Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T15:48:05.532Z Has data issue: false hasContentIssue false

16 - Optofluidics and lab-on-a-chip

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 409 - 421
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asavei, T., Loke, V. L. Y., Barbieri, M., et al. 2009. Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization. New J. Phys., 11, 093021.CrossRefGoogle Scholar
Barth, M., and Benson, O. 2006. Manipulation of dielectric particles using photonic crystal cavities. Appl. Phys. Lett., 89, 253114.CrossRefGoogle Scholar
Bellini, N., Vishnubhatla, K. C., Bragheri, F., et al. 2010. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt. Express, 18, 4679–88.CrossRefGoogle ScholarPubMed
Bellini, N., Bragheri, F., Cristiani, I., et al. 2012. Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher. Biomed. Opt. Express, 3, 2658–68.CrossRefGoogle ScholarPubMed
Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H. 2004. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett., 92, 198104.CrossRefGoogle ScholarPubMed
Bragheri, F., Minzioni, P., Vazquez, R. M., et al. 2012. Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab Chip, 12, 3779–84.CrossRefGoogle ScholarPubMed
Buican, T.N., Smyth, M. J., Crissman, H. A., et al. 1987. Automated single-cellmanipulation and sorting by light trapping. Appl. Opt., 26, 5311–16.CrossRefGoogle ScholarPubMed
Chen, Y.-F., Serey, X., Sarkar, R., Chen, P., and Erickson, D. 2012. Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett., 12, 1633–7.CrossRefGoogle ScholarPubMed
Cipparrone, G., Mazzulla, A., Pane, A., Hernandez, R. J., and Bartolino, R. 2011. Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device. Adv. Materials, 23, 5773–8.Google ScholarPubMed
Čižmár, T., Šiler, M., Šery, M., et al. 2006. Optical sorting and detection of submicrometer objects in a motional standing wave. Phys. Rev. B, 74, 035105.CrossRefGoogle Scholar
Descharmes, N., Dharanipathy, U. P., Diao, Z., Tonin, M., and Houdré, R. 2013. Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals. Lab Chip, 13, 3268–74.CrossRefGoogle ScholarPubMed
Di Leonardo, R., Leach, J., Mushfique, H., et al. 2006. Multipoint holographic optical velocimetry in microfluidic systems. Phys. Rev. Lett., 96, 134502.CrossRefGoogle ScholarPubMed
Donato, M. G., Hernandez, J., Mazzulla, A., et al. 2014. Polarization-dependent optomechanics mediated by chiral microresonators. Nature Commun., 5, 3656.CrossRefGoogle ScholarPubMed
Escobedo, C., Brolo, A. G., Gordon, R., and Sinton, D. 2012. Optofluidic concentration: Plasmonic nanostructure as concentrator and sensor. Nano Lett., 12, 1592–6.CrossRefGoogle ScholarPubMed
Fan, X., and White, I. M. 2011. Optofluidic microsystems for chemical and biological analysis. Nature Photon., 5, 591–7.CrossRefGoogle ScholarPubMed
Galajda, P., and Ormos, P. 2001. Complex micromachines produced and driven by light. Appl. Phys. Lett., 78, 249–51.CrossRefGoogle Scholar
Gibson, G., Barron, L., Beck, F., Whyte, G., and Padgett, M. 2007. Optically controlled grippers for manipulating micron-sized particles. New J. Phys., 9, 14.CrossRefGoogle Scholar
Gleeson, H. F.,Wood, T. A., and Dickinson, M. 2006. Laser manipulation in liquid crystals: An approach to microfluidics and micromachines. Phil. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 364, 2789–805.CrossRefGoogle ScholarPubMed
Glückstad, J. 2004. Sorting particles with light. Nature Mater., 3, 9–10.CrossRefGoogle Scholar
Harrison, D. J., Fluri, K., Seiler, Z. H., et al. 1993. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science, 261, 895–7.CrossRefGoogle ScholarPubMed
Hart, S. J., Terray, A., Leski, T. A.,Arnold, J., and Stroud, R. 2006. Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis. Anal. Chem., 78, 3221–5.Google ScholarPubMed
Hart, S. J., Terray, A., Arnold, J., and Leski, T. A. 2007. Sample concentration using optical chromatography. Opt. Express, 15, 2724–31.CrossRefGoogle ScholarPubMed
Hernández, R. J., Mazzulla, A., Pane, A., Volke-Sepúlveda, K., and Cipparrone, G. 2013. Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers. Lab Chip, 13, 459–67.CrossRefGoogle ScholarPubMed
Hunt, H.C., and Wilkinson, J. S. 2008. Optofluidic integration for microanalysis. Microfluid. Nanofluid., 4, 53–79.CrossRefGoogle Scholar
Imasaka, T. 1998. Optical chromatography. A new tool for separation of particles. Analusis, 26, 53.CrossRefGoogle Scholar
Jaquay, E., Martínez, L. J., Mejia, C.A., and Povinelli, M. L. 2013. Light-assisted, templated self-assembly using a photonic-crystal slab. Nano Lett., 13, 2290–94.CrossRefGoogle ScholarPubMed
Jones, P. H., Palmisano, F., Bonaccorso, F., et al. 2009. Rotation detection in light-driven nanorotors. ACS Nano, 3, 3077–84.CrossRefGoogle ScholarPubMed
Juodkazis, S., Matsuo, S., Murazawa, N., Hasegawa, I., and Misawa, H. 2003. Highefficiency optical transfer of torque to a nematic liquid crystal droplet. Appl. Phys. Lett., 82, 4657–9.CrossRefGoogle Scholar
Juodkazis, S., Mizeikis, V., Matsuo, S., Ueno, K., and Misawa, H. 2008. Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation. Bull. Chem. Soc. Japan, 81, 411–48.CrossRefGoogle Scholar
Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N., and Feringa, B. L. 1999. Light-driven monodirectional molecular rotor. Nature, 401, 152–5.CrossRefGoogle ScholarPubMed
Kühn, S., Measor, P., Lunt, E. J., et al. 2009. Loss-based optical trap for on-chip particle analysis. Lab Chip, 9, 2212–16.CrossRefGoogle ScholarPubMed
Ladavac, K., and Grier, D. 2004. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express, 12, 1144–9.CrossRefGoogle ScholarPubMed
Ladavac, K., Kasza, K., and Grier, D. G. 2004. Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation. Phys. Rev. E, 70, 010901.CrossRefGoogle ScholarPubMed
Leach, J., Mushfique, H., di Leonardo, R., Padgett, M., and Cooper, J. 2006. An optically driven pump for microfluidics. Lab Chip, 6, 735–9.CrossRefGoogle ScholarPubMed
Liberale, C., Minzioni, P., Bragheri, F., et al. 2007. Miniaturized all-fibre probe for threedimensional optical trapping and manipulation. Nature Photon., 1, 723–7.CrossRefGoogle Scholar
Liberale, C., Cojoc, G., Bragheri, F., et al. 2013. Integrated microfluidic device for singlecell trapping and spectroscopy. Sci. Rep., 3, 1258.CrossRefGoogle Scholar
Lin, C.-L., Lee, Y.-H., Lin, C.-T., et al. 2011. Multiplying optical tweezers force using a micro-lever. Opt. Express, 19, 20604–9.CrossRefGoogle ScholarPubMed
MacDonald, M. P., Spalding, G. C., and Dholakia, K. 2003. Microfluidic sorting in an optical lattice. Nature, 426, 421–4.CrossRefGoogle Scholar
Mandal, S., Serey, X., and Erickson, D. 2010. Nanomanipulation using silicon photonic crystal resonators. Nano Lett., 10, 99–104.CrossRefGoogle ScholarPubMed
Maruo, S., and Inoue, H. 2006. Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl. Phys. Lett., 89, 144101.CrossRefGoogle Scholar
Metzger, N. K., Mazilu, M., Kelemen, L., Ormos, P., and Dholakia, K. 2011. Observation and simulation of an optically driven micromotor. J. Opt., 13, 044018.CrossRefGoogle Scholar
Neale, S. L., MacDonald, M. P., Dholakia, K., and Krauss, T. F. 2005. All-optical control of microfluidic components using form birefringence. Nature Mater., 4, 530–33.CrossRefGoogle ScholarPubMed
Osellame, R., Hoekstra, H. J. W. M., Cerullo, G., and Pollnau, M. 2011. Femtosecond laser microstructuring: An enabling tool for optofluidic lab-on-chips. Laser Photon. Rev., 5, 442–63.CrossRefGoogle Scholar
Padgett, M., and Bowman, R. 2011. Tweezers with a twist. Nature Photon., 5, 343–8.CrossRefGoogle Scholar
Padgett, M., and Di Leonardo, R. 2011. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip, 11, 1196–205.CrossRefGoogle ScholarPubMed
Palima, D., and Glückstad, J. 2013. Gearing up for optical microrobotics: Micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photon. Rev., 7, 478–94.CrossRefGoogle Scholar
Palima, D., Bañas, A. R., Vizsnyiczai, G., et al. 2012. Wave-guided optical waveguides. Opt. Express, 20, 2004–14.CrossRefGoogle ScholarPubMed
Patra, P. P., Chikkaraddy, R., Tripathi, R. P. N., Dasgupta, A., and Kumar, G. V. P. 2014. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nature Commun., 5, 4357.CrossRefGoogle ScholarPubMed
Ploschner, M., Cizmar, T., Mazilu, M., Di Falco, A., and Dholakia, K. 2012. Bidirectional optical sorting of gold nanoparticles. Nano Lett., 12, 1923–7.CrossRefGoogle ScholarPubMed
Rahmani, A., and Chaumet, P. C. 2006. Optical trapping near a photonic crystal. Opt. Express, 14, 6353–8.CrossRefGoogle Scholar
Renaut, C., Dellinger, J., Cluzel, B., et al. 2012. Assembly of microparticles by optical trapping with a photonic crystal nanocavity. Appl. Phys. Lett., 100, 101103.CrossRefGoogle Scholar
Rodrigo, P. J., Daria, V. R., and Glückstad, J. 2005. Four-dimensional optical manipulation of colloidal particles. Appl. Phys. Lett., 86, 074103.CrossRefGoogle Scholar
Rodrigo, P. J., Kelemen, L., Palima, D., et al. 2009. Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. Opt. Express, 17, 6578–83.CrossRefGoogle ScholarPubMed
Ruffner, D. B., and Grier, D. G. 2012. Optical conveyors: A class of active tractor beams. Phys. Rev. Lett., 109, 163903.CrossRefGoogle ScholarPubMed
Ruffner, D. B., and Grier, D. G. 2014. Universal, strong and long-ranged trapping by optical conveyors. Opt. Express, 22, 26834–43.CrossRefGoogle ScholarPubMed
Sakoda, K. 2005. Optical properties of photonic crystals, Vol. 80. Heidelberg, Germany: Springer Verlag.Google Scholar
Shvedov, V., Davoyan, A. R., Hnatovsky, C., Engheta, N., and Krolikowski, W. 2014. A long-range polarization-controlled optical tractor beam. Nature Photon., 8, 846–50.CrossRefGoogle Scholar
Smith,, D., Woods, C. J., Seddon, A., and Hoerber, H. 2014. Photophoretic separation of single-walled carbon nanotubes: A novel approach to selective chiral sorting. Phys. Chem. Chem. Phys., 16, 5221–8.CrossRefGoogle Scholar
Terray, A., Arnold, J., and Hart, S. J. 2005. Enhanced optical chromatography in a PDMS microfluidic system. Opt. Express, 13, 10406–15.CrossRefGoogle Scholar
Tkachenko, G., and Brasselet, E. 2013. Spin controlled optical radiation pressure. Phys. Rev. Lett., 111, 033605.CrossRefGoogle ScholarPubMed
Tkachenko, G., and Brasselet, E. 2014. Optofluidic sorting of material chirality by chiral light. Nature Commun., 5, 3577.CrossRefGoogle ScholarPubMed
Trivedi, R. P., Engström, D., and Smalyukh, I. I. 2011. Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids. J. Opt., 13, 044001.CrossRefGoogle Scholar
Volpe, G., Volpe, G., and Petrov, D. 2008. Singular-point characterization in microscopic flows. Phys. Rev. E, 77, 037301.CrossRefGoogle ScholarPubMed
Volpe, G., Kurz, L., Callegari, A., Volpe, G., and Gigan, S. 2014. Speckle optical tweezers: Micromanipulation with random light fields. Opt. Express, 22, 18159–66.CrossRefGoogle ScholarPubMed
Wang, Y., Fe-i, S., Byun, Y.-M., et al. 2009. Dynamic interactions between fast microscale rotors. J. Am. Chem. Soc., 131, 9926–7.Google ScholarPubMed
Xiao, K., and Grier, D. G. 2010. Multidimensional optical fractionation of colloidal particles with holographic verification. Phys. Rev. Lett., 104, 028302.CrossRefGoogle ScholarPubMed
Yang, Y., Brimicombe, P. D., Roberts, N. W., et al. 2008. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt. Express, 16, 6877–82.Google Scholar
Zhang, H., Tu, E., Hagen, N. D., et al. 2004. Time-of-flight optophoresis analysis of live whole cells in microfluidic channels. Biomed. Microdev., 6, 11–21.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×