotoxin gene (cpe). These observations suggested that both the clusters were outbreaks caused by enterotoxigenic C. perfringens. Subsequent pulsed-field gel electrophoresis analysis revealed that the two outbreaks were caused by different C. perfringens isolates. However, these outbreak isolates as well as other sporadic diarrhoea isolates shared a 75-kb plasmid on which the cpe gene and the tcp locus were located. The 75-kb plasmid had horizontally spread to various C. perfringens isolates and had caused outbreaks and sporadic infections. However, the site and time of the plasmid transfer are unclear.
Deciduous oak dieback in Japan has been known since the 1930s, but in the last ten years epidemics have intensified and spread to the island’s western coastal areas. The symbiotic ambrosia fungus Raffaelea sp. is the causal agent of oak dieback, and is vectored by Platypus quercivorus (Murayama). This is the first example of an ambrosia beetle fungus that kills vigorous trees. Mortality of Quercus crispula was approximately 40% but much lower for associated species of Fagaceae, even though each species had a similar number of beetle attacks. It is likely that other oaks resistant to the fungus evolved under a stable relationship between the tree, fungus and beetle during a long evolutionary process. Quercus crispula was probably not part of this coevolution. This hypothesis was supported by the fact that P. quercivorus showed the least preference for Q. crispulayet exhibited highest reproductive success in this species. Therefore, P. quercivorus could spread more rapidly in stands with a high composition of Q. crispula. The present oak dieback epidemic in Japan probably resulted from the warmer climate that occurred from the late 1980s which made possible the fateful encounter of P. quercivorus with Q. cripsula by allowing the beetle to extend its distribution to more northerly latitudes and higher altitudes. Future global warming will possibly accelerate the overlapping of the distributions of P. quercivorus and Q. crispula with the result that oak dieback in Q. crispula will become more prevalent in Japan.
Because of its applicability to biological specimens (nonconductors), a single-molecule-imaging technique, atomic force microscopy (AFM), has been particularly powerful for visualizing and analyzing complex biological processes. Comparative analyses based on AFM observation revealed that the bacterial nucleoids and human chromatin were constituted by a detergent/salt-resistant 30–40-nm fiber that turned into thicker fibers with beads of 70–80 nm diameter. AFM observations of the 14-kbp plasmid and 110-kbp F plasmid purified from Escherichia coli demonstrated that the 70–80-nm fiber did not contain a eukaryotic nucleosome-like “beads-on-a-string” structure. Chloroplast nucleoid (that lacks bacterial-type nucleoid proteins and eukaryotic histones) also exhibited the 70–80-nm structural units. Interestingly, naked DNA appeared when the nucleoids from E. coli and chloroplast were treated with RNase, whereas only 30-nm chromatin fiber was released from the human nucleus with the same treatment. These observations suggest that the 30–40-nm nucleoid fiber is formed with a help of nucleoid proteins and RNA in E. coli and chroloplast, and that the eukaryotic 30-nm chromatin fiber is formed without RNA. On the other hand, the 70–80-nm beaded structures in both E. coli and human are dependent on RNA.