Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T11:33:03.721Z Has data issue: false hasContentIssue false

13 - Social behaviour in microorganisms

Published online by Cambridge University Press:  05 June 2012

Kevin R. Foster
Affiliation:
Harvard University, Cambridge, Massachusetts, USA
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

OVERVIEW

Sociobiology has come a long way. We now have a solid base of evolutionary theory supported by a myriad of empirical tests. It is perhaps less appreciated, however, that first discussions of social behaviour and evolution in Darwin's day drew upon single-celled organisms. Since then, microbes have received short shrift, and their full spectrum of sociality has only recently come to light. Almost everything that a microorganism does has social consequences; simply dividing can consume another's resources. Microbes also secrete a wide range of products that affect others, including digestive enzymes, toxins, molecules for communication and DNA that allows genes to mix both within and among species. Many species do all of this in surface-attached communities, known as biofilms, in which the diversity of species and interactions reaches bewildering heights. Grouping can even involve differentiation and development, as in the spectacular multicellular escape responses of slime moulds and myxobacteria. Like any society, however, microbes face conflict, and most groups will involve instances of both cooperation and competition among their members. And, as in any society, microbial conflicts are mediated by three key processes: constraints on rebellion, coercion that enforces compliance, and kinship whereby cells direct altruistic aid towards clone-mates.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 331 - 356
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crespi, B. J. (2001) The evolution of social behavior in microorganisms. Trends in Ecology and Evolution, 16, 178–183.CrossRefGoogle ScholarPubMed
Keller, L. & Surette, M. G. (2006) Communication in bacteria: an ecological and evolutionary perspective. Nature Reviews Microbiology, 4, 249–258.CrossRefGoogle ScholarPubMed
Nadell, C. D., Xavier, J. & Foster, K. R. (2009) The sociobiology of biofilms. FEMS Microbiology Reviews, 33, 206–224.CrossRefGoogle ScholarPubMed
West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. (2006) Social evolution theory for microorganisms. Nature Reviews Microbiology, 4, 597–607.CrossRefGoogle ScholarPubMed
Allesen-Holm, M., Barken, K. B., Yang, L.et al. (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology, 59, 1114–1128.CrossRefGoogle ScholarPubMed
Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I. & Dubnau, D. (2002) Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Molecular Microbiology, 44, 1561–1573.CrossRefGoogle ScholarPubMed
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. (2005) Host–bacterial mutualism in the human intestine. Science, 307, 1915–1920.CrossRefGoogle ScholarPubMed
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. (2004) Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.CrossRefGoogle ScholarPubMed
Bindel Connelly, M., Young, G. M. & Sloma, A. (2004) Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. Journal of Bacteriology, 186, 4159–4167.CrossRefGoogle Scholar
Boles, B. R., Thoendel, M. & Singh, P. K. (2004) Self-generated diversity produces ‘insurance effects’ in biofilm communities. Proceedings of the National Academy of Sciences of the USA, 101, 16630–16635.CrossRefGoogle Scholar
Branda, S. S., Vik, A., Friedman, L. & Kolter, R. (2005) Biofilms: the matrix revisited. Trends in Microbiology, 13, 20–26.CrossRefGoogle ScholarPubMed
Brockhurst, M. A., Hochberg, M. E., Bell, T. & Buckling, A. (2006) Character displacement promotes cooperation in bacterial biofilms. Current Biology, 16, 2030–2034.CrossRefGoogle ScholarPubMed
Brockhurst, M. A., Buckling, A. & Gardner, A. (2007) Cooperation peaks at intermediate disturbance. Current Biology, 17, 761–765.CrossRefGoogle ScholarPubMed
Brown, S. P. (2001) Collective action in an RNA virus. Journal of Evolutionary Biology, 14, 821–828.CrossRefGoogle Scholar
Brown, S. P. & Johnstone, R. A. (2001) Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proceedings of the Royal Society B, 268, 961–965.CrossRefGoogle ScholarPubMed
Brown, S. P., Hochberg, M. E. & Grenfell, B. T. (2002) Does multiple infection select for raised virulence?Trends in Microbiology, 10, 401–405.CrossRefGoogle ScholarPubMed
Burt, A. & Trivers, R. L. (2006) Genes in Conflict: the Biology of Selfish Genetic Elements. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Cascales, E., Buchanan, S. K., Duche, D.et al. (2007) Colicin biology. Microbiology and Molecular Biology Reviews, 71, 158–229.CrossRefGoogle ScholarPubMed
Castillo, D. I., Switz, G. T., Foster, K. R., Queller, D. C. & Strassmann, J. E. (2005) A cost to chimerism in Dictyostelium discoideum on natural substrates. Evolutionary Ecology Research, 7, 263–271.Google Scholar
Chilton, M. D., Saiki, R. K., Yadav, N., Gordon, M. P. & Quetier, F. (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proceedings of the National Academy of Sciences of the USA, 77, 4060–4064.CrossRefGoogle ScholarPubMed
Claverys, J. P., Martin, B. & Havarstein, L. S. (2007) Competence-induced fratricide in streptococci. Molecular Microbiology, 64, 1423–1433.CrossRefGoogle ScholarPubMed
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. (1995) Microbial biofilms. Annual Review of Microbiology, 49, 711–745.CrossRefGoogle ScholarPubMed
Crespi, B. J. (2001) The evolution of social behavior in microorganisms. Trends in Ecology and Evolution, 16, 178–183.CrossRefGoogle ScholarPubMed
Currie, C. R. & Stuart, A. E. (2001) Weeding and grooming of pathogens in agriculture by ants. Proceedings of the Royal Society B, 268, 1033–1039.CrossRefGoogle ScholarPubMed
Currie, C. R., Scott, J. A., Summerbell, R. C. & Malloch, D. (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature, 398, 701–704.CrossRefGoogle Scholar
Daniels, R., Vanderleyden, J. & Michiels, J. (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiology Reviews, 28, 261–289.CrossRefGoogle ScholarPubMed
D'Argenio, D. A., Wu, M., Hoffman, L. R.et al. (2007) Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Molecular Microbiology, 64, 512–533.CrossRefGoogle ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P.et al. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295.CrossRefGoogle ScholarPubMed
Dawkins, R. (1976) The Selfish Gene. Oxford: Oxford University Press.Google Scholar
Dejonghe, W., Berteloot, E., Goris, J.et al. (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain. Applied and Environmental Microbiology, 69, 1532–1541.CrossRefGoogle ScholarPubMed
Denison, R. F. (2000) Legume sanctions and the evolution of symbiotic cooperation by rhizobia. American Naturalist, 156, 567–576.CrossRefGoogle ScholarPubMed
Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. (2007a) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal?Philosophical Transactions of the Royal Society B, 362, 1241–1249.CrossRefGoogle Scholar
Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. (2007b) Cooperation and conflict in quorum-sensing bacterial populations. Nature, 450, 411–414.CrossRefGoogle ScholarPubMed
Dixon, T. (2008) The Invention of Altruism: Making Moral Meanings in Victorian Britain. Oxford: Oxford University Press for the British Academy.CrossRefGoogle Scholar
Dolan, M. F. (2001) Speciation of termite gut protists: the role of bacterial symbionts. International Microbiology, 4, 203–208.CrossRefGoogle ScholarPubMed
Duan, K., Dammel, C., Stein, J., Rabin, H. & Surette, M. G. (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular Microbiology, 50, 1477–1491.CrossRefGoogle ScholarPubMed
Dubnau, D. & Losick, R. (2006) Bistability in bacteria. Molecular Microbiology, 61, 564–572.CrossRefGoogle ScholarPubMed
Durrett, R. & Levin, S. (1997) Allelopathy in spatially distributed populations. Journal of Theoretical Biology, 185, 165–171.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (1990) Evolution in bacterial plasmids and levels of selection. Quarterly Review of Biology, 65, 3–22.CrossRefGoogle ScholarPubMed
Egland, P. G., Palmer, R. J. & Kolenbrander, P. E. (2004) Interspecies communication in Streptococcus gordonii–Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proceedings of the National Academy of Sciences of the USA, 101, 16917–16922.CrossRefGoogle ScholarPubMed
Ennis, H. L., Dao, D. N., Pukatzki, S. U. & Kessin, R. H. (2000) Dictyosteliumamoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type. Proceedings of the National Academy of Sciences of the USA, 97, 3292–3297.CrossRefGoogle ScholarPubMed
Federle, M. J. & Bassler, B. L. (2003) Interspecies communication in bacteria. Journal of Clinical Investigation, 112, 1291–1299.CrossRefGoogle ScholarPubMed
Fiegna, F. & Velicer, G. J. (2005) Exploitative and hierarchical antagonism in a cooperative bacterium. PLoS Biology, 3 (11), e370.CrossRefGoogle Scholar
Fiegna, F., Yu, Y. T., Kadam, S. V. & Velicer, G. J. (2006) Evolution of an obligate social cheater to a superior cooperator. Nature, 441, 310–314.CrossRefGoogle ScholarPubMed
Foster, K. R. (2005) Hamiltonian medicine: why the social lives of pathogens matter. Science, 308, 1269–1270.CrossRefGoogle ScholarPubMed
Foster, K. R. (2006) Sociobiology: the Phoenix effect. Nature, 441, 291–292.CrossRefGoogle ScholarPubMed
Foster, K. R. (2008) Behavioral ecology: altruism. In: Encyclopedia of Ecology. Oxford: Elsevier, pp. 154–159.Google Scholar
Foster, K. R. & Ratnieks, F. L. W. (2001) Paternity, reproduction and conflict in vespine wasps: a model system for testing kin selection predictions. Behavioral Ecology and Sociobiology, 50, 1–8.CrossRefGoogle Scholar
Foster, K. R. & Wenseleers, T. (2006) A general model for the evolution of mutualisms. Journal of Evolutionary Biology, 19, 1283–1293.CrossRefGoogle ScholarPubMed
Foster, K. R. & Xavier, J. B. (2007) Cooperation: bridging ecology and sociobiology. Current Biology, 17, R319–321.CrossRefGoogle ScholarPubMed
Foster, K. R., Wenseleers, T. & Ratnieks, F. L. W. (2001) Spite: Hamilton's unproven theory. Annales Zoologici Fennici, 38, 229–238.Google Scholar
Foster, K. R., Fortunato, A., Strassmann, J. E. & Queller, D. C. (2002) The costs and benefits of being a chimera. Proceedings of the Royal Society B, 269, 2357–2362.CrossRefGoogle ScholarPubMed
Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. (2004) Pleiotropy as a mechanism to stabilize cooperation. Nature, 431, 693–696.CrossRefGoogle ScholarPubMed
Foster, K. R., Parkinson, K. & Thompson, C. R. (2007) What can microbial genetics teach sociobiology?Trends in Genetics, 23, 74–80.CrossRefGoogle ScholarPubMed
Frank, S. A. (1992) A kin selection model for the evolution of virulence. Proceedings of the Royal Society B, 250, 195–197.CrossRefGoogle ScholarPubMed
Fuqua, W. C., Winans, S. C. & Greenber, E. P. (1994) Quorum sensing in bacteria: the luxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–275.CrossRefGoogle ScholarPubMed
Fux, C. A., Costerton, J. W., Stewart, P. S. & Stoodley, P. (2005) Survival strategies of infectious biofilms. Trends in Microbiology, 13, 34–40.CrossRefGoogle ScholarPubMed
Gardner, A. & Foster, K. R. (2008) The evolution and ecology of cooperation: history and concepts. In: Ecology of Social Evolution, ed. Korb, J. & Heinze, J.. Berlin, Heidelberg: Springer Verlag, pp. 1–35.Google Scholar
Gardner, A. & West, S. A. (2004) Spite and the scale of competition. Journal of Evolutionary Biology, 17, 1195–1203.CrossRefGoogle ScholarPubMed
Gardner, A., West, S. A. & Buckling, A. (2004) Bacteriocins, spite and virulence. Proceedings of the Royal Society B, 271, 1529–1535.CrossRefGoogle ScholarPubMed
Gardner, A., West, S. A. & Griffin, A. S. (2007) Is bacterial persistence a social trait?PLoS ONE, 2 (1), e752.CrossRefGoogle ScholarPubMed
Gibbs, K. A., Urbanowski, M. L. & Greenberg, E. P. (2008) Genetic determinants of self identity and social recognition in bacteria. Science, 321, 256–259.CrossRefGoogle ScholarPubMed
Gilbert, O. M., Foster, K. R., Mehdiabadi, N. J., Strassmann, J. E. & Queller, D. C. (2007) High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proceedings of the National Academy of Sciences of the USA, 104, 8913–8917.CrossRefGoogle Scholar
Goddard, M. R., Godfray, H. C. & Burt, A. (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature, 434, 636–640.CrossRefGoogle ScholarPubMed
Gogarten, J. P. & Townsend, J. P. (2005) Horizontal gene transfer, genome innovation and evolution. Nature Reviews Microbiology, 3, 679–687.CrossRefGoogle ScholarPubMed
Gomer, R. H. & Firtel, R. A. (1987) Cell-autonomous determination of cell-type choice in Dictyostelium development by cell-cycle phase. Science, 237, 758.CrossRefGoogle ScholarPubMed
Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. (2003) Cannibalism by sporulating bacteria. Science, 301, 510–513.CrossRefGoogle ScholarPubMed
Graber, J. R. & Breznak, J. A. (2005) Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Applied and Environmental Microbiology 71, 1883–1889.CrossRefGoogle ScholarPubMed
Grafen, A. (2007) Detecting kin selection at work using inclusive fitness. Proceedings of the Royal Society B, 274, 713–719.CrossRefGoogle ScholarPubMed
Greig, D. & Travisano, M. (2004) The Prisoner's Dilemma and polymorphism in yeast SUC genes. Proceedings of the Royal Society B, 271, S25–26.CrossRefGoogle ScholarPubMed
Griffin, A. S., West, S. A. & Buckling, A. (2004) Cooperation and competition in pathogenic bacteria. Nature, 430, 1024–1027.CrossRefGoogle ScholarPubMed
Hagen, D. C., Bretscher, A. P. & Kaiser, D. (1978) Synergism between morphogenetic mutants of Myxococcus xanthus. Developmental Biology, 64, 284–296.CrossRefGoogle ScholarPubMed
Hall-Stoodley, L. & Stoodley, P. (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends in Microbiology, 13, 7–10.CrossRefGoogle ScholarPubMed
Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2, 95–108.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964) The genetical evolution of social behaviour, I & II. Journal of Theoretical Biology, 7, 1–52.CrossRefGoogle ScholarPubMed
Hammer, B. K. & Bassler, B. L. (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology, 50, 101–104.CrossRefGoogle ScholarPubMed
Harrison, F. & Buckling, A. (2005) Hypermutability impedes cooperation in pathogenic bacteria. Current Biology, 15, 1968–1971.CrossRefGoogle ScholarPubMed
Harrison, F. & Buckling, A. (2007) High relatedness selects against hypermutability in bacterial metapopulations. Proceedings of the Royal Society B: Biological Sciences, 274, 1341–1347.CrossRefGoogle ScholarPubMed
Harrison, F., Browning, L., Vos, M. & Buckling, A. (2006) Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biology, 4, 21.CrossRefGoogle ScholarPubMed
Harshey, R. M. (2003) Bacterial motility on a surface: many ways to a common goal. Annual Review of Microbiology, 57, 249–273.CrossRefGoogle ScholarPubMed
Havarstein, L. S., Coomaraswamy, G. & Morrison, D. A. (1995) An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the USA, 92, 11140–11144.CrossRefGoogle ScholarPubMed
Hazan, R. & Engelberg-Kulka, H. (2004) Escherichia colimazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Molecular Genetics and Genomics, 272, 227–234.CrossRefGoogle ScholarPubMed
Hazan, R., Sat, B. & Engelberg-Kulka, H. (2003) Escherichia colimazEF-mediated cell death is triggered by various stressful conditions. Journal of Bacteriology, 186, 3663–3669.CrossRefGoogle Scholar
Helantera, H. & Bargum, K. (2007) Pedigree relatedness, not greenbeard genes, explains eusociality. Oikos, 116, 217–220.CrossRefGoogle Scholar
Helgason, T. & Fitter, A. (2005) The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist, 19, 96–101.CrossRefGoogle Scholar
Hogan, D. A. (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryotic Cell, 5, 613–619.CrossRefGoogle ScholarPubMed
Hornby, J. M., Jensen, E. C., Lisec, A. D.et al. (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and Environmental Microbiology, 67, 2982–2992.CrossRefGoogle ScholarPubMed
Julien, B., Kaiser, A. D. & Garza, A. (2000) Spatial control of cell differentiation in Myxococcus xanthus. Proceedings of the National Academy of Sciences of the USA, 97, 9098–9103.CrossRefGoogle ScholarPubMed
Jurado, R. L. (1997) Iron, infections, and anemia of inflammation. Clinical Infectious Diseases, 25, 888–895.CrossRefGoogle ScholarPubMed
Kaiser, D. (2007) Bacterial swarming: a re-examination of cell-movement patterns. Current Biology, 17, R561-R570.CrossRefGoogle ScholarPubMed
Keller, L. & Surette, M. G. (2006) Communication in bacteria: an ecological and evolutionary perspective. Nature Reviews Microbiology, 4, 249–258.CrossRefGoogle ScholarPubMed
Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters, 230, 13–18.CrossRefGoogle ScholarPubMed
Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. (2002) Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature, 418, 171–174.CrossRefGoogle Scholar
Kerr, B., Neuhauser, C., Bohannan, B. J. M. & Dean, A. M. (2006) Local migration promotes competitive restraint in a host–pathogen ‘tragedy of the commons’. Nature, 442, 75–78.CrossRefGoogle Scholar
Kessin, R. H. (2001) Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. (2003) Host sanctions and the legume-rhizobia mutualism. Nature, 425, 78–81.CrossRefGoogle Scholar
Kim, W., Killam, T., Sood, V. & Surette, M. G. (2003) Swarm-cell differentiation inSalmonella enterica serovar typhimurium results in elevated resistance to multiple antibiotics. Journal of Bacteriology, 185, 3111–3117.Google ScholarPubMed
Klausen, M., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Microbiology, 50, 61–68.CrossRefGoogle ScholarPubMed
Kohler, T., Curty, L. K., Barja, F., Delden, C. & Pechere, J.-C. (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. Journal of Bacteriology, 182, 5990–5996.CrossRefGoogle ScholarPubMed
Kolenbrander, P. E. (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annual Review of Microbiology, 54, 413–437.CrossRefGoogle ScholarPubMed
Kolter, R. & Greenberg, E. P. (2006) Microbial sciences: the superficial life of microbes. Nature, 441, 300–302.CrossRefGoogle ScholarPubMed
König, H., Frohlich, J., Li, L.et al. (2007) The flagellates of the Australian termite Mastotermes darwiniensis: identification of their symbiotic bacteria and cellulases. Symbiosis, 44, 1–65.Google Scholar
Kostakioti, M., Newman, C. L., Thanassi, D. G. & Stathopoulos, C. (2005) Mechanisms of protein export across the bacterial outer membrane. Journal of Bacteriology, 187, 4306–4314.CrossRefGoogle ScholarPubMed
Kreft, J. U. (2004) Biofilms promote altruism. Microbiology, 150, 2751–2760.CrossRefGoogle ScholarPubMed
Kreft, J. U. & Bonhoeffer, S. (2005) The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology, 151, 637–641.CrossRefGoogle ScholarPubMed
Kropotkin, P. A. (1902) Mutual Aid: a Factor of Evolution. New York, NY: McClure Philips.Google Scholar
Kuhl, M., Glud, R. N., Ploug, H. & Ramsing, N. B. (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. Journal of Phycology, 32, 799–812.CrossRefGoogle Scholar
Kussell, E. & Leibler, S. (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309, 2075–2078.CrossRefGoogle ScholarPubMed
Kuzdzal-Fick, J. J., Foster, K. R., Queller, D. C. & Strassmann, J. E. (2007) Exploiting new terrain: an advantage to sociality in the slime mold Dictyostelium discoideum. Behavioral Ecology, 18, 433.CrossRefGoogle Scholar
Lehmann, L. (2006) The evolution of trans-generational altruism: kin selection meets niche construction. Journal of Evolutionary Biology, 20, 181–189.CrossRefGoogle Scholar
MacLean, R. C. & Gudelj, I. (2006) Resource competition and social conflict in experimental populations of yeast. Nature, 441, 498–501.CrossRefGoogle ScholarPubMed
Magnuson, R., Solomon, J. & Grossman, A. D. (1994) Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell, 77, 207–216.CrossRefGoogle ScholarPubMed
Magnuson, R. D. (2007) Hypothetical functions of toxin– antitoxin systems. Journal of Bacteriology, 189, 6089–6092.CrossRefGoogle ScholarPubMed
Mah, T. F., Pitts, B., Pellock, B.et al. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 426, 306–310.CrossRefGoogle ScholarPubMed
Mashburn, L. M. & Whiteley, M. (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature, 437, 422–425.CrossRefGoogle Scholar
Mashburn-Warren, L. M. & Whiteley, M. (2006) Special delivery: vesicle trafficking in prokaryotes. Molecular Microbiology, 61, 839–846.CrossRefGoogle ScholarPubMed
Massey, R. C., Buckling, A. & ffrench-Constant, R. (2004) Interference competition and parasite virulence. Proceedings of the Royal Society B, 271, 785–788.CrossRefGoogle ScholarPubMed
Mehdiabadi, N. J., Jack, C. N., Farnham, T. T.et al. (2006) Social evolution: kin preference in a social microbe. Nature, 442, 881–882.CrossRefGoogle Scholar
Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C.-Y. & Schoolnik, G. K. (2005) Chitin induces natural competence in Vibrio cholerae. Science, 310, 1824–1827.CrossRefGoogle ScholarPubMed
Mergaert, P., Uchiumi, T., Alunni, B.et al. (2006) Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proceedings of the National Academy of Sciences of the USA, 103, 5230–5235.CrossRefGoogle ScholarPubMed
Metzger, S., Dror, I. B., Aizenman, E.et al. (1988) The nucleotide sequence and characterization of the relA gene of Escherichia coli. Journal of Biological Chemistry, 263, 15699–15704.Google ScholarPubMed
Michod, R. E. (2006) The group covariance effect and fitness trade-offs during evolutionary transitions in individuality. Proceedings of the National Academy of Sciences of the USA, 103, 9113–9117.CrossRefGoogle Scholar
Michod, R. E. & Roze, D. (2001) Cooperation and conflict in the evolution of multicellularity. Heredity, 86, 1–7.CrossRefGoogle ScholarPubMed
Miller, M. B. & Bassler, B. L. (2001) Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199.CrossRefGoogle ScholarPubMed
Mueller, U. G., Poulin, J. & Adams, R. M. M. (2004) Symbiont choice in a fungus-growing ant (Attini, Formicidae). Behavioral Ecology, 15, 357–364.CrossRefGoogle Scholar
Nachman, I., Regev, A. & Ramanathan, S. (2007) Dissecting timing variability in yeast meiosis. Cell, 131, 544–556.CrossRefGoogle ScholarPubMed
Nadell, C. D., Xavier, J. B., Levin, S. A. & Foster, K. R. (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biology, 6 (1), e14.CrossRefGoogle ScholarPubMed
Nadell, C. D., Xavier, J. & Foster, K. R. (2009) The sociobiology of biofilms. FEMS Microbiology Reviews, 33, 206–224.CrossRefGoogle ScholarPubMed
Narra, H. P. & Ochman, H. (2006) Of what use is sex to bacteria?Current Biology, 16, R705–R710.CrossRefGoogle Scholar
Nealson, K. H., Platt, T. & Hastings, J. W. (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104, 313–322.Google ScholarPubMed
Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y. & Kudo, T. (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Applied and Environmental Microbiology, 69, 625–633.CrossRefGoogle ScholarPubMed
Nonacs, P. & Kapheim, K. M. (2007) Social heterosis and the maintenance of genetic diversity. Journal of Evolutionary Biology, 20, 2253–2265.CrossRefGoogle ScholarPubMed
Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. (2006) Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. American Naturalist, 168, 242–251.Google ScholarPubMed
Nunney, L. (1999) Lineage selection and the evolution of multistage carcinogenesis. Proceedings of the Royal Society B, 266, 493–498.CrossRefGoogle ScholarPubMed
Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science, 288, 1251–1254.CrossRefGoogle ScholarPubMed
Palmer, R. J., Kazmerzak, K., Hansen, M. C. & Kolenbrander, P. E. (2001) Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infection and Immunity, 69, 5794–5804.CrossRefGoogle ScholarPubMed
Parsek, M. R. & Greenberg, E. P. (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology, 13, 27–33.CrossRefGoogle ScholarPubMed
Paulsson, J. (2002) Multileveled selection on plasmid replication. Genetics, 161, 1373–1384.Google ScholarPubMed
Pearson, J. P., Delden, C. & Iglewski, B. H. (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology, 181, 1203–1210.Google ScholarPubMed
Pfeiffer, T. & Bonhoeffer, S. (2004) Evolution of cross-feeding in microbial populations. American Naturalist, 163, E126–135.CrossRefGoogle ScholarPubMed
Pfeiffer, T. & Schuster, S. (2005) Game-theoretical approaches to studying the evolution of biochemical systems. Trends in Biochemical Sciences, 30, 20–25.CrossRefGoogle ScholarPubMed
Pfeiffer, T., Schuster, S. & Bonhoeffer, S. (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science, 292, 504–507.CrossRefGoogle ScholarPubMed
Piper, K. R., Bodman, S. B. & Farrand, S. K. (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature, 362, 448–450.CrossRefGoogle ScholarPubMed
Poulsen, M. & Boomsma, J. J. (2005) Mutualistic fungi control crop diversity in fungus-growing ants. Science, 307, 741–744.CrossRefGoogle ScholarPubMed
Queller, D. C., Ponte, E., Bozzaro, S. & Strassmann, J. E. (2003) Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science, 299, 105–106.CrossRefGoogle ScholarPubMed
Rainey, P. B. & Rainey, K. (2003) Evolution of cooperation and conflict in experimental bacterial populations. Nature, 425, 72–74.CrossRefGoogle ScholarPubMed
Rando, O. J. & Verstrepen, K. J. (2007) Timescales of genetic and epigenetic inheritance. Cell, 128, 655–668.CrossRefGoogle ScholarPubMed
Rankin, D. J., López-Sepulcre, A., Foster, K. R. & Kokko, H. (2007a) Species-level selection reduces selfishness through competitive exclusion. Journal of Evolutionary Biology, 20, 1459–1468.CrossRefGoogle ScholarPubMed
Rankin, D. J., Bargum, K. & Kokko, H. (2007b) The tragedy of the commons in evolutionary biology. Trends in Ecology and Evolution, 22, 643–651.CrossRefGoogle ScholarPubMed
Ratnieks, F. L. W., Foster, K. R. & Wenseleers, T. (2006) Conflict resolution in insect societies. Annual Review of Entomology, 51, 581–608.CrossRefGoogle ScholarPubMed
Reichenbach, T., Mobilia, M. & Frey, E. (2007) Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature, 448, 1046–1049.CrossRefGoogle ScholarPubMed
Ryu, J.-H., Kim, S.-H., Lee, H.-Y.et al. (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science, 319, 777–782.CrossRefGoogle ScholarPubMed
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. (2004) The evolution of cooperation. Quarterly Review of Biology, 79, 135–160.CrossRefGoogle ScholarPubMed
Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. (2007) Social cheating in Pseudomonas aeruginosa quorum sensing. Proceedings of the National Academy of Sciences of the USA, 104, 15876–15881.CrossRefGoogle ScholarPubMed
Santorelli, L. A., Thompson, C. R. L., Villegas, E.et al. (2008) Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature 451, 1107.CrossRefGoogle ScholarPubMed
Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. (2002) Pseudomonas aeruginosadisplays multiple phenotypes during development as a biofilm. Journal of Bacteriology, 184, 1140–1154.CrossRefGoogle ScholarPubMed
Schwartz, M. W. & Hoeksema, J. D. (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology, 79, 1029–1038.CrossRefGoogle Scholar
Shaulsky, G. & Kessin, R. H. (2007) The cold war of the social amoebae. Current Biology, 17, R684–692.CrossRefGoogle ScholarPubMed
Simms, E. L., Taylor, D. L., Povich, J.et al. (2006) An empirical test of partner choice mechanisms in a wild legume–rhizobium interaction. Proceedings of the Royal Society B, 273, 77–81.CrossRefGoogle Scholar
Smith, E. E., Sims, E. H., Spencer, D. H., Kaul, R. & Olson, M. V. (2005) Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. Journal of Bacteriology, 187, 2138–2147.CrossRefGoogle ScholarPubMed
Smith, E. E., Buckley, D. G., Wu, Z.et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proceedings of the National Academy of Sciences of the USA, 103, 8487–8492.CrossRefGoogle ScholarPubMed
Smith, J. (2001) The social evolution of bacterial pathogenesis. Proceedings of the Royal Society B, 268, 61–69.CrossRefGoogle ScholarPubMed
Smukalla, S., Caldara, M., Pochet, N.et al. (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell, 135, 727–737.CrossRefGoogle ScholarPubMed
Spencer, H. (1879) The Data of Ethics. London: Williams & Norgate.CrossRefGoogle Scholar
Stewart, P. S. (2003) Diffusion in biofilms. Journal of Bacteriology, 185, 1485–1491.CrossRefGoogle ScholarPubMed
Stintzi, A., Evans, K., Meyer, J. M. & Poole, K. (1998) Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiology Letters, 166, 341–345.CrossRefGoogle ScholarPubMed
Suel, G. M., Garcia-Ojalvo, J., Liberman, L. M. & Elowitz, M. B. (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440, 545–550.CrossRefGoogle ScholarPubMed
Tamm, S. L. (1982) Flagellated ectosymbiotic bacteria propel a eucaryotic cell. Journal of Cell Biology, 94, 697–709.CrossRefGoogle ScholarPubMed
Thomas, C. M. & Nielsen, K. M. (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3, 711–721.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1963) On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
Tortosa, P., Logsdon, L., Kraigher, B., Itoh, Y., Mandic-Mulec, I. & Dubnau, D. (2001) Specificity and genetic polymorphism of the Bacillus competence quorum-sensing system. Journal of Bacteriology, 183, 451–460.CrossRefGoogle ScholarPubMed
Travisano, M. & Velicer, G. J. (2004) Strategies of microbial cheater control. Trends in Microbiology, 12, 72–78.CrossRefGoogle ScholarPubMed
Tsilibaris, V., Maenhaut-Michel, G., Mine, N. & Melderen, L. (2007) What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome?Journal of Bacteriology, 189, 6101–6108.CrossRefGoogle ScholarPubMed
Tsuchiya, M., Wong, S. T., Yeo, Z. X.et al. (2007) Gene expression waves. Cell cycle independent collective dynamics in cultured cells. FEBS Journal, 274, 2878–2886.CrossRefGoogle ScholarPubMed
Tuemmler, B. & Cornelis, P. (2005) Pyoverdine receptor: a case of positive darwinian selection in Pseudomonas aeruginosa. Journal of Bacteriology, 187, 3289–3292.CrossRefGoogle Scholar
Turner, P. E. & Chao, L. (1999) Prisoner's dilemma in an RNA virus. Nature, 398, 441–443.CrossRefGoogle Scholar
Ploeg, J. R. (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. Journal of Bacteriology, 187, 3980–3989.CrossRefGoogle ScholarPubMed
Velicer, G. J. (2003) Social strife in the microbial world. Trends in Microbiology, 11, 330–337.CrossRefGoogle ScholarPubMed
Velicer, G. J. & Yu, Y. T. N. (2003) Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature, 425, 75–78.CrossRefGoogle ScholarPubMed
Velicer, G. J., Kroos, L. & Lenski, R. E. (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proceedings of the National Academy of Sciences of the USA, 95, 12376–12380.CrossRefGoogle Scholar
Velicer, G. J., Kroos, L. & Lenski, R. E. (2000) Developmental cheating in the social bacterium Myxococcus xanthus. Nature, 404, 598–601.CrossRefGoogle ScholarPubMed
Verstrepen, K. J., Jansen, A., Lewitter, F. & Fink, G. R. (2005) Intragenic tandem repeats generate functional variability. Nature Genetics, 37, 986–990.CrossRefGoogle ScholarPubMed
Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. (2000) Vibrio fischerilux genes play an important role in colonization and development of the host light organ. Journal of Bacteriology, 182, 4578–4586.CrossRefGoogle ScholarPubMed
Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes and Development, 22, 945.CrossRefGoogle ScholarPubMed
Vulic, M. & Kolter, R. (2001) Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics, 158, 519–526.Google ScholarPubMed
Wenseleers, T. & Ratnieks, F. L. (2006) Enforced altruism in insect societies. Nature, 444, 50.CrossRefGoogle ScholarPubMed
Wenzel, M., Radek, R., Brugerolle, G. & König, H. (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. European Journal of Protistology, 39, 11–23.CrossRefGoogle Scholar
West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. (2006) Social evolution theory for microorganisms. Nature Reviews Microbiology, 4, 597–607.CrossRefGoogle ScholarPubMed
West, S. A., Griffin, A. S. & Gardner, A. (2007) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology, 20, 415–432.CrossRefGoogle ScholarPubMed
Williams, H. T. P. & Lenton, T. M. (2008) Environmental regulation in a network of simulated microbial ecosystems. Proceedings of the National Academy of Sciences of the USA, 105, 10432–10437.CrossRefGoogle Scholar
Wilson, E. O. (1975) Sociobiology: the New Synthesis. Cambridge, MA: Harvard University Press.Google Scholar
Wireman, J. W. & Dworkin, M. (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. Journal of Bacteriology, 129, 798–802.Google ScholarPubMed
Wykoff, D. D., Rizvi, A. H., Raser, J. M., Margolin, B. & O'Shea, E. K. (2007) Positive feedback regulates switching of phosphate transporters in S. cerevisiae. Molecular Cell, 27, 1005–1013.CrossRefGoogle ScholarPubMed
Xavier, J. B. & Foster, K. R. (2007) Cooperation and conflict in microbial biofilms. Proceedings of the National Academy of Sciences of the USA, 104, 876–881.CrossRefGoogle ScholarPubMed
Xavier, K. B. & Bassler, B. L. (2005) Interference with AI-2-mediated bacterial cell-cell communication. Nature, 437, 750–753.CrossRefGoogle ScholarPubMed
Xu, K. D., Stewart, P. S., Xia, F., Huang, C.-T. & McFeters, G. A. (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Applied and Environmental Microbiology, 64, 4035–4039.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×