Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T06:56:19.347Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 1 - 16
Publisher: Cambridge University Press
Print publication year: 2015

References

Ashkin, A. 1970a. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156–9.CrossRefGoogle Scholar
Ashkin, A. 1970b. Atomic-beam deflection by resonance-radiation pressure. Phys. Rev. Lett., 25, 1321–4.CrossRefGoogle Scholar
Ashkin, A. 2000. History of optical trapping and manipulation of small-neutral particles, atoms, and molecules. IEEE J. Sel. Top. Quant. El., 6, 841–56.Google Scholar
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. 1986. Observation of a singlebeam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288–90.CrossRefGoogle Scholar
Ashkin, A., Schütze, K., Dziedzic, J. M., Euteneuer, U., and Schliwa, M. 1990. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature, 348, 346–8.Google ScholarPubMed
Beth, R. A. 1936. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115–25.CrossRefGoogle Scholar
Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. 1982. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49, 57–61.CrossRefGoogle Scholar
Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. 1983. 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett., 50, 120–23.CrossRefGoogle Scholar
Binnig, G., Quate, C. F., and Gerber, C. 1986. Atomic force microscope. Phys. Rev. Lett., 56, 930–33.CrossRefGoogle ScholarPubMed
Block, S. M., Goldstein, L. S. B., and Schnapp, B. J. 1990. Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348, 348–52.CrossRefGoogle ScholarPubMed
Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S. 1994. Entropic elasticity of lambda-phage DNA. Science, 265, 1599–1600.CrossRefGoogle ScholarPubMed
Bustamante, C., Bryant, Z., and Smith, S. B. 2003. Ten years of tension: Single-molecule DNA mechanics. Nature, 421, 423–7.CrossRefGoogle ScholarPubMed
Capitanio, M., and Pavone, F. S. 2013. Interrogating biology with force: Single molecule high-resolution measurements with optical tweezers. Biophys. J., 105, 1293–1303.CrossRefGoogle ScholarPubMed
Chiou, P. Y., Ohta, A. T., and Wu, M. C. 2005. Massively parallel manipulation of single cells and microparticles using optical images. Nature, 436, 370–72.CrossRefGoogle ScholarPubMed
Chu, S. 1998. The manipulation of neutral particles. Rev. Mod. Phys., 70, 685–706.CrossRefGoogle Scholar
Cohen-Tannoudji, C. N. 1998. Manipulating atoms with photons. Rev. Mod. Phys., 70, 707–19.CrossRefGoogle Scholar
Dholakia, K., and Čižmár, T. 2011. Shaping the future of manipulation. Nature Photon., 5, 335–42.CrossRefGoogle Scholar
Dholakia, K., Reece, P., and Gu, M. 2008. Optical micromanipulation. Chem. Soc. Rev., 37, 42–55.CrossRefGoogle ScholarPubMed
Finer, J. T., Simmons, R. M., and Spudich, J. A. 1994. Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature, 368, 113–19.CrossRefGoogle ScholarPubMed
Ghislain, L. P., and Webb, W.W. 1993. Scanning-force microscope based on an optical trap. Opt. Lett., 18, 1678–80.CrossRefGoogle ScholarPubMed
Grier, D. G. 2003. A revolution in optical manipulation. Nature, 424, 810–16.CrossRefGoogle ScholarPubMed
Jeng, M. 2006. A selected history of expectation bias in physics. Am. J. Phys., 74, 578–83.CrossRefGoogle Scholar
Jonáš, A., and Zemánek, P. 2008. Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis, 29, 4813–51.CrossRefGoogle ScholarPubMed
Juan, M. L., Righini, M., and Quidant, R. 2011. Plasmon nano-optical tweezers. Nature Photon., 5, 349–56.CrossRefGoogle Scholar
Kepler, J. 1619. De Cometis libelli tres.
Lebedev, P. 1901. Untersuchungen über die Druckkräfte des Lichtes. Ann. Physik, 311, 433–58.Google Scholar
Lee, J., Ha, K., and Shung, K. K. 2005. A theoretical study of the feasibility of acoustical tweezers: Ray acoustics approach. J. Acoust. Soc. Am., 117, 3273–80.CrossRefGoogle ScholarPubMed
Lee, J., Teh, S.-Y., Lee, A., et al. 2009. Single beam acoustic trapping. Appl. Phys. Lett., 95, 073701.Google ScholarPubMed
Löwen, H. 2001. Colloidal soft matter under external control. J. Phys.: Condens. Matt., 13, R415–R432.Google Scholar
Maragò, O. M, Jones, P. H., Gucciardi, P. G., Volpe, G., and Ferrari, A. C. 2013. Optical trapping and manipulation of nanostructures. Nature Nanotech., 8, 807–19.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. 2002. Scattering, absorption, and emission of light by small particles. Cambridge, UK: Cambridge University Press.Google Scholar
Molloy, J. E., and Padgett, M. J. 2002. Lights, action: Optical tweezers. Contemp. Phys., 43, 241–58.CrossRefGoogle Scholar
Müller, D. J., Helenius, J., Alsteens, D., and Dufrˆene, Y. F. 2009. Force probing surfaces of living cells to molecular resolution. Nature Chem. Biol., 5, 383–90.CrossRefGoogle ScholarPubMed
Neuman, K. C., and Nagy, A. 2008. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5, 491–505.CrossRefGoogle ScholarPubMed
Nichols, E. F., and Hull, G. F. 1901. A preliminary communication on the pressure of heat and light radiation. Phys. Rev., 13, 307–20.Google Scholar
Padgett, M., and Bowman, R. 2011. Tweezers with a twist. Nature Photon., 5, 343–8.CrossRefGoogle Scholar
Padgett, M., and Di Leonardo, R. 2011. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip, 11, 1196–1205.CrossRefGoogle ScholarPubMed
Petrov, D. V. 2007. Raman spectroscopy of optically trapped particles. J. Opt. A: Pure Appl. Opt., 9, S139–S156.CrossRefGoogle Scholar
Phillips, W. D. 1998. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70, 721–42.CrossRefGoogle Scholar
Poynting, J. H. 1884. On the transfer of energy in the electromagnetic field. Phil. Trans. Royal Soc. London, 175, 343–61.CrossRefGoogle Scholar
Purcell, E. M. 1977. Life at low Reynolds number. Am. J. Phys., 45, 3–11.CrossRefGoogle Scholar
Smith, D. P. E., Hörber, J. K. H., Binnig, G., and Nejoh, H. 1990. Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunnelling microscopy. Nature, 344, 641–4.CrossRefGoogle Scholar
Smith, S. B., Finzi, L., and Bustamante, C. 1992. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, 1122–6.CrossRefGoogle ScholarPubMed
Townes, C. H. 1999. How the laser happened: Adventures of a scientist. Oxford, UK: Oxford University Press.Google Scholar
Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R., and Quate, C. F. 1989. Forces in atomic force microscopy in air and water. Appl. Phys. Lett., 54, 2651–3.CrossRefGoogle Scholar
Worrall, J. 1982. The pressure of light: The strange case of the vacillating ‘crucial experiment’. Stud. Hist. Phil. Science Part A, 13, 133–71.Google Scholar
Wu, J. R. 1991. Acoustical tweezers. J. Acoust. Soc. Am., 89, 2140–43.CrossRefGoogle ScholarPubMed
Yi, C., Li, C.-W., Ji, S., and Yang, M. 2006. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta, 560, 1–23.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×