Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T05:09:32.968Z Has data issue: false hasContentIssue false

25 - Towards the quantum regime at the mesoscale

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 524 - 536
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arimondo, E., Clark, C. W., and Martin, W. C. 2010. Ettore Majorana and the birth of autoionization. Rev. Mod. Phys., 82, 1947–58.CrossRefGoogle Scholar
Barker, P. F. 2010. Doppler cooling of a microsphere. Phys. Rev. Lett., 105, 073002.CrossRefGoogle ScholarPubMed
Barker, P. F., and Shneider, M. N. 2010. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A, 81, 023826.CrossRefGoogle Scholar
Born, M., and Wolf, E. 1999. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Braginskii, V. B., and Manukin, A. B. 1977. Measurement of weak forces in physics experiments. Chicago: University of Chicago Press.Google Scholar
Chang, D. E., Regal, C.A., Papp, S. B., et al. 2010. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. U.S.A., 107, 1005–10.CrossRefGoogle ScholarPubMed
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. 1992. Atom–photon interactions: Basic processes and applications. New York: Wiley.Google Scholar
Dunn, J. W., Thomsen, J. W., Greene, C. H., and Cruz, F. C. 2007. Coherent quantum engineering of free-space laser cooling. Phys. Rev. A, 76, 011401.CrossRefGoogle Scholar
Fano, U. 1935. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro darco. Nuovo Cimento, 12, 154–61.CrossRefGoogle Scholar
Fano, U. 1961. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124, 1866–78.CrossRefGoogle Scholar
Fofang, N. T., Grady, N. K., Fan, Z., Govorov, A. O., and Halas|N. J. 2011. Plexciton dynamics: Exciton–plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Lett., 11, 1556–60.Google Scholar
Gardiner, C., and Zoller, P. 2004. Quantum noise: A handbook of Markovian and non- Markovian quantum stochastic methods with applications to quantum optics. Heidelberg, Germany: Springer Verlag.Google Scholar
Gieseler, J., Deutsch, B., Quidant, R., and Novotny, L. 2012. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett., 109, 103603.CrossRefGoogle ScholarPubMed
Kiesel, N., Blaser, F., Delić, U., et al. 2013. Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. U.S.A., 110, 14 180–85.CrossRefGoogle ScholarPubMed
Kippenberg, T. J., and Vahala, K. J. 2007. Cavity opto-mechanics. Opt. Express, 15, 17 172–205.CrossRefGoogle ScholarPubMed
Koppens, F. H. L., Chang, D. E., and Garcia de Abajo, F. J. 2011. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett., 11, 3370–77.CrossRefGoogle ScholarPubMed
Li, T., Kheifets, S., Medellin, D., and Raizen, M. G. 2010. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673–5.CrossRefGoogle ScholarPubMed
Li, T., Kheifets, S., and Raizen, M. G. 2011. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys., 7, 527–30.CrossRefGoogle Scholar
Lounis, B., and Cohen-Tannoudji, C. 1992. Coherent population trapping and Fano profiles. Journal Physique II, 2, 579–92.Google Scholar
Majorana, E. 1931a. I presunti termini anomali dell'elio. Nuovo Cimento, 8, 78–83.CrossRefGoogle Scholar
Majorana, E. 1931b. Teoria dei tripletti P’ incompleti. Nuovo Cimento, 8, 107–13.CrossRefGoogle Scholar
Manjavacas, A., García de Abajo, F. J., and Nordlander, P. 2011. Quantum plexcitonics: Strongly interacting plasmons and excitons. Nano Lett., 11, 2318–23.CrossRefGoogle ScholarPubMed
Marquardt, F., Chen, J. P., Clerk, A. A., and Girvin, S. M. 2007. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett., 99, 093902.CrossRefGoogle ScholarPubMed
Miroshnichenko, A. E., Flach, S., and Kivshar, Y. S. 2010. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257–98.CrossRefGoogle Scholar
Morigi, G. 2003. Cooling atomic motion with quantum interference. Phys. Rev. A, 67, 033402.CrossRefGoogle Scholar
Novotny, L., and Hecht, B. 2012. Principles of nano-optics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Ridolfo, A., Di Stefano, O., Fina, N., Saija, R., and Savasta, S. 2010. Quantum plasmonics with quantum dot–metal nanoparticle molecules: Influence of the Fano effect on photon statistics. Phys. Rev. Lett., 105, 263601.CrossRefGoogle ScholarPubMed
Ridolfo, A., Saija, R., Savasta, S., et al. 2011. Fano–Doppler laser cooling of hybrid nanostructures. ACS Nano, 5, 7354–61.CrossRefGoogle ScholarPubMed
Romero-Isart, O., Juan, M. L., Quidant, R., and Cirac, J. I. 2010. Toward quantum superposition of living organisms. New J. Phys., 12, 033015.CrossRefGoogle Scholar
Romero-Isart, O., Pflanzer, A. C., Juan, M. L., et al. 2011. Optically levitating dielectrics in the quantum regime: Theory and protocols. Phys. Rev. A, 83, 013803.CrossRefGoogle Scholar
Savasta, S., Saija, R., Ridolfo|A., et al. 2010. Nanopolaritons: Vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano, 4, 6369–76.Google ScholarPubMed
Schliesser, A., Rivi`ere, R., Anetsberger, G., Arcizet, O., and Kippenberg, T. J. 2008. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys., 4, 415–19.CrossRefGoogle Scholar
Wilson-Rae, I., Nooshi, N., Zwerger, W., and Kippenberg, T. J. 2007. Theory of ground state cooling of a mechanical oscillator using dynamical back-action. Phys. Rev. Lett., 99, 093901.CrossRefGoogle Scholar
Zhang, W., Govorov, A. O., and Bryant, G. W. 2006. Semiconductor–metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett., 97, 146804.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×