Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T06:17:07.003Z Has data issue: false hasContentIssue false

14 - Cell biology

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 385 - 394
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M., Fällman, E., Uhlin, B. E., and Axner, O. 2006a. A sticky chain model of the elongation and unfolding of Escherichia coli P pili under stress. Biophys. J., 90, 1521–34.CrossRefGoogle ScholarPubMed
Andersson, M., Fällman, E.,Uhlin, B. E., and Axner, O. 2006b. Dynamic force spectroscopy of E. coli P pili. Biophys. J., 91, 2717–25.CrossRefGoogle Scholar
Ashkin, A., and Dziedzic, J. M. 1987. Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517–20.CrossRefGoogle ScholarPubMed
Ashkin, A, and Dziedzic, J M. 1989. Internal cell manipulation using infrared laser traps. Proc. Natl. Acad. Sci. U.S.A., 86, 7914–18.CrossRefGoogle ScholarPubMed
Bjornham, O., and Axner, O. 2010. Catch-bond behavior of bacteria binding by slip bonds. Biophys. J., 99, 1331–41.CrossRefGoogle ScholarPubMed
Block, S. M., Blair, D. F., and Berg, H. C. 1989. Compliance of bacterial flagella measured with optical tweezers. Nature, 338, 514–18.CrossRefGoogle ScholarPubMed
Carnegie, D. J., Stevenson, D. J., Mazilu, M., Gunn-Moore, F., and Dholakia, K. 2008. Guided neuronal growth using optical line traps. Opt. Express, 16, 10507–17.CrossRefGoogle ScholarPubMed
Carnegie, D. J., Čižmár, T., Baumgartl, J., Gunn-Moore, F. J., and Dholakia, K. 2009. Automated laser guidance of neuronal growth cones using a spatial light modulator. J. Biophoton., 2, 682–92.CrossRefGoogle ScholarPubMed
Cojoc, D., Difato, F., Ferrari, E., et al. 2007. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS ONE, 2, e1072.CrossRefGoogle ScholarPubMed
Dai, J., and Sheetz, M. P. 1995. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys. J., 68, 988–96.CrossRefGoogle ScholarPubMed
Ebbesen, C. L., and Bruus, H. 2012. Analysis of laser-induced heating in optical neuronal guidance.J. Neurosci. Methods, 209, 168–77.CrossRefGoogle ScholarPubMed
Ehrlicher, A., Betz, T., Stuhrmann, B., et al. 2002. Guiding neuronal growth with light. Proc. Natl. Acad. Sci. U.S.A., 99, 16024 –8.CrossRefGoogle Scholar
Ehrlicher, A., Betz, T., Stuhrmann, B., et al. 2007. Optical neuronal guidance. Methods Cell Biol., 83, 495–520.Google ScholarPubMed
Evans, E. A., and Calderwood, D. A. 2007. Forces and bond dynamics in cell adhesion. Science, 316, 1148–53.CrossRefGoogle ScholarPubMed
Fällman, E., Schedin, S., Jass, J., et al. 2004. Optical tweezers based force measurement system for quantitating binding interactions: System design and application for the study of bacterial adhesion. Biosens. Bioel., 19, 1429–37.CrossRefGoogle Scholar
Graves, C. E., McAllister, R. G., Rosoff, W. J., and Urbach, J. S. 2009. Optical neuronal guidance in three-dimensional matrices. J. Neurosci. Methods, 179, 278–83.CrossRefGoogle ScholarPubMed
Jass, J., Schedin, S., Fällman, E., et al. 2004. Physical properties of Escherichia coli P pili measured by optical tweezers. Biophys. J., 87, 4271–83.CrossRefGoogle ScholarPubMed
Jiang, G., Giannonea, G., Critchley, D. R., Fukumoto, E., and Sheetz, M. P. 2003. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature, 424, 334–7.CrossRefGoogle ScholarPubMed
Koch, M., and Rohrbach, A. 2012. Object-adapted optical trapping and shape-tracking of energy-switching helical bacteria. Nature Photon., 6, 680–6.CrossRefGoogle Scholar
Mohanty, S. K., Sharma, M., Panicker, M.M., and Gupta, P. K. 2005. Controlled induction, enhancement, and guidance of neuronal growth cones by use of line optical tweezers. Opt. Lett., 30, 2596–8.CrossRefGoogle ScholarPubMed
Ou-Yang, H. D., and Wei, M.-T. 2010. Complex fluids: Probing mechanical properties of biological systems with optical tweezers. Ann. Rev. Phys. Chem., 61, 421–40.CrossRefGoogle ScholarPubMed
Stevenson, D. J., Lake, T. K., Agate, B., et al. 2006. Optically guided neuronal growth at near infrared wavelengths. Opt. Express, 14, 9786–93.CrossRefGoogle ScholarPubMed
Stevenson, D. J., Gunn-Moore, F., and Dholakia, K. 2010. Light forces the pace: Optical manipulation for biophotonics. J. Biomed. Opt., 15, 041503.CrossRefGoogle ScholarPubMed
Stuhrmann, B., Gögler, M., Betz, T., et al. 2005. Automated tracking and laser micromanipulation of motile cells. Rev. Sci. Instrum., 76, 035105.CrossRefGoogle Scholar
Svoboda, K., and Block, S. M. 1994. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct., 23, 247–85.CrossRefGoogle ScholarPubMed
Thoumine, O., Kocian, P., Kottelat, A., and Meister, J.-J. 2000. Short-term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J., 29, 398–408.CrossRefGoogle ScholarPubMed
Wu, T., Nieminen, T. A., Mohanty, S., et al. 2012. A photon-driven micromotor can direct nerve fibre growth. Nature Photon., 6, 62–7.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×