Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T23:44:51.123Z Has data issue: false hasContentIssue false

13 - Single-molecule biophysics

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 371 - 384
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumann, C. G., Smith, S. B., Bloomfield, V. A., and Bustamante, C. 1997. Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. U.S.A., 94, 6185–90.CrossRefGoogle ScholarPubMed
Bryant, Z., Stone, M. D., Gore, J., et al. 2003. Structural transitions and elasticity from torque measurements on DNA. Nature, 424, 338–41.CrossRefGoogle ScholarPubMed
Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S. 1994. Entropic elasticity of lambda-phage DNA. Science, 265, 1599–1600.CrossRefGoogle ScholarPubMed
Bustamante, C., Bryant, Z., and Smith, S. B. 2003. Ten years of tension: Single-molecule DNA mechanics. Nature, 421, 423–7.CrossRefGoogle ScholarPubMed
Deufel, C., Forth, S., Simmons, C. R., Dejgosha, S., and Wang, M. D. 2007. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nature Methods, 4, 223–5.CrossRefGoogle ScholarPubMed
Finer, J. T., Simmons, R. M., and Spudich, J. A. 1994. Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature, 368, 113–19.CrossRefGoogle ScholarPubMed
Forth, S., Deufel, C., Sheinin, M. Y., et al. 2008. Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys. Rev. Lett., 100, 148301.CrossRefGoogle ScholarPubMed
Forth, S., Sheinin, M. Y., Inman, J., and Wang, M. D. 2013. Torque measurement at the single molecule level. Annu. Rev. Biophys., 42, 583–604.CrossRefGoogle ScholarPubMed
Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H. 1998. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348–50.CrossRefGoogle Scholar
Fujita, K., Iwaki, M., Iwane, A. H., Marcucci, L., and Yanagida, T. 2012. Switching of myosin-V motion between the lever-arm swing and Brownian search-and-catch. Nature Commun., 3, 956.CrossRefGoogle ScholarPubMed
Gore, J., Bryant, Z., Nöllmann, M., et al. 2006. DNA overwinds when stretched. Nature, 442, 836–9.CrossRefGoogle ScholarPubMed
Inman, J., Forth, S., and Wang, M. D. 2010. Passive torque wrench and angular position detection using a single-beam optical trap. Opt. Lett., 35, 2949–51.CrossRefGoogle ScholarPubMed
Kuo, S. C., and Sheetz, M. P. 1993. Force of single kinesin molecules measured with optical tweezers. Science, 260, 232–4.CrossRefGoogle ScholarPubMed
La Porta, A., and Wang, M. D. 2004. Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett., 92, 190801.CrossRefGoogle ScholarPubMed
Marko, J. F., and Siggia, E. D. 1995. Stretching DNA. Macromolecules, 28, 8759–70.CrossRefGoogle Scholar
Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., and Cheney, R. E. 1999a. Myosin-V is a processive actin-based motor. Nature, 400, 590–3.CrossRefGoogle ScholarPubMed
Mehta, A. D., Rief, M., Spudich, J. A., Smith, D. A., and Simmons, R. M. 1999b. Singlemolecule biomechanics with optical methods. Science, 283, 1689–95.CrossRefGoogle Scholar
Meiners, J.-C., and Quake, Stephen R. 2000. Femtonewton force spectroscopy of single extended DNA molecules. Phys. Rev. Lett., 84, 5014–17.CrossRefGoogle ScholarPubMed
Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T., and White, D. C. S. 1995. Movement and force produced by a single myosin head. Nature, 378, 209–12.CrossRefGoogle ScholarPubMed
Moroz, J. D., and Nelson, P. 1997. Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. U.S.A., 94, 14418–22.CrossRefGoogle ScholarPubMed
Oroszi, L., Galajda, P., Kirei, H., Bottka, S., and Ormos, P. 2006. Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys. Rev. Lett., 97, 058301.CrossRefGoogle Scholar
Perkins, T. T. 2009. Optical traps for single molecule biophysics: A primer. Laser Photon. Rev., 3, 203–20.CrossRefGoogle Scholar
Smith, S. B., Finzi, L., and Bustamante, C. 1992. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, 1122–6.CrossRefGoogle ScholarPubMed
Smith, S. B., Cui, Y., and Bustamante, C. 1996. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795–9.CrossRefGoogle ScholarPubMed
Smith, S. B., Cui, Y., and Bustamante, C. 2003. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymology, 361, 134–62.Google ScholarPubMed
Svoboda, K., and Block, S. M. 1994. Force and velocity measured for single kinesin molecules. Cell, 77, 773–84.CrossRefGoogle ScholarPubMed
Svoboda, K., Schmidt, C. F., Schnapp, B. J., and Block, S. M. 1993. Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721–7.CrossRefGoogle ScholarPubMed
Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R., and Molloy, J. E. 2001. The gated gait of the processive molecular motor, myosin V. Nature Cell Biol., 4, 59–65.Google Scholar
Wang, M. D., Yin, H., Landick, R., Gelles, J., and Block, S. M. 1997. Stretching DNA with optical tweezers. Biophys. J., 72, 1335–46.CrossRefGoogle ScholarPubMed
Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., and Block, S. M. 1998. Force and velocity measured for single molecules of RNA polymerase. Science, 282, 1902–7.CrossRefGoogle ScholarPubMed
Wuite, G. J. L., Smith, S. B., Young, M., Keller, D., and Bustamante, C. 2000. Singlemolecule studies of the effect of template tension on T7 DNA polymerase activity. Nature, 404, 103–6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×