Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T11:45:46.522Z Has data issue: false hasContentIssue false

10 - Sexual behaviour: conflict, cooperation and coevolution

Published online by Cambridge University Press:  05 June 2012

Tommaso Pizzari
Affiliation:
University of Oxford, UK
Russell Bonduriansky
Affiliation:
University of New South Wales, Sydney, Australia
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

In sexually reproducing species, individual fitness is ultimately determined by social interactions over mating and fertilisation among rival members of the same sex and between prospective partners. Variation in the competitive ability to secure reproductive opportunities generates sexual selection, which promotes traits that confer a reproductive advantage in intrasexual competition through combat, scramble, courtship or manipulation, and which may benefit or harm members of the opposite sex. The ensuing intra- and intersexual coevolutionary dynamics often drag phenotypes away from naturally selected optima, producing the spectacular exaggeration that has captured the interest of generations of biologists. In this chapter, we first illustrate how the evolution of differential gametic investment by males and females (anisogamy) sets the scene for sexually dimorphic strategies and, ultimately, determines the intensity of evolutionary conflict between the sexes. In particular, we focus on intra- and interlocus sexual conflicts and their profound but poorly understood repercussions for intersexual coevolution. Second, we outline the principles of sexual selection theory, focusing on their implications for the evolution of sexual behaviour. Finally, we conclude by identifying future directions for the evolutionary analysis of sexual behaviour.

Introduction: sexual behaviour as a social trait

The lifetime reproductive success, or fitness, of an individual is measured by the representation of its genes in the gene pool of the next generation. In sexually reproducing species, individual fitness reflects the number of zygotes produced by an individual over its lifetime, and – indirectly – the ability of these zygotes to develop and reproduce.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 230 - 266
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M. (1994) Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Arnqvist, G & Rowe, L. (2005) Sexual Conflict. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Bateman, A. J. (1948) Intra-sexual selection in Drosophila. Heredity, 2, 349–368.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (1996) Female Control: Sexual Selection by Cryptic Female Choice. Princeton, NJ: Princeton University Press.Google Scholar
Holland, B. & Rice, W. R. (1998) Perspective. Chase-away sexual selection: antagonistic seduction versus resistance. Evolution, 52, 1–7.CrossRefGoogle ScholarPubMed
Parker, G. A. (1970) Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45, 525–567.CrossRefGoogle Scholar
Parker, G. A. (2006) Sexual conflict over mating and fertilization: an overview. Philosophical Transactions of the Royal Society B, 361, 235–259.CrossRefGoogle ScholarPubMed
Rice, W. R. (1984) Sex chromosomes and the evolution of sexual dimorphism. Evolution, 38, 735–742.CrossRefGoogle ScholarPubMed
Alatalo, R. V., Höglund, J., Lundberg, A. & Sutherland, W. J. (1992) Evolution of black grouse leks: female preferences benefit males in larger leks. Behavioral Ecology, 3, 53–59.CrossRefGoogle Scholar
Alonzo, S. H. & Pizzari, T. (2010) Male fecundity stimulation: conflict and cooperation within and between the sexes. American Naturalist, 175, 174–185.CrossRefGoogle ScholarPubMed
Andersson, J., Borg-Karlson, A.-K. & Wiklund, C. (2000) Sexual cooperation and conflict in butterflies: a male-transferred anti-aphrodisiac reduces harassment of recently mated females. Proceedings of the Royal Society B, 267, 1271–1275.CrossRefGoogle ScholarPubMed
Andersson, M. (1994) Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Andersson, M. & Simmons, L. W. (2006) Sexual selection and mate choice. Trends in Ecology and Evolution, 21, 296–302.CrossRefGoogle ScholarPubMed
Andersson, S., Pryke, S., Ornborg, J., Lawes, M. J. & Andersson, M. (2002) Multiple receivers, multiple ornaments, and a trade-off between agonistic and epigamic signaling in a widowbird. American Naturalist, 160, 683–691.Google Scholar
Aristotle, (350 BCE) History of Animals. Books IV–VI. Loeb Classical Library 438. London: Heinemann, 1970.Google Scholar
Arkush, K. D., Giese, A. R., Mendonca, H. L.et al. (2002) Resistance to three pathogens in the endangered winter-run chinook salmon (Oncorhynchus tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. Canadian Journal of Fisheries and Aquatic Sciences, 59, 966–975.CrossRefGoogle Scholar
Arnqvist, G. & Nilsson, T. (2000) The evolution of polyandry: multiple mating and female fitness in insects. Animal Behaviour, 60, 145–164.CrossRefGoogle ScholarPubMed
Arnqvist, G. & Rowe, L. (2005) Sexual Conflict. Princeton, NJ:Princeton University Press.CrossRefGoogle Scholar
Baker, R. R. (1983) Insect territoriality. Annual Review of Entomology, 28, 65–89.CrossRefGoogle Scholar
Bakker, T. C. M. & Pomiankowski, A. (1995) The genetic basis of female mate preferences. Journal of Evolutionary Biology, 8, 129–171.CrossRefGoogle Scholar
Basolo, A. L. (1990) Female preference predates the evolution of the sword in swordtail fish. Science, 250, 808–810.CrossRefGoogle ScholarPubMed
Bateman, A. J. (1948) Intra-sexual selection in Drosophila. Heredity, 2, 349–368.CrossRef
Bedhomme, S. & Chippindale, A. K. (2007) Irreconcilable differences: when sexual dimorphism fails to resolve sexual conflict. In: Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism, ed. D. Fairbairn, J., Blanckenhorn, W. U. & Székely, T.. Oxford:Oxford University Press, pp. 185–194.Google Scholar
Beecher, M. & Beecher, I. (1979) Sociobiology of bank swallows: reproductive strategy of the male. Science, 205, 1282–1285.CrossRefGoogle ScholarPubMed
Birkhead, T. R. & Møller, A. P., eds. (1998) Sperm Competition and Sexual Selection. London: Academic Press.
Bjork, A. & Pitnick, S. (2006) Intensity of sexual selection along the anisogamy-isogamy continuum. Nature, 441, 742–745.CrossRefGoogle ScholarPubMed
Blows, M. W. (2007) A tale of two matrices: multivariate approaches in evolutionary biology. Journal of Evolutionary Biology, 20, 1–8.CrossRefGoogle ScholarPubMed
Blows, M. W., Chenoweth, S. F. & Hine, E. (2004) Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. American Naturalist, 163, 329–340.CrossRefGoogle ScholarPubMed
Blumenstiel, J. P. (2007) Sperm competition can drive a male-biased mutation rate. Journal of Theoretical Biology, 249, 624–632.CrossRefGoogle ScholarPubMed
Bonduriansky, R. (2001) The evoluton of male mate choice in insects: a synthesis of ideas and evidence. Biological Reviews of the Cambridge Philosophical Society, 76, 305–339.CrossRefGoogle Scholar
Bonduriansky, R. (2007) The evolution of condition dependent sexual dimorphism. American Naturalist, 169, 9–19.Google ScholarPubMed
Bonduriansky, R. & Chenoweth, S. F. (2009) Intralocus sexual conflict. Trends in Ecology and Evolution, 24, 280–288.CrossRef
Bonduriansky, R. & Day, T. (2009) Nongenetic inheritance and its evolutionary implications. Annual Review of Ecology, Evolution, and Systematics, 40, 103–125.CrossRefGoogle Scholar
Bonduriansky, R. & Head, M. (2007) Maternal and paternal condition effects on offspring phenotype in Telostylinus angusticollis (Diptera: Neriidae). Journal of Evolutionary Biology, 20, 2379–2388.CrossRefGoogle Scholar
Bonduriansky, R. & Rowe, L. (2003) Interactions among mechanisms of sexual selection on male body size and head shape in a sexually dimorphic fly. Evolution, 57, 2046–2053.CrossRefGoogle Scholar
Bonduriansky, R. & Rowe, L. (2005) Intralocus sexual conflict and the genetic architecture of sexually dimorphic traits in Prochyliza xanthostoma (Diptera: Piophilidae). Evolution, 59, 1965–1975.CrossRefGoogle Scholar
Borgia, G. (1979) Sexual selection and the evolution of mating systems. In: Sexual Selection and Reproductive Competition in Insects, ed. Blum, M. S. & Blum, N. A.. New York, NY:Academic Press, pp. 19–80Google Scholar
Bradbury, J. W. & Gibson, R. M. (1983) Leks and mate choice. In: MateChoice, ed. Bateson, P.. Cambridge: Cambridge University Press, pp. 109–138.Google Scholar
Brommer, J. E., Kirkpatrick, M., Qvarnström, A. & Gustafsson, L. (2007) The intersexual genetic correlation for lifetime fitness in the wild and its implications for sexual selection. PLoS ONE, 2 (1), e744.CrossRefGoogle ScholarPubMed
Brooks, R. & Couldridge, V. (1999) Multiple sexual ornaments coevolve with multiple mating preferences. American Naturalist, 154, 37–45.CrossRefGoogle ScholarPubMed
Brown, J. L. (1997) A theory of mate choice based on heterozygosity. Behavioral Ecology, 8, 60–65.CrossRefGoogle Scholar
Carrington, M., Nelson, G. W., Martin, M. P.et al. (1999) HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science, 283, 1748–1752.CrossRefGoogle ScholarPubMed
Carvalho, G. B., Kapahi, P., Anderson, D. J. & Benzer, S. (2006) Allocrine modulation of appetite by the sex peptide of Drosophila. Current Biology, 16, 692–696.CrossRefGoogle Scholar
Chapman, T., Bangham, J., Vinti, G.et al. (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proceedings of the National Academy of Sciences of the USA, 100, 9923–9928.CrossRefGoogle ScholarPubMed
Childress, D. & Hartl, D. L. (1972) Sperm preference in Drosophila melanogaster. Genetics 71, 417–427.Google ScholarPubMed
Chippindale, A. K., Gibson, J. R. & Rice, W. R. (2001) Negative genetic correlation for adult fitness between the sexes reveals ontogenetic conflict in Drosophila. Proceedings of the National Academy of Sciences of the USA, 98, 1671–1675.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. (2007) Sexual selection in males and females. Science, 318, 1882–1885.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H. & Parker, G. A. (1992) Potential reproductive rates and the operation of sexual selection. Quarterly Review of Biology, 67, 437–456.CrossRefGoogle Scholar
Clutton-Brock, T. H. & Parker, G. A. (1995) Sexual coercion in animal societies. Animal Behaviour, 49, 1345–1365.CrossRefGoogle Scholar
Cohen, J. (1969) Why so many sperms? An essay on the arithmetic of reproduction. Science Progress, 57, 23–41.Google ScholarPubMed
Cohen, J. (1973) Cross-overs, sperm redundancy and their close association. Heredity, 31, 408–413.CrossRefGoogle ScholarPubMed
Cordero, A. (1995) Ejaculate substances that affect female insect reproductive physiology and behavior: honest or arbitrary?Journal of Theoretical Biology, 192, 453–461.CrossRefGoogle Scholar
Córdoba-Aguilar, A. (1999) Male copulatory sensory stimulation induces female ejection of rival sperm in a damselfly. Proceedings of the Royal Society B, 266, 779–784.CrossRefGoogle Scholar
Cornell, S. J. & Tregenza, T. (2007) A new theory for the evolution of polyandry as a means of inbreeding avoidance. Proceedings of the Royal Society B, 274, 2873–2879.CrossRefGoogle ScholarPubMed
Cotton, S., Fowler, K. & Pomiankowski, A. (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis?Proceedings of the Royal Society B, 271, 771–783.CrossRefGoogle ScholarPubMed
Crudgington, H. S., Beckerman, A. P., Brüstle, L., Green, K. & Snook, R. R. (2005) Experimental removal and elevation of sexual selection: does sexual selection generate manipulative males and resistant females? American Naturalist, 165, S72–87.CrossRef
Darwin, C. (1859) On the Origin of Species by Means of Natural Selection. London: John Murray.Google Scholar
Darwin, C. (1871) The Descent of Man, and Selection in Relation to Sex. London: John Murray.Google Scholar
Dawkins, R. (1976) The Selfish Gene. Oxford: Oxford University Press.Google Scholar
Day, T. & Bonduriansky, R. (2004) Intralocus sexual conflict can drive the evolution of genomic imprinting. Genetics, 167, 1537–1546.CrossRefGoogle ScholarPubMed
Dewsbury, D. A. (2005) The Darwin–Bateman paradigm in historical context. Integrative and Comparative Biology, 45, 831–837.CrossRefGoogle ScholarPubMed
Duffy, K. G., Wrangham, R. W. & Silk, J. B. (2007) Male chimpanzees exchange political support for mating opportunities. Current Biology, 17, R586–587.CrossRefGoogle ScholarPubMed
Dussourd, D. E., Ubik, K., Harvis, C.et al. (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proceedings of the National Academy of Sciences of the USA, 85, 5992–5996.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (1996) Female Control: Sexual Selection by Cryptic Female Choice. Princeton, NJ:Princeton University Press.Google Scholar
Eberhard, W. G. & Cordero, C. (1995) Sexual selection by cryptic female choice on male seminal products: a new bridge between sexual selection and reproductive physiology. Trends in Ecology and Evolution, 10, 493–496.CrossRefGoogle ScholarPubMed
Emlen, D. J. (1994) Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proceedings of the Royal Society B, 256, 131–136.CrossRefGoogle Scholar
Endler, J. A. (1986) Natural Selection in the Wild. Princeton, NJ:Princeton University Press.Google Scholar
Evans, J. P., Zane, L., Francescato, S. & Pilastro, A. (2003) Directional postcopulatory sexual selection revealed by artificial insemination. Nature, 421, 360–363.CrossRefGoogle ScholarPubMed
Fedorka, K. M. & Mousseau, T. A. (2004) Female mating bias results in conflicting sex-specific offspring fitness. Nature, 429, 65–67.CrossRefGoogle ScholarPubMed
Field, S. A. & Keller, M. A. (1993) Alternative mating tactics and female mimicry as post-copulatory mate-guarding behaviour in the parasitic waspCotesia rubecula. Animal Behaviour, 46, 1183–1189.CrossRefGoogle Scholar
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Fitzpatrick, M. J. (2004) Pleiotropy and the genomic location of sexually selected genes. American Naturalist, 163, 800–808.CrossRefGoogle ScholarPubMed
Fiumera, A. C., Dumont, B. L. & Clark, A. G. (2005) Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. Genetics, 169, 243–257.CrossRefGoogle ScholarPubMed
Fiumera, A. C., Dumont, B. L. & Clark, A. G. (2006) Natural variation in male-induced ‘cost-of-mating’ and allele-specific association with male reproductive genes in Drosophila melanogaster. Philosophical Transactions of the Royal Society B, 361, 355–361.CrossRefGoogle ScholarPubMed
Fiumera, A. C., Dumont, B. L. & Clark, A. G. (2007) Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster. Genetics, 176, 1245–1260.CrossRefGoogle ScholarPubMed
Foerster, K., Coulson, T., Sheldon, B.C.et al. (2007) Sexually antagonistic genetic variation for fitness in red deer. Nature, 447, 1107–1109.CrossRefGoogle ScholarPubMed
Forsgren, E., Amundsen, T., Borg, A. A. & Bjelvenmark, J. (2004) Unusually dynamic sex roles in a fish. Nature, 429, 551–554.CrossRefGoogle ScholarPubMed
Forsyth, A. & Alcock, J. (1990) Female mimicry and resource defense polygyny by males of a tropical rove beetle, Leistrophus versicolor (Coleoptera: Staphylinidae). Behavioral Ecology and Sociobiology, 26, 325–330.CrossRefGoogle Scholar
Foster, K. R., Wenseleers, T. & Ratnieks, F. L. W. (2001) Spite: Hamilton's unproven theory. Annales Zoologici Fennici, 38, 229–238.Google Scholar
Foster, M. S. (1983) Disruption, dispersion, and dominance in lek-breeding birds. American Naturalist, 122, 53–72.CrossRefGoogle Scholar
Fu, P., Neff, B.D. & Gross, M.R. (2001) Tactic-specific success in sperm competition. Proceedings of the Royal Society B, 268, 1105–1112.CrossRefGoogle ScholarPubMed
Gavrilets, S. & Hayashi, T. I. (2006) The dynamics of two- and three-way sexual conflicts over mating. Philosophical Transactions of the Royal Society B, 361, 345–354.CrossRefGoogle ScholarPubMed
Gavrilets, S. & Waxman, D. (2002) Sympatric speciation by sexual conflict. Proceedings of the National Academy of Sciences of the USA, 99, 10533–10538.CrossRefGoogle ScholarPubMed
Gavrilets, S., Arnqvist, G. & Friberg, U. (2001) The evolution of female mate choice by sexual conflict. Proceedings of the Royal Society B, 268, 531–539.CrossRefGoogle ScholarPubMed
Getty, T. (1998) Handicap signalling: when fecundity and viability do not add up. Animal Behaviour, 56, 127–130.CrossRefGoogle Scholar
Gillott, C. (2003) Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annual Review of Entomology, 48, 163–184.CrossRefGoogle ScholarPubMed
Gonçalves, D., Matos, R., Fagundes, T. & Oliveira, R. (2005) Bourgeois males of the peacock blenny, Salaria pavo, discriminate female mimics from females?Ethology, 111, 559–572.Google Scholar
Greenfield, M. D. (1994) Synchronous and alternating choruses in insects and anurans: common mechanisms and diverse functions. American Zoologist, 34, 605–615.CrossRefGoogle Scholar
Griffith, S. C., Owens, I. P. F. & Burke, T. (1999) Environmental determination of a sexually selected trait. Nature, 400, 358–360.CrossRefGoogle Scholar
Gross, M. R. (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution, 11, A92–98.CrossRefGoogle ScholarPubMed
Gwynne, D. T. (1984) Courtship feeding increases female reproductive success in bushcrickets. Nature, 307, 361–363.CrossRefGoogle Scholar
Gwynne, D. T. (1988) Courtship feeding in katydids benefits the mating male's offspring. Behavioral Ecology and Sociobiology, 23, 373–377.CrossRefGoogle Scholar
Gwynne, D. T. & Simmons, L. W. (1990) Experimental reversal of courtship roles in an insect. Nature, 346, 172–174.CrossRefGoogle Scholar
Haerty, W., Jagadeeshan, S., Kulathinal, R. J.et al. (2007) Evolution in the fast lane: rapidly evolving sex- and reproduction-related genes in Drosophila species. Genetics, 177, 1321–1335.CrossRefGoogle Scholar
Hamilton, W. D. & Zuk, M. (1982) Heritable true fitness and bright birds: a role for parasites?Science, 218, 384–387.CrossRefGoogle Scholar
Hanlon, R. T., Naud, M.-J., Shaw, P. W. & Havenhand, J. N. (2005) Transient sexual mimicry leads to fertilization. Nature, 433, 212.CrossRefGoogle Scholar
Härdling, R. & Bergsten, J. (2006) Nonrandom mating preserves intrasexual polymorphism and stops population differentiation in sexual conflict. American Naturalist, 167, 401–409.CrossRefGoogle ScholarPubMed
Head, M. L., Hunt, J., Jennions, M. D. & Brooks, R. (2005) The indirect benefits of mating with attractive males outweigh the direct costs. PLoS Biology, 3 (2), e33.CrossRefGoogle ScholarPubMed
Hedrick, A. V. (1988) Female choice and the heritability of attractive male traits: an empirical study. American Naturalist, 132, 267–276.CrossRefGoogle Scholar
Heifetz, Y., Lung, O., Frongillo, E. A. & Wolfner, M. F. (2000) The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Current Biology, 10, 99–102.CrossRefGoogle ScholarPubMed
Hine, E., Chenoweth, S. F. & Blows, M. W. (2004) Multivariate quantitative genetics and the lek paradox: genetic variance male sexually selected traits of Drosophila serrata under field conditions. Evolution, 58, 2754–2762.CrossRefGoogle ScholarPubMed
Hodgson, D. J. & Hosken, D. J. (2006) Sperm competition promotes the exploitation of rival ejaculates. Journal of Theoretical Biology, 243, 230–234.CrossRefGoogle ScholarPubMed
Höglund, J. (2003) Lek-kin in birds: provoking theory and surprising new results. Annales Zoologici Fennici, 40, 249–253.Google Scholar
Höglund, J., Alatalo, R. V., Lundberg, A., Rintamäki, P. T. & Lindell, J. (1999) Microsatellite markers reveal the potential for kin selection on black grouse leks. Proceedings of the Royal Society B, 266, 813–816.CrossRefGoogle Scholar
Holland, B. & Rice, W. R. (1998) Perspective. Chase-away sexual selection: antagonistic seduction versus resistance. Evolution, 52, 1–7.CrossRefGoogle ScholarPubMed
Holland, B. & Rice, W. R. (1999) Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proceedings of the National Academy of Sciences of the USA, 96, 5083–5088.CrossRefGoogle ScholarPubMed
Houle, D. & Kondrashov, A. S. (2002) Coevolution of costly mate choice and condition-dependent display of good genes. Proceedings of the Royal Society B, 269, 97–104.CrossRefGoogle ScholarPubMed
Howard, R. D., Moorman, R. S. & Whiteman, H. H. (1997) Differential effects of mate competition and mate choice on eastern tiger salamanders. Animal Behaviour, 53, 1345–1356.CrossRefGoogle ScholarPubMed
Hughes, A. L. & Nei, M. (1992) Maintenance of Mhc polymorphism. Nature, 355, 402–403.CrossRefGoogle ScholarPubMed
Hughes, A. L. & Yeager, M. (1998) Natural selection at Major Compatibility Complex loci of vertebrates. Annual Review of Genetics, 32, 415–435.CrossRefGoogle Scholar
Hunt, J. & Simmons, L. W. (2000) Maternal and paternal effects on offspring phenotype in the dung beetle Onthophagus taurus. Evolution, 54, 936–941.CrossRefGoogle ScholarPubMed
Hunt, J., Breuker, C. J., Sadowski, J. A. & Moore, A. J. (2009) Male–male competition, female mate choice and their interaction: determining total sexual selection. Journal of Evolutionary Biology, 22, 13–26.CrossRefGoogle ScholarPubMed
Ilmonen, P., Penn, D. J., Damjanovich, K.et al.(2007) Major histocompatibility complex heterozygosity reduces fitness in experimentally infected mice. Genetics, 176, 2501–2508CrossRefGoogle ScholarPubMed
Iwasa, Y. & Pomiankowski, A. (1994) The evolution of mate preferences for multiple sexual ornaments. Evolution, 48, 853–867.CrossRefGoogle ScholarPubMed
Iwasa, Y. & Pomiankowski, A. (1995) Continual change in mate preferences. Nature, 377, 420–422.CrossRefGoogle ScholarPubMed
Jeffery, K. J. M., Siddiqui, A. A., Bunce, M.et al.(2000) The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type T infection. Journal of Immunology, 165, 7278–7284.CrossRefGoogle Scholar
Johnstone, R. A. & Keller, L. (2000) How males can gain by harming their mates: sexual conflict, seminal toxins, and the cost of mating. American Naturalist, 156, 368–377.CrossRefGoogle ScholarPubMed
Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. (1996) Mutual mate choice and sex differences in choosiness. Evolution, 50, 1382–1391.CrossRefGoogle ScholarPubMed
Jukema, J. & Piersma, T. (2006) Permanent female mimics in a lekking shorebird. Biology Letters, 2, 161–164.CrossRefGoogle Scholar
Kapelinikov, A., Rivlin, P. K., Hoy, R. R. & Heifetz, Y. (2008) Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct. BMC Developmental Biology, 8, 114.CrossRefGoogle Scholar
Kempenaers, B. (2007) Mate choice and genetic quality: a review of the heterozygosity theory. Advances in the Study of Behavior, 37, 189–278.CrossRefGoogle Scholar
Kirkpatrick, M. (1982) Sexual selection and the evolution of female choice. Evolution, 36, 1–12.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. (1986) The handical mechanism of sexual selection does not work. American Naturalist, 127, 222–240.CrossRefGoogle Scholar
Kirkpatrick, M. (1996) Good genes and direct selection in the evolution of mating preferences. Evolution, 50, 2125–2140.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Barton, N. H. (1997) The strength of indirect selection on female mating preferences. Proceedings of the National Academy of Sciences of the USA, 94, 1282–1286.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Ryan, M. J. (1991) The evolution of mating preferences and the paradox of the lek. Nature, 350, 33–38.CrossRefGoogle Scholar
Kokko, H. & Lindström, J. (1996) Kin selection and the evolution of leks: whose success do young males maximize?Proceedings of the Royal Society B, 263, 919–923.CrossRefGoogle Scholar
Kokko, H. & Monaghan, P. (2001) Predicting the direction of sexual selection. Ecology Letters, 4, 159–165.CrossRefGoogle Scholar
Kokko, H. & Ots, I. (2006) When not to avoid inbreeding. Evolution, 60, 467–475.CrossRefGoogle ScholarPubMed
Kokko, H., Jennions, M. D. & Brooks, R. (2006) Unifying and testing models of sexual selection. Annual Review of Ecology, Evolution and Systematics, 37, 43–66.CrossRefGoogle Scholar
Kraaijeveld, K., Kraaijeveld-Smit, F. J. L. & Komdeur, J. (2007) The evolution of mutual ornamentation. Animal Behaviour, 74, 657–677.CrossRefGoogle Scholar
Krause, J., Croft, D. P. & James, R. (2007) Social network theory in the behavioural sciences: potential applications. Behavioral Ecology and Sociobiology, 62, 15–27.CrossRefGoogle Scholar
Krakauer, A. H. (2005) Kin selection and cooperative courtship in wild turkeys. Nature, 434, 69–72.CrossRefGoogle ScholarPubMed
Lande, R. (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution, 34, 292–305.CrossRefGoogle ScholarPubMed
Lande, R. (1981) Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the USA, 78, 3721–3725.CrossRefGoogle ScholarPubMed
Lande, R. & Kirkpatrick, M. (1989) Ecological speciation by sexual selection. Journal of Theoretical Biology, 133, 85–98.CrossRefGoogle Scholar
Langefors, A., Lohm, J., Grahn, M., Andersen, O. & Schantz, T. (2001) Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proceedings of the Royal Society B, 268, 479–485.CrossRefGoogle ScholarPubMed
Laufer, H. & Ahl, J. S. B. (1995) Mating behavior and methyl farnesoate levels in male morphotypes of the spider crab, Libinia emarginata (Leach). Journal of Experimental Marine Biology and Ecology, 193, 15–20.CrossRefGoogle Scholar
Galliard, J. F., Fitze, P. S., Ferriere, R. & Clobert, J. (2005) Sex ratio bias, male aggression, and population collapse in lizards. Proceedings of the National Academy of Sciences of the USA, 102, 18231–18236.CrossRefGoogle ScholarPubMed
Lessells, C. M. (2005) Why are males bad for females? Models for the evolution of damaging male behavior. American Naturalist, 165, 546–563.CrossRefGoogle Scholar
Lessells, C. M. (2006) The evolutionary outcome of sexual conflict. Philosophical Transactions of the Royal Society B, 361, 301–317.CrossRefGoogle ScholarPubMed
Liu, H. & Kubli, , E. (2003) Sex peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 100, 9929–9933.CrossRefGoogle ScholarPubMed
Lohm, J., Grahn, M., Langefors, A.et al. (2002) Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection. Proceedings of the Royal Society B, 269, 2029–2033.CrossRefGoogle ScholarPubMed
Loiselle, B. A., Ryder, T. B., Durães, R.et al. (2007) Kin selection does not explain male aggregation at leks of 4 manakin species. Behavioral Ecology, 18, 287–291.CrossRefGoogle Scholar
Lorch, P. D., Bussiére, L. & Gwynne, D. T. (2008) Quantifying the potential for sexual dimorphism using upper limits on Bateman gradients. Behaviour, 145, 1–24.CrossRefGoogle Scholar
Løvlie, H., Cornwallis, C. K. & Pizzari, T. (2005) Male mounting alone reduces female promiscuity in the fowl. Current Biology, 15, 1222–1227.CrossRefGoogle ScholarPubMed
Manning, J. T. & Chamberlain, A. T. (1994) Sib competition and sperm competitiveness: an answer to ‘why so many sperms?’ and the recombination/sperm number correlation. Proceedings of the Royal Society B, 256, 177–182.CrossRefGoogle ScholarPubMed
Maynard-Smith, J. (1977) Parental investment: a prospective analysis. Animal Behaviour, 25, 1–9.CrossRefGoogle Scholar
Maynard-Smith, J. (1978) The Evolution of Sex. Cambridge:Cambridge University Press.Google Scholar
McGraw, L. A., Gibson, G., Clark, A. G. & Wolfner, M. F. (2004) Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster. Current Biology, 14: 1509–1514.CrossRefGoogle ScholarPubMed
McGraw, L. A., Clark, A. G. & Wolfner, M. F. (2008) Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics, 179, 1395–408.CrossRefGoogle ScholarPubMed
Mead, L. S. & Arnold, S. J. (2004) Quantitative genetic models of sexual selection. Trends in Ecology and Evolution, 19, 264–271.CrossRefGoogle ScholarPubMed
Milinski, M. (2006) The major histocompatibility complex, sexual selection, and mate choice. Annual Review of Ecology, Evolution, and Systematics, 37, 159–186.CrossRefGoogle Scholar
Miller, C. W. & Moore, A. J. (2007) A potential resolution of the lek paradox through indirect genetic effects. Proceedings of the Royal Society B, 274, 1279–1286.CrossRefGoogle ScholarPubMed
Moczek, A. P. & Emlen, D. J. (2000) Male horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes?Animal Behaviour, 59, 459–466.CrossRefGoogle ScholarPubMed
Møller, A. P. & Pomiankowski, A. (1993) Why have birds got multiple sexual ornaments?Behavioral Ecology and Sociobiology, 32, 167–176.CrossRefGoogle Scholar
Moore, A. J. (1990) The inheritance of social dominance, mating behaviour, and attractiveness to mates in Nauphoeta cinerea. Animal Behaviour, 39, 388–397.CrossRefGoogle Scholar
Moore, A. J. & Moore, P. J. (1999) Balancing sexual selection through opposing mate choice and male competition. Proceedings of the Royal Society B, 266, 711–716.CrossRefGoogle Scholar
Moore, A. J. & Pizzari, T. (2005) Quantitative genetic models of sexual conflict based on interacting phenotypes. American Naturalist, 165, S88–97.CrossRefGoogle ScholarPubMed
Moreira, P. L., Nunes, V. L., Martín, J. & Paulo, O. S. (2007) Copulatory plugs do not assure high first male fertilisation success: sperm displacement in a lizard. Behavioral Ecology and Sociobiology, 62, 281–288.CrossRefGoogle Scholar
Morrow, E. H., Arnqvist, G. & Pitnick, S. (2003) Adaptation versus pleiotropy: why do males harm their mates?Behavioral Ecology, 14, 802–806.CrossRefGoogle Scholar
Mousseau, T. A. & Roff, D. A. (1987) Natural selection and the heritability of fitness components. Heredity, 59, 181–197.CrossRefGoogle ScholarPubMed
Murphy, C. G. (1998) Interaction-independent sexual selection and the mechanisms of sexual selection. Evolution, 52, 8–18.CrossRefGoogle ScholarPubMed
Neff, B. D. & Stoltz, J. A. (2006) Sperm competition in a fish with external fertilization: the contribution of sperm number, speed, and length. Journal of Evolutionary Biology, 19, 1873–1881.Google Scholar
Neubaum, D. M. & Wolfner, M. F. (1999) Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics, 153, 845–847.Google ScholarPubMed
Nevo, E. & Beiles, A. (1992) Selection for class-Ii Mhc heterozygosity by parasites in subterranean mole rats. Experientia, 48, 512–515.CrossRefGoogle ScholarPubMed
Oliveira, R., Taborski, M. & Brockman, J. H. (2008) Alternative Reproductive Tactics. Cambridge:Cambridge University Press.CrossRefGoogle Scholar
Omland, K. E. (1996) Female mallard mating preferences for multiple male ornaments. Behavioral Ecology and Sociobiology, 39, 353–360.CrossRefGoogle Scholar
Owens, I. P. F. & Thompson, D. B. A. (1994) Sex differences, sex ratios and sex roles. Proceedings of the Royal Society B, 258, 93–99.CrossRefGoogle ScholarPubMed
Packer, C., Gilbert, D. A., Pusey, A. E. & O' Brien, S. J. (1991) A molecular genetic analysis of kinship and cooperation in African lions. Nature, 351, 562–565.CrossRefGoogle Scholar
Panhuis, T. M., Clark, N. L. & Swanson, W. J. (2006) Rapid evolution of reproductive proteins in abalone and Drosophila. Philosophical Transactions of the Royal Society B, 361, 261–268.CrossRefGoogle ScholarPubMed
Parker, G. A. (1970) Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45, 525–567.CrossRefGoogle Scholar
Parker, G. A. (1979) Sexual selection and sexual conflict. In: Sexual Selection and Reproductive Competition in Insects, ed. Blum, M. S. & Blum, N. A.. New York, NY:Academic Press, pp. 123–166.Google Scholar
Parker, G. A. (1982) Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. Journal of Theoretical Biology, 96, 281–294.CrossRefGoogle ScholarPubMed
Parker, G. A. (2006) Sexual conflict over mating and fertilization: an overview. Philosophical Transactions of the Royal Society B, 361, 235–259.CrossRefGoogle ScholarPubMed
Parker, G. A. & Begon, M. E. (1993) Sperm competition games: sperm size and sperm number under gametic control. Proceedings of the Royal Society B, 253, 255–262.CrossRefGoogle ScholarPubMed
Parker, G. A. & Simmons, L. W. (1996) Parental investment and the control of sexual selection: predicting the direction of sexual competition. Proceedings of the Royal Society B, 263, 315–321.CrossRefGoogle Scholar
Parker, G. A., Smith, V. G. F. & Baker, R. R. (1972) Origin and evolution of gamete dimorphism and male-female phenomenon. Journal of Theoretical Biology, 36, 529–553.CrossRefGoogle ScholarPubMed
Paterson, S., Wilson, K. & Pemberton, J. M. (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proceedings of the National Academy of Sciences of the USA, 95, 3714–3719.CrossRefGoogle Scholar
Peng, J., Zipperlen, P. & Kubli, E. (2005) Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Current Biology, 15, 1690–1694.CrossRefGoogle ScholarPubMed
Penn, D. J., Damjanovich, K. & Potts, W. K. (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proceedings of the National Academy of Sciences of the USA, 99, 11260–11264.CrossRefGoogle ScholarPubMed
Petrie, M., Krupa, A. & Burke, T. (1999) Peacocks lek with relatives even in the absence of social and environmental cues. Nature, 401, 155–157.CrossRefGoogle Scholar
Pischedda, A. & Chippindale, A.K. (2006) Intralocus sexual conflict diminishes the benefits of sexual selection. PLoS Biology 4 (11), e356.CrossRefGoogle ScholarPubMed
Pitnick, S., Spicer, G. S. & Markow, T. A. (1995) How long is a giant sperm?Nature, 375, 109.CrossRefGoogle Scholar
Pitnick, S. Miller, G. T., Reagan, J. & Holland, B. (2001) Males' evolutionary responses to experimental removal of sexual selection. Proceedings of the Royal Society B, 268, 1071–1080.CrossRefGoogle ScholarPubMed
Pitnick, S., Wolfner, M. F. & Suarez, S. S. (2009) Ejaculate–female and sperm–female interactions. In: Sperm Biology: an Evolutionary Perspective, ed. Birkhead, T. R., Hosken, D. J. & Pitnick, S.. London: Academic Press, pp. 247–304.Google Scholar
Pizzari, T. (2001) Indirect female choice through manipulation of male behaviour by female fowl, Gallus g. domesticus. Proceedings of the Royal Society B, 268, 181–186.CrossRefGoogle Scholar
Pizzari, T. (2006) Evolution: the paradox of sperm leviathans. Current Biology, 16, R462–464.CrossRefGoogle ScholarPubMed
Pizzari, T. & Birkhead, T. R. (2000) Female feral fowl eject sperm of subdominant males. Nature, 405, 787–789.CrossRefGoogle ScholarPubMed
Pizzari, T. & Parker, G. A. (2009) Sperm competition and sperm phenotype. In: Sperm Biology: an Evolutionary Perspective, ed. Birkhead, T. R., Hosken, D. J. & Pitnick, S.. London: Academic Press, pp. 207–245.Google Scholar
Pizzari, T. & Snook, R. R. (2003) Perspective. Sexual conflict and sexual selection: chasing away paradigm shifts. Evolution, 57, 1223–1236.CrossRefGoogle ScholarPubMed
Pizzari, T., Cornwallis, C. K., Løvlie, H., Jakobsson, S. & Birkhead, T. R. (2003) Sophisticated sperm allocation in a bird. Nature, 426, 70–74.CrossRefGoogle Scholar
Pizzari, T., Løvlie, H. & Cornwallis, C. K. (2004) Sex-specific, counteracting responses to inbreeding in a bird. Proceedings of the Royal Society B, 271, 2115–2121.CrossRefGoogle Scholar
Poiani, A., 2006. Complexity of seminal fluid: a review. Behavioral Ecology and Sociobiology, 60, 289–310.CrossRefGoogle Scholar
Pomiankowski, A. & Møller, A. P. (1995) A resolution of the lek paradox. Proceedings of the Royal Society B, 260, 21–29.CrossRefGoogle Scholar
Pomiankowski, A., Iwasa, Y. & Nee, S. (1991) The evolution of costly mate preferences I. Fisher and biased mutation. Evolution, 45, 1422–1430.CrossRefGoogle ScholarPubMed
Pound, N. (1999) Effects of morphine on electrically evoked contractions of the vas deferens in two congeneric rodent species differing in sperm competition intensity. Proceedings of the Royal Society B, 266, 1755–1758.CrossRefGoogle ScholarPubMed
Preston, B. T. & Stockley, P. (2006) The prospect of sexual competition stimulates premature and repeated ejaculation in a mammal. Current Biology, 16, R239–241.CrossRefGoogle Scholar
Preston, B. T., Stevenson, I. R., Pemberton, J. M. & Wilson, K. (2001) Dominant rams lose out by sperm depletion. Nature, 409, 681–682.CrossRefGoogle ScholarPubMed
Priest, N. K., Roach, D. A. & Galloway, L. F. (2007) Cross-generational fitness benefits of mating and seminal fluid. Biology Letters, 4, 6–8.CrossRefGoogle Scholar
Priest, N. K., Galloway, L. F. & Roach, D. A. (2008) Mating frequency and inclusive fitness inDrosophila melanogaster. American Naturalist, 171, 10–21.CrossRefGoogle ScholarPubMed
Pruett-Jones, S. (1992) Independent versus nonindependent mate choice: do females copy each other?American Naturalist, 140, 1000–1009.CrossRefGoogle ScholarPubMed
Pryke, S. R. & Griffith, S. C. (2006) Red dominates black: agonistic signalling among head morphs in the colour polymorphic Gouldian finch. Proceedings of the Royal Society B, 273, 949–957.CrossRefGoogle ScholarPubMed
Pryke, S. R. & Griffith, S. C. (2007) The relative role of male vs. female mate choice in maintaining assortative pairing among discrete colour morphs. Journal of Evolutionary Biology, 20, 1512–1521.CrossRefGoogle ScholarPubMed
Queller, D. C. (1997) Why do females care more than males?Proceedings of the Royal Society B, 264, 1555–1557.CrossRefGoogle Scholar
Rankin, D. J., Bargum, K. & Kokko, H. (2007) The tragedy of the commons in evolutionary biology. Trends in Ecology and Evolution, 22, 643–651.CrossRefGoogle ScholarPubMed
Ravi Ram, K. & Wolfner, , M. F. (2007a) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integrative and Comparative Biology, 47, 1–19.CrossRefGoogle ScholarPubMed
Ravi Ram, K. & Wolfner, M. F. (2007b) Sustained post-mating response in Drosophila melanogaster requires multiple seminal fluid proteins. PLoS Genetics, 3 (12), e238.CrossRefGoogle Scholar
Ravi Ram, K., Sirot, L. K. & Wolfner, M. F. (2006) A predicted seminal astacin-like protease is required for the processing of reproductive proteins in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 103, 10674–10679.CrossRefGoogle ScholarPubMed
Reusch, T. B. H., Haberli, M. A., Aeschlimann, P. B. & Milinski, M. (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature, 414, 300–302.CrossRefGoogle Scholar
Reynolds, J. D. & Gross, M. R. (1990) Costs and benefits of female mate choice: is there a lek paradox?American Naturalist, 136, 230–243.CrossRefGoogle Scholar
Rhen, T. (2000) Sex-limited mutations and the evolution of sexual dimorphism. Evolution, 54, 37–43.CrossRefGoogle ScholarPubMed
Rice, W. R. (1984) Sex chromosomes and the evolution of sexual dimorphism. Evolution, 38, 735–742.CrossRefGoogle ScholarPubMed
Rice, W. R. (1996) Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature, 381, 232–234.CrossRefGoogle ScholarPubMed
Rice, W. R. & Chippindale, A. K. (2001) Intersexual ontogenetic conflict. Journal of Evolutionary Biology, 14, 685–693.CrossRefGoogle Scholar
Rivera, A. C., Andres, J. A., Córdoba-Aguilar, A. & Utzeri, C. (2004) Postmating sexual selection: allopatric evolution of sperm competition mechanisms and genital morphology in calopterygid damselflies (Insecta: Odonata). Evolution, 58, 349–359.CrossRefGoogle Scholar
Robertson, H. M. (1985) Female dimorphism and mating behaviour in a damselfly, Ischnura ramburi: females mimicking males. Animal Behaviour, 33, 805–809.Google Scholar
Rodd, F. H., Hughes, K. A., Grether, G. & Baril, C. T. (2002) A possible non-sexual origin of a mate preference: are male guppies mimicking fruit?Proceedings of the Royal Society B, 269, 475–481.CrossRefGoogle ScholarPubMed
Rowe, L. & Houle, D. (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proceedings of the Royal Society B, 263, 1415–1421.CrossRefGoogle Scholar
Ryan, M.J. (1998) Sexual selection, receiver biases, and the evolution of sex differences. Science, 281, 1999–2002.CrossRefGoogle ScholarPubMed
Scott, D. (1986) Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proceedings of the National Academy of Sciences of the USA, 83, 8429–8433.CrossRefGoogle ScholarPubMed
Senseney, H. L., Briles, W. E., Abplanalp, H. & Taylor, R. L. (2000) Allelic complementation between MHC haplotypes B-Q and B-17 increases regression of Rous sarcomas. Poultry Science, 79, 1736–1740.CrossRefGoogle Scholar
Servedio, M. R. & Kirkpatrick, M. (1996) The evolution of mate choice copying by indirect selection. American Naturalist, 148, 848–867.CrossRefGoogle Scholar
Sheldon, B. C. (2001) Differential allocation: tests, mechanisms and implications. Trends in Ecology and Evolution, 15, 397–402.CrossRefGoogle Scholar
Shine, R., Phillips, B., Waye, H., LeMaster, M. & Mason, R. T. (2001) Benefits of female mimicry in snakes. Nature, 414, 267.CrossRefGoogle ScholarPubMed
Shorey, L., Piertney, S., Stone, J. & Höglund, J. (2000) Fine-scale genetic structuring on Manacus manacus leks. Nature, 408, 352–353.CrossRefGoogle ScholarPubMed
Shuster, S. M. & Wade, M. J. (2003) Mating Systems and Strategies. Princeton, NJ:Princeton University Press.Google Scholar
Shuster, S. M. & Wade, M. J. (2005) Don't throw Bateman out with the bathwater!Integrative and Comparative Biology, 45, 945–951.Google Scholar
Simmons, L. W. (2001) Sperm Competition and its Evolutionary Consequences in the Insects. Princeton, NJ:Princeton University Press.Google Scholar
Simmons, L. W. (2005) The evolution of polyandry: sperm competition, sperm selection, and offspring viability. Annual Review of Ecology, Evolution, and Systematics, 36, 125–146.CrossRefGoogle Scholar
Sirot, L. K., Brockmann, H. J., Marinis, C. & Muschett, G. (2003) Maintenance of a female-limited polymorphism in Ischnura ramburi (Zygoptera: Coenagrionidae). Animal Behaviour, 66, 763–775.CrossRefGoogle Scholar
Smedley, S. R. & Eisner, T. (1996) Sodium: a male moth's gift to its offspring. Proceedings of the National Academy of Sciences of the USA, 93, 809–813.CrossRefGoogle ScholarPubMed
Snook, R. (2001) Sexual selection: conflict, kindness and chicanery. Current Biology, 11, R337–341.CrossRefGoogle ScholarPubMed
Snyder, B. F. & Gowaty, P. A. (2007) A reappraisal of Bateman's classic study of intrasexual selection. Evolution, 61, 2457–2468.CrossRefGoogle ScholarPubMed
Stewart, A. D., Morrow, E. H. & Rice, W. R. (2005) Assessing putative interlocus sexual conflict in Drosophila melanogaster using experimental evolution. Proceedings of the Royal Society B, 272, 2029–2035.CrossRefGoogle ScholarPubMed
Stoltz, J. A. & Neff, B. D. (2006) Male size and mating tactic influence proximity to females during sperm competition in bluegill sunfish. Behavioral Ecology and Sociobiology, 59, 811–818.CrossRefGoogle Scholar
Stutt, A. D. & Siva-Jothy, M. T. (2001) Traumatic insemination and sexual conflict in the bed bug Cimex lectularius. Proceedings of the National Academy of Sciences of the USA, 98, 5683–5687.CrossRefGoogle ScholarPubMed
Tatarnic, N. J., Cassis, G. & Hochuli, D. F. (2006) Traumatic insemination in the plant bug genus Coridromius Signoret (Heteroptera: Miridae). Biology Letters, 2, 58–61.CrossRefGoogle Scholar
Taylor, M., Wedell, N. & Hosken, D. (2007) The heritability of attractiveness. Current Biology, 17, R959–960.CrossRefGoogle ScholarPubMed
Taylor, P. D. & Williams, G. C. (1982) The lek paradox is not resolved. Theoretical Population Biology, 22, 392–409.CrossRefGoogle Scholar
ten Cate, C., Verzijden, M. & Etman, E. (2006) Sexual imprinting can induce sexual preferences for exaggerated parental traits. Current Biology, 16, 1128–1132.CrossRefGoogle ScholarPubMed
Thornhill, R. (1983) Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. American Naturalist, 122, 765.CrossRefGoogle Scholar
Thursz, M. R., Thomas, H. C., Greenwood, B. M. & Hill, A. V. S. (1997) Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nature Genetics, 17, 11–12.CrossRefGoogle ScholarPubMed
Tompkins, J. L. & Hazel, W. (2007) The status of the conditional evolutionarily stable strategy. Trends in Ecology and Evolution, 22, 522–528.CrossRefGoogle Scholar
Trivers, R. L. (1972) Parental investment and sexual selection. In: Sexual Selection and the Descent of Man, 1871–1971, ed. Campbell, B.. Chicago, IL: Aldine, pp. 136–179.Google Scholar
Valera, F., Hoi, H. & Kristin, A. (2003) Male shrikes punish unfaithful females. Behavioral Ecology and Sociobiology, 14, 403–408.CrossRefGoogle Scholar
Gossum, H. & Sherratt, T. M. (2008) A dynamical model of sexual harassment and its implications for female-limited polymorphism. Ecological Modelling, 210, 212–220.CrossRefGoogle Scholar
Homrigh, A., Higgie, M., McGuigan, K. & Blows, M. W. (2007) The depletion of genetic variance by sexual selection. Current Biology, 17, 528–532.CrossRefGoogle ScholarPubMed
Warner, R. R., Shapiro, D. Y., Marcanato, A. & Petersen, C. W. (1995) Sexual conflict – males with the highest mating success convey the lowest fertilization benefits to females. Proceedings of the Royal Society B, 262, 135–139.CrossRefGoogle ScholarPubMed
Wedell, N. (1994) Dual function of the bushcricket spermatophore. Proceedings of the Royal Society B, 258, 181–185.CrossRefGoogle Scholar
Wedell, N. & Tregenza, T. (1999) Successful fathers sire successful sons. Evolution, 53, 620–625.CrossRefGoogle ScholarPubMed
Wedell, N., Gage, M. J. G. & Parker, G. A. (2002) Sperm competition, male prudence and sperm-limited females. Trends in Ecology and Evolution, 17, 313–320.CrossRefGoogle Scholar
West, S. A., Griffin, A. S. & Gardner, A. (2007) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology, 20, 415–432.CrossRefGoogle ScholarPubMed
Widemo, F. & Owens, I. P. F. (1995) Lek size, male mating skew and the evolution of lekking. Nature, 373, 148–151.CrossRefGoogle Scholar
Wigby, S. & Chapman, T. (2004) Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution, 58, 1028–1037.CrossRefGoogle ScholarPubMed
Wigby, S. & Chapman, T. (2005) Sex peptide causes mating costs in female Drosophila melanogaster. Current Biology, 15, 316–321.CrossRefGoogle ScholarPubMed
Wiklund, C., Kaitala, A., Lindfors, V. & Abenius, J. (1993) Polyandry and its effect on female reproduction in the green-veined white butterfly (Pieris napi L.). Behavioral Ecology and Sociobiology, 33, 25–33.CrossRefGoogle Scholar
Williams, G. C. (1975) Sex and Evolution. Princeton, NJ:Princeton University Press.Google ScholarPubMed
Willmott, H. E. & Foster, S. A. (1995) The effects of rival male interaction on courtship and parental care in the four-spine stickleback, Apeltes quadracus. Behaviour, 132, 997–1010.CrossRefGoogle Scholar
Wilson, E. O. (1975) Sociobiology: the New Synthesis. Cambridge, MA: Harvard University Press.Google Scholar
Wright, D., Kerje, S., Brändström, H.et al. (2008) The genetic architecture of a female sexual ornament. Evolution, 62, 86–98.CrossRefGoogle ScholarPubMed
Yapici, N., Kim, Y. J., Ribeiro, C. & Dickson, B. J. (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature, 451, 33–37.CrossRefGoogle ScholarPubMed
Zahavi, A. (1975) Mate selection: selection for a handicap. Journal of Theoretical Biology, 53, 205–214.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×