Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T18:42:06.864Z Has data issue: false hasContentIssue false

17 - Colloid science

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 422 - 432
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzola, A. V., Jákl, P., Chvátal, L., and Zemánek, P. 2014. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. Opt. Express, 22, 16 207–21.CrossRefGoogle ScholarPubMed
Baumgartl, J., and Bechinger, C. 2005. On the limits of digital video microscopy. Europhys. Lett., 71, 487–93.CrossRefGoogle Scholar
Baumgartl, J., Arauz-Lara, J. L., and Bechinger, C. 2006. Like-charge attraction in confinement: Myth or truth?Soft Matter, 2, 631–5.CrossRefGoogle Scholar
Bruot, N., Kotar, J., de Lillo, F., Cosentino Lagomarsino, M., and Cicuta, P. 2012. Driving potential and noise level determine the synchronization state of hydrodynamically coupled oscillators. Phys. Rev. Lett., 109, 164103.CrossRefGoogle ScholarPubMed
Cicuta, G. M., Onofri, E., Cosentino Lagomarsino, M., and Cicuta, P. 2012. Patterns of synchronization in the hydrodynamic coupling of active colloids. Phys. Rev. E, 85, 016203.CrossRefGoogle ScholarPubMed
Crocker, J. C., and Grier, D. G. 1994. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett., 73, 352–5.CrossRefGoogle ScholarPubMed
Crocker, J. C., Matteo, J. A., Dinsmore, A. D., and Yodh, A. G. 1999. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett., 82, 4352–5.CrossRefGoogle Scholar
Curran, A., Lee, M. P., Padgett, M. J., Cooper, J. M., and Di Leonardo, R. 2012. Partial synchronization of stochastic oscillators through hydrodynamic coupling. Phys. Rev. Lett., 108, 240601.CrossRefGoogle ScholarPubMed
Damet, L., Cicuta, G. M., Kotar, J., Cosentino Lagomarsino, M., and Cicuta, P. 2012. Hydrodynamically synchronized states in active colloidal arrays. Soft Matter, 8, 8672–8.CrossRefGoogle Scholar
Derjaguin, B., and Landau, L. 1941. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. U. R. S. S., 14, 633–62.Google Scholar
Di Leonardo, R., Keen, S., Ianni, F., et al. 2008. Hydrodynamic interactions in two dimensions. Phys. Rev. E, 78, 031406.CrossRefGoogle ScholarPubMed
Di Leonardo, R., Ianni, F., Saglimbeni, F., et al. 2009. Optical trapping studies of colloidal interactions in liquid films. Colloids Surf. A, 343, 133–6.CrossRefGoogle Scholar
Di Leonardo, R., Cammarota, E., Bolognesi, G., Schäfer, H., and Steinhart, M. 2011. Threedimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods. Phys. Rev. Lett., 107, 044501.CrossRefGoogle Scholar
Di Leonardo, R., Búzás, A., Kelemen, L., et al. 2012. Hydrodynamic synchronization of light driven microrotors. Phys. Rev. Lett., 109, 034104.CrossRefGoogle ScholarPubMed
Dinsmore, A. D., Yodh, A. G., and Pine, D. J. 1996. Entropic control of particle motion using passive surface microstructures. Nature, 383, 239–42.CrossRefGoogle Scholar
Frenkel, D. 2002. Soft condensed matter. Physica A, 313, 1–31.CrossRefGoogle Scholar
Grier, D. G. 1997. Optical tweezers in colloid and interface science. Curr. Opin. Colloid Interface Sci., 2, 264–70.CrossRefGoogle Scholar
Koehler, T. P., Brotherton, C. M., and Grillet, A. M. 2011. Comparison of interparticle force measurement techniques using optical trapping. Colloids Surf. A, 384, 282–8.CrossRefGoogle Scholar
Kotar, J., Leoni, M., Bassetti, B., Cosentino Lagomarsino, M., and Cicuta, P. 2010. Hydrodynamic synchronization of colloidal oscillators. Proc. Natl. Acad. Sci. U.S.A., 107, 7669–73.CrossRefGoogle ScholarPubMed
Koumakis, N., and Di Leonardo, R. 2013. Stochastic hydrodynamic synchronization in rotating energy landscapes. Phys. Rev. Lett., 110, 174103.CrossRefGoogle ScholarPubMed
Lhermerout, R., Bruot, N., Cicuta, G. M., Kotar, J., and Cicuta, P. 2012. Collective synchronization states in arrays of driven colloidal oscillators. New J. Phys., 14, 105023.CrossRefGoogle Scholar
Meiners, J.-C., and Quake, S. R. 1999. Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett., 82, 2211–14.CrossRefGoogle Scholar
Metzger, N. K., Marchington, R. F., Mazilu, M., et al. 2007. Measurement of the restoring forces acting on two optically bound particles from normal mode correlations. Phys. Rev. Lett., 98, 068102.Google ScholarPubMed
Ohshima, Y. N., Sakagami, H., Okumoto, K., et al. 1997. Direct measurement of infinitesimal depletion force in a colloid–polymer mixture by laser radiation pressure. Phys. Rev. Lett., 78, 3963–6.CrossRefGoogle Scholar
Sokolov, Y., Frydel, D., Grier, D. G., Diamant, H., and Roichman, Y. 2011. Hydrodynamic pair attractions between driven colloidal particles. Phys. Rev. Lett., 107, 158302.CrossRefGoogle ScholarPubMed
Verwey, E. J. W. 1947. Theory of the stability of lyophobic colloids. J. Phys. Chem., 51, 631–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×