Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T04:20:05.861Z Has data issue: false hasContentIssue false

9 - Important topics in group living

Published online by Cambridge University Press:  05 June 2012

Jens Krause
Affiliation:
University of Leeds, UK
Graeme Ruxton
Affiliation:
University of Glasgow, UK
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

Given the vast topic of group living, this chapter highlights research areas into group living that continue to attract considerable attention or represent new developments. By these criteria, three topics stood out to us: the selfish herd, social networks and collective behaviour. The selfish herd is the idea that aggregation of prey animals can occur simply through the selfish actions of individuals positioning themselves so as to reduce their risk of attack. This idea is very much at the core of why animals live in groups, and the theory has been influential for a considerable period. The idea of the selfish herd is simple but subtle, and we decided to discuss it carefully, since textbook discussions on this concept often ignore four aspects of complexity: more complex and realistic geometries than are normally considered; the underlying behavioural rules that might lead to selfish herd effects; the predicted outcome of such rules in terms of properties of the group; and the interaction of selfish herd effects with other selective pressures on group size, shape and composition.

The second emerging field we choose is the application of social network analysis (a conceptual and statistical tool from the social sciences) to animal groups and populations. Although this topic is not completely new, recent developments represent an exponential increase in new tools for studying social networks that makes network analysis a powerful method to understand social organisation.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 203 - 225
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hamilton, W. D. (1971) Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–311.CrossRefGoogle ScholarPubMed
James, R., Bennett, P. G. & Krause, J. (2004) Geometry for mutualistic and selfish herds: the limited domain of danger. Journal of Theoretical Biology, 228, 107–113.CrossRefGoogle ScholarPubMed
Croft, D. P., James, R. & Krause, J. (2008) Exploring Animal Social Networks. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Flack, J. C., Girvan, M., Waal, F. B. M. & Krakauer, D. C. (2006) Policing stabilizes construction of social niches in primates. Nature, 439, 426–429.CrossRefGoogle ScholarPubMed
McDonald, D. B. (2007) Predicting fate from early connectivity in a social network. Proceedings of the National Academy of Sciences of the USA, 104, 10910–10914.CrossRefGoogle Scholar
Camazine, S., Deneubourg, J., Franks, N. R.et al. (2001) Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press.Google Scholar
Sumpter, D. J. T. (2006) The principles of collective behaviour. Philosophical Transactions of the Royal Society B, 361, 5–22.CrossRefGoogle Scholar
Hamilton, W. D. (1971) Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–311.CrossRefGoogle ScholarPubMed
James, R., Bennett, P. G. & Krause, J. (2004) Geometry for mutualistic and selfish herds: the limited domain of danger. Journal of Theoretical Biology, 228, 107–113.CrossRefGoogle ScholarPubMed
Croft, D. P., James, R. & Krause, J. (2008) Exploring Animal Social Networks. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Flack, J. C., Girvan, M., Waal, F. B. M. & Krakauer, D. C. (2006) Policing stabilizes construction of social niches in primates. Nature, 439, 426–429.CrossRefGoogle ScholarPubMed
McDonald, D. B. (2007) Predicting fate from early connectivity in a social network. Proceedings of the National Academy of Sciences of the USA, 104, 10910–10914.CrossRefGoogle Scholar
Camazine, S., Deneubourg, J., Franks, N. R.et al. (2001) Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press.Google Scholar
Sumpter, D. J. T. (2006) The principles of collective behaviour. Philosophical Transactions of the Royal Society B, 361, 5–22.CrossRefGoogle Scholar
Ballerini, M., Cabibbo, N., Candelier, R.et al. (2008a) Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences of the USA, 105, 1232–1237.CrossRefGoogle ScholarPubMed
Ballerini, M., Cabibbo, N., Candelier, R.et al. (2008b) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Animal Behaviour, 76, 201–215.CrossRefGoogle Scholar
Beauchamp, G. (2007) Vigilance in a selfish herd. Animal Behaviour, 73, 445–451.CrossRef
Bednekoff, P. A. & Lima, S. L. (1998) Re-examining safety in numbers: interactions between risk dilution and collective detection depend upon predator targeting behaviour. Proceedings of the Royal Society B, 265, 2021–2026.CrossRefGoogle Scholar
Beecham, J. A. & Farnsworth, K. D. (1999) Animal group forces resulting from predator avoidance and competition minimization. Journal of Theoretical Biology, 198, 533–548.CrossRefGoogle ScholarPubMed
Ben-Jacob, E., Schochet, O., Tenenbaum, A.et al. (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature, 368, 46–49.CrossRefGoogle ScholarPubMed
Berman, C. M., Rasmussen, K. L. R. & Suomi, S. J. (1997) Group size, infant development and social networks in free-ranging rhesus monkeys. Animal Behaviour, 53, 405–421.CrossRefGoogle Scholar
Bezanson, M., Garber, P. A., Rutherford, J. & Cleveland, A. (2002) Patterns of subgrouping, social affiliation and social networks in Nicaraguan mantled howler monkeys (Alouatta palliata). American Journal of Physical Anthropology, Suppl. 34, 44.Google Scholar
Biro, D., Sumpter, D. J. T., Meade, J. & Guilford, T. (2006) From compromise to leadership in pigeon homing. Current Biology, 16, 2123–2128.CrossRefGoogle ScholarPubMed
Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999) Swarm Intelligence: From Natural to Artificial Systems. Oxford: Oxford University Press.Google Scholar
Borgatti, S. P., Everett, M. G. & Freeman, L. C. (2002) UCINET for Windows, Version 6: Software for Social Network Analysis. Harvard, MA: Analytic Technologies.Google Scholar
Boyer, D., Ramos-Fernandez, G., Miramontes, O.et al. (2006) Scale-free foraging by primates emerges from their interaction with a complex environment. Proceedings of the Royal Society B, 273, 1743–1750.CrossRefGoogle ScholarPubMed
Bradley, B. J., Doran-Sheehy, D. M., Lukas, D., Boesch, C. & Vigilant, L. (2004) Dispersed male networks in western gorillas. Current Biology, 14, 510–513.CrossRefGoogle ScholarPubMed
Bumann, D., Krause, J. & Rubenstein, D. I. (1997) Mortality risk of spatial positions in animal groups: the danger of being in the front. Behaviour, 134, 1063–1076.CrossRefGoogle Scholar
Camazine, S., Deneubourg, J. L., Franks, N. R.et al. (2001) Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press.Google Scholar
Cavagna, A., Giardina, I., Orlandi, A.et al. (2008a) The STARFLAG handbook on collective animal behaviour: 1. Empirical methods. Animal Behaviour, 76, 217–236.CrossRefGoogle Scholar
Cavagna, A., Giardina, I., Orlandi, A., Parisi, G. & Procaccini, A. (2008b) The STARFLAG handbook on collective animal behaviour: 2. Three-dimensional analysis. Animal Behaviour, 76, 237–248.CrossRefGoogle Scholar
Chepko-Sade, B. D., Reitz, K. P. & Sade, D. S. (1989) Sociometrics of Macaca mulatta IV: network analysis of social structure of a pre-fission group. Social Networks, 11, 293–314.CrossRefGoogle Scholar
Conradt, L. & Roper, T. J. 2005. Consensus decision making in animals. Trends in Ecology and Evolution, 20, 449–456.CrossRefGoogle ScholarPubMed
Corner, L. A. L., Pfeiffer, D. U. & Morris, R. S. (2003) Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). Preventive Veterinary Medicine, 59, 147–167.CrossRefGoogle Scholar
Corr, J. (2001) Changes in social networks over the lifespan in male and female rhesus macaques. American Journal of Physical Anthropology, Suppl. 32, 54–55.Google Scholar
Couzin, I. D. & Krause, J. (2003) Selforganisation and collective behaviour of vertebrates. Advances in the Study of Behavior, 32, 1–67.CrossRefGoogle Scholar
Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. (2002) Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1–11.CrossRefGoogle ScholarPubMed
Croft, D. P., Krause, J. & James, R. (2004) Social networks in the guppy (Poecilia reticulata). Proceedings of the Royal Society B, 271, 516–519.CrossRefGoogle Scholar
Croft, D. P., James, R., Ward, A. J. W.et al. (2005) Assortative interactions and social networks in fish. Oecologia, 143, 211–219.CrossRefGoogle Scholar
Croft, D. P., James, R., Thomas, P.et al. (2006) Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 59, 644–650.CrossRefGoogle Scholar
Croft, D. P., James, R. & Krause, J. (2008) Exploring Animal Social Networks. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Croft, D.P., Krause, J., Darden, S.K.et al. (2009) Behavioural trait assortment in social networks: patterns and implications. Behavioral Ecology and Sociobiology, 63, 1495–1503.CrossRefGoogle Scholar
Cross, P. C., Lloyd-Smith, J. O., Bowers, J. A.et al. (2004) Integrating association data and disease dynamics in a social ungulate: bovine tuberculosis in African buffalo in the Kruger National Park. Annales Zoologici Fennici, 41, 879–892.Google Scholar
Cross, P. C., Lloyd-Smith, J. O. & Getz, W. M. (2005) Disentangling association patterns in fission-fusion societies using African buffalo as an example. Animal Behaviour, 69, 499–506.CrossRefGoogle Scholar
Deputte, B. L. & Quris, R. (1997) Socialization processes in primates: use of multivariate analyses. 2. Influence of sex on social development of captive rhesus monkeys. Behavioural Processes, 40, 85–96.CrossRefGoogle Scholar
Waal, F. B. M. (1996) Macaque social culture: development and perpetuation of affiliative networks. Journal of Comparative Psychology, 110, 147–154.CrossRefGoogle ScholarPubMed
Dunne, J. A., Williams, R. J. & Martinez, N. D. (2002) Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the USA, 99, 12917–12922.CrossRefGoogle ScholarPubMed
Durrell, J. L., Sneddon, I. A., O'Connell, N. E. & Whitehead, H. (2004) Do pigs form preferential associations?Applied Animal Behaviour Science, 89, 41–52.CrossRefGoogle Scholar
Dussutour, A., Fourcassié, V., Helbing, D. & Deneubourg, J. L. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428, 70–73.CrossRefGoogle ScholarPubMed
Dyer, J. R. G., Ioannou, C. C., Morrell, L. J.et al. (2008) Consensus decision making in human crowds. Animal Behaviour, 75, 461–470.CrossRefGoogle Scholar
Dyer, J. R. G., Johansson, A., Helbing, D., Couzin, I. D. & Krause, J. (2009) Leadership, consensus decision making and collective behaviour in human crowds. Philosophical Transactions of the Royal Society B, 364, 781–789.CrossRefGoogle Scholar
Eagle, N. & Pentland, A. (2003) Social network computing. Lecture Notes in Computer Science, 2864, 289–296.CrossRefGoogle Scholar
Farkas, I., Helbing, D. & Vicsek, T. (2002) Social behaviour: Mexican waves in an excitable medium – the stimulation of this concerted motion among expectant spectators is explained. Nature, 419, 132–133.CrossRefGoogle Scholar
Fewell, J. H. (2003) Social insect networks. Science, 301, 1867–1870.CrossRefGoogle ScholarPubMed
Fischhoff, I. R., Dushoff, J., Sundaresen, S. R., Cordingly, J. E. & Rubenstein, D. I. (2009) Reproductive status influences group size and persistence of bonds in male plains zebra (Equus burchelli). Behavioral Ecology and Sociobiology, 63, 1035–1043.CrossRefGoogle Scholar
Flack, J. C. & Krakauer, D. C. (2006) Encoding power in communication networks. American Naturalist, 168, 87–102.CrossRefGoogle ScholarPubMed
Flack, J. C. & Waal, F. (2007) Context modulates signal meaning in primate communication. Proceedings of the National Academy of Sciences of the USA, 104, 1581–1586.CrossRefGoogle ScholarPubMed
Flack, J. C., Girvan, M., Waal, F. B. M. & Krakauer, D.C. (2006) Policing stabilizes construction of social niches in primates. Nature, 439, 426–429.CrossRefGoogle ScholarPubMed
Franks, D. W., James, R., Nobel, J. & Ruxton, G. D. (2009) A foundation for developing a methodology for social network sampling. Behavioral Ecology and Sociobiology, 63, 1079–1088.CrossRefGoogle Scholar
Franks, N. R., Dechaume-Moncharmont, F. X., Hanmore, E.&Reynolds, J. K. (2009) Speed versus accuracy in decision-making ants: expediting politics and policy implementation. Philosophical Transactions of the Royal Society B, 364, 845–852.CrossRefGoogle ScholarPubMed
Galton, F. (1883) Inquiries into Human Faculty and its Development. London: Dent.CrossRefGoogle Scholar
Godfrey, S. S., Bull, C. M., James, R. & Murray, K. (2009) Network structure and parasite transmission in a group-living lizard, the gidgee skink, Egernia stokesii. Behavioral Ecology and Sociobiology, 63, 1045–1056.CrossRefGoogle Scholar
Halloy, J., Sempo, G., Caprari, G.et al. (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318, 1155–1158.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1971) Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–311.CrossRefGoogle ScholarPubMed
Hemelrijk, C. K. (2000) Towards the integration of social dominance and spatial structure. Animal Behaviour, 59, 1035–1048.CrossRefGoogle ScholarPubMed
Hemelrijk, C. K. (2005) A process-oriented approach to the social behaviour of primates. In: Self-Organisation and Evolution of Social Systems, ed. Hemelrijk, C. K.. Cambridge: Cambridge University Press, pp. 81–107.CrossRefGoogle Scholar
Hensor, E. M. A., Couzin, I. D., James, R. & Krause, J. (2005) Modelling density-dependent fish shoal distributions in the laboratory and field. Oikos, 110, 344–352.CrossRefGoogle Scholar
Henzi, S.P., Lusseau, D., Weingrill, T., Schaik, C. P. & Barrett, L. (2009) Cyclicity in the structure of female baboon social networks. Behavioral Ecology and Sociobiology, 63, 1015–1021.CrossRefGoogle Scholar
Hoare, D. J., Couzin, I. D., Godin, J.-G. J. & Krause, J. (2004) Context-dependent group-size choice in fish. Animal Behaviour, 67, 155–164.CrossRefGoogle Scholar
James, R., Bennett, P. G. & Krause, J. (2004) Geometry for mutualistic and selfish herds: the limited domain of danger. Journal of Theoretical Biology, 228, 107–113.CrossRefGoogle ScholarPubMed
James, R., Croft, D. P. & Krause, J. (2009) Potential banana skins in animal social network analysis. Behavioral Ecology and Sociobiology, 63, 989–997.CrossRefGoogle Scholar
Jeanson, R., Rivault, C., Deneubourg, J. L.et al. (2005) Self-organized aggregation in cockroaches. Animal Behaviour, 69, 169–180.CrossRefGoogle Scholar
Klovdahl, A. S. (1985) Social networks and the spread of infectious diseases: the AIDS example. Social Science and Medicine, 21, 1203–1216.CrossRefGoogle ScholarPubMed
Know, K. L. & Sade, D. S. (1991) Social behavior of the emperor tamarind in captivity: components of agonistic display and the agonistic network. International Journal of Primatology, 12, 439–480.Google Scholar
Krause, J. (1993) The effect of ‘Schreckstoff’ on the shoaling behaviour of the minnow: a test of Hamilton's selfish herd theory. Animal Behaviour, 45, 1019–1024.CrossRefGoogle Scholar
Krause, J. (1994) Differential fitness returns in relation to spatial positions in groups. Biological Reviews, 69, 187–206.CrossRefGoogle ScholarPubMed
Krause, J. & Tegeder, R. W. (1994) The mechanism of aggregation behaviour in fish shoals: individuals minimise approach time to neighbours. Animal Behaviour, 48, 353–359.CrossRefGoogle Scholar
Krause, J. & Ruxton, G. D. (2002) Living in Groups. Oxford: Oxford University Press.Google Scholar
Krause, J., Brown, D. & Corbet, S. (1992) Spacing behaviour in resting Culex pipiens (Diptera, Culicidae): a computer modelling approach. Physiological Entomology, 17, 241–246.CrossRefGoogle Scholar
Krause, J., Croft, D. P. & James, R. (2007) Social network theory in the behavioural sciences: potential applications. Behavioral Ecology and Sociobiology, 62, 15–27.CrossRefGoogle Scholar
Kudo, H. & Dunbar, R. I. M. (2001) Neocortex size and social network size in primates. Animal Behaviour, 62, 711–722.CrossRefGoogle Scholar
Landi, M., Coster-Longman, C. & Turillazzi, S. (2002) Are the selfish herd and dilution effects important in promoting nest clustering in the hover wasp Parischnogaster alternata (Stenogastrinae Vespidae Hymenotypera)?Ethology, Ecology and Evolution, 14, 297–305.CrossRefGoogle Scholar
Lieberman, E., Hauert, C. & Nowak, M. A. (2005) Evolutionary dynamics on graphs. Nature, 433, 312–316.CrossRefGoogle ScholarPubMed
Lusseau, D. (2003) The emergent properties of a dolphin social network. Proceedings of the Royal Society B, 270, 186–188.CrossRefGoogle ScholarPubMed
Lusseau, D. & Newman, M. E. J. (2004) Identifying the role that animals play in their social networks. Proceedings of the Royal Society B, 271, 477–481.CrossRefGoogle ScholarPubMed
Lusseau, D., Wilson, B., Hammond, P. S.et al. (2005) Quantifying the influence of sociality on population structure in bottlenose dolphins. Journal of Animal Ecology, 75, 14–24.CrossRefGoogle Scholar
Magurran, A. E. (1990) The adaptive significance of schooling as an antipredator defense in fish. Annales Zoologici Fennici, 27, 51–66.Google Scholar
Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McDonald, D. B. (2007) Predicting fate from early connectivity in a social network. Proceedings of the National Academy of Sciences of the USA, 104, 10910–10914.CrossRefGoogle Scholar
McDonald, D. B. (2009) Young-boy networks without kin clusters in a lek-mating manakin. Behavioral Ecology and Sociobiology, 63, 1029–1034.CrossRefGoogle Scholar
Morton, T. L., Haefner, J. W., Nugala, V., Decino, R. D. & Mendes, L. (1994) The selfish herd revisited: do simple movement rules reduce predation risk. Journal of Theoretical Biology, 167, 73–79.CrossRefGoogle Scholar
Nakagaki, T., Yamada, H. & Tóth, Á. (2000) Maze-solving by an amoeboid organism. Nature, 407, 470.CrossRefGoogle ScholarPubMed
Nakamichi, M. & Koyama, N. (2000) Intra-troop affiliative relationships of females with newborn infants in wild ring-tailed lemurs (Lemur catta). American Journal of Primatology, 50, 187–203.3.0.CO;2-Q>CrossRefGoogle Scholar
Naug, D. (2008) Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behavioral Ecology and Sociobiology, 62, 1719–1725.CrossRefGoogle Scholar
Naug, D. (2009) Structure and resilience of the social network in an insect colony as a function of colony size. Behavioral Ecology and Sociobiology, 63, 1023–1028.CrossRefGoogle Scholar
Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Review, 45, 167–256.CrossRefGoogle Scholar
Parrish, J. K. (1989) Re-examining the selfish herd: are central fish safer. Animal Behaviour, 38, 1048–1053.CrossRefGoogle Scholar
Parrish, J. K. & Hamner, W. M. (1997) Animal Groups in Three Dimensions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Pike, T. W., Samanta, M., Lindstrom, J. & Royle, N. J. (2008) Behavioural phenotype affects social interactions in an animal network. Proceedings of the Royal Society B, 275, 2515–2520.CrossRefGoogle Scholar
Potterat, J. J., Muth, S. Q., Rothenberg, R. B.et al. (2002) Sexual network structure as an indicator of epidemic phase. Sexually Transmitted Infections, 78 (Suppl. 1), 152–15.CrossRefGoogle ScholarPubMed
Pulliam, H. R. & Caraco, T. (1984) Living in groups: is there an optimal group size? In: Behavioural Ecology: an Evolutionary Approach, 2nd edn, ed. Krebs, J. R. & Davies, N. B.. Oxford: Blackwell, pp. 122–147.Google Scholar
Quinn, J. L. & Cresswell, W. (2006) Testing domains of danger in the selfish herd: sparrowhawks target widely spaced redshanks in flocks. Proceedings of the Royal Society B, 273, 2521–2526.CrossRefGoogle ScholarPubMed
Ramos-Fernández, G., Boyer, D. & Gomez, V. P. (2006) A complex social structure with fission–fusion properties can emerge from a simple foraging model. Behavioral Ecology and Sociobiology, 60, 536–549.CrossRefGoogle Scholar
Ramos-Fernández, G., Boyer, D., Aureli, F. & Vick, L. G. (2009) Association networks in spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology, 63, 999–1013.CrossRefGoogle Scholar
Reluga, T. C. & Viscido, S. (2005) Simulated evolution of selfish herd behaviour. Journal of Theoretical Biology, 234, 213–225.CrossRefGoogle Scholar
Sade, D. S. (1972) Sociometrics of Macaca mulatta: linkages and cliques in grooming matrices. Folia Primatologica, 18, 196–223.CrossRefGoogle ScholarPubMed
Scott, J. (2000) Social Network Analysis. London: Sage.Google Scholar
Seeley, T. D. (2003) Consensus building during nest-site selection in honey bee swarms: the expiration of dissent. Behavioral Ecology and Sociobiology, 53, 417–424.Google Scholar
Sih, A., Hanser, S. F. & McHugh, K. A. (2009) Social network theory: new insights and issues for behavioral ecologists. Behavioral Ecology and Sociobiology, 63, 975–988.CrossRefGoogle Scholar
Skyrms, B. & Permantle, R. (2000) A dynamic model of social network formation. Proceedings of the National Academy of Sciences of the USA, 97, 335–339.CrossRefGoogle ScholarPubMed
Stankowich, S. (2003) Marginal predation methodologies and the importance of predator preferences. Animal Behaviour, 66, 589–599.CrossRefGoogle Scholar
Stiller, J., Nettel, D. & Dunbar, R. I. M. (2003) The small world of Shakespeare's plays. Human Nature, 14, 397–408.CrossRefGoogle ScholarPubMed
Stoinski, T. S., Hoff, M. P. & Maple, T. L. (2003) Proximity patterns of female western lowland gorillas (Gorilla gorilla gorilla) during the six months after parturition. American Journal of Primatology, 61, 61–72.CrossRefGoogle ScholarPubMed
Stouffer, D. B., Camacho, J., Jiang, W. & Amaral, L. A. N. (2007) Evidence for the existence of a robust pattern of prey selection in food webs. Proceedings of the Royal Society B, 274, 1931–1940.CrossRefGoogle ScholarPubMed
Strier, K. B., Dib, L. T. & Figueira, J. E. C. (2002) Social dynamics of male muriquis (Brachyteles arachnoides hypoxanthus). Behaviour, 139, 315–342.CrossRefGoogle Scholar
Sumpter, D. J. T., Krause, J., James, R., Couzin, I. D. & Ward, A. J. W. (2008) Consensus decision-making by fish. Current Biology, 18, 1773–1777.CrossRefGoogle ScholarPubMed
Sundaresan, S. R., Fischhoff, I. R., Dushoff, J. & Rubenstein, D. I. (2007) Network metrics reveal differences in social organization between two fission-fusion species, Grevy's zebra and onager. Oecologia, 151, 140–149.CrossRefGoogle ScholarPubMed
Turner, G. F. & Pitcher, T. J. (1986) Attack abatement: a model for group protection by combining avoidance and dilution. American Naturalist, 128, 228–240.CrossRefGoogle Scholar
Vine, I. (1971) Risk of visual detection and pursuit by a predator and the selective advantage of flocking behaviour. Journal of Theoretical Biology, 30, 405–422.CrossRefGoogle Scholar
Viscido, S. V. (2001) The case for the selfish herd hypothesis. Comments on Theoretical Biology, 8, 1–20.Google Scholar
Viscido, S. V., Miller, M. & Wethey, D. S. (2001) The response of a selfish herd to an attack from outside the group perimeter. Journal of Theoretical Biology, 208, 315–328.CrossRefGoogle Scholar
Viscido, S. V., Miller, M. & Wethey, D. S. (2002) The dilemma of the selfish herd: the search for a realistic movement rule. Journal of Theoretical Biology, 217, 183–194.CrossRefGoogle ScholarPubMed
Viscido, S. V., Parrish, J. K. & Grunbaum, D. (2004) Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Marine Ecology Progress Series, 273, 239–249.CrossRefGoogle Scholar
Viscido, S. V., Parrish, J. K. & Grunbaum, D. (2007) Factors influencing the structure and maintenance of fish schools. Ecological Modelling, 206, 153–165.CrossRefGoogle Scholar
Ward, A. J. W., Botham, M. S., Hoare, D. J.et al. (2002) Association patterns and shoal fidelity in the three-spined stickleback. Proceedings of the Royal Society B, 269, 2451–2455.CrossRefGoogle ScholarPubMed
Ward, A. J. W., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B. & Krause, J. (2008) Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National Academy of Sciences of the USA, 105, 6948–6953.CrossRefGoogle ScholarPubMed
Webb, C. R. (2005) Farm animal networks: unraveling the contact structure of the British sheep population. Preventive Veterinary Medicine, 68, 3–17.CrossRefGoogle ScholarPubMed
Wey, T., Blumstein, D. T., Shen, W. & Jordan, F. (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Animal Behaviour, 75, 333–344.CrossRefGoogle Scholar
Williams, R. & Lusseau, D. (2006) A killer whale social network is vulnerable to targeted removals. Biology Letters, 2, 497–500.CrossRefGoogle ScholarPubMed
Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. (2005) The socioecology of elephants: analysis of the processes creating multitiered social structures. Animal Behaviour, 69, 1357–1371.CrossRefGoogle Scholar
Wolf, J. B. W., Mawdsley, D., Trillmich, F. & James, R. (2007) Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Animal Behaviour, 74, 1293–1302.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×