Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T09:27:00.639Z Has data issue: false hasContentIssue false

11 - Pair bonds and parental behaviour

Published online by Cambridge University Press:  05 June 2012

Lisa McGraw
Affiliation:
University School of Medicine, Atlanta, Georgia, USA
Tamás Székely
Affiliation:
University of Bath, UK
Larry J. Young
Affiliation:
University School of Medicine, Atlanta, Georgia, USA
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

Pair bonds and parental behaviour are among the most variable social traits. To understand how and why these traits are so variable, we investigate three issues in this chapter. First, we present an overview of recent work on molecular and neural aspects of pair bonds and parental care using microtine rodents as model organisms. We focus on two neuropeptides, oxytocin and vasopressin, and show that although both molecules are found in both sexes, oxytocin plays a more prominent role in regulating parenting and pair bonding in females, whereas vasopressin serves this role in males. Variation in the expression of oxytocin and vasopressin receptors appears to contribute to species and individual differences in social behaviour. These studies also show that although oxytocin and vasopressin function in distinct brain regions, they act within the same neural circuit. Therefore, females and males appear to accomplish behavioural changes in pair bonding and parental care by altering the responsiveness of the same neural circuit. Second, studies of pair bonds and parental care in natural populations have revealed that these traits are often tied together. Cost–benefit analyses of both traits in a game-theoretic framework provide novel insights into how diverse pair bonding and parental care may have evolved. Recent work emphasises the role of social environment in influencing pair bonding and care. Finally, we point out that currently there is a schism between proximate and ultimate approaches to understanding pair bonding and parental care.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 271 - 301
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balshine-Earn, S., Kempenaers, B. & Székely, T. (2002) Conflict and co-operation in parental care. Philosophical Transactions of the Royal Society B, 357, 237–404.Google Scholar
Hammock, E. A. D. & Young, L. J. (2005) Microsatellite instability generates diversity in brain and sociobehavioural traits. Science, 308, 1630–1634.CrossRefGoogle Scholar
Houston, A. I., Székely, T. & McNamara, J. M. (2005) Conflict over parental care. Trends in Ecology and Evolution, 20, 33–38.CrossRefGoogle Scholar
Reichard, U. H. (2007) Monogamy: past and present. In: Monogamy: Mating Strategies and Partnerships in Birds, Humans and Other Mammals, ed. Reichard, U. H. & Boesch, C.Cambridge: Cambridge University Press, pp. 3–26.Google Scholar
Young, L. J. & Insel, T. R. (2002) Hormones and parental behaviour. In: Behavioural Endocrinology, 2nd edn, ed. Becker, J. B., Breedlove, S. M., Crews, D. & McCarthy, M. M.. Cambridge, MA: MIT Press, pp. 331–369.Google Scholar
Adkins-Regan, E. (2005) Hormones and Animal Social Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Albers, H. E. & Bamshad, M. (1998) Role of vasopressin and oxytocin in the control of social behavior in Syrian hamsters (Mesocricetus auratus). Progress in Brain Research, 119, 395–408.CrossRefGoogle Scholar
Alonzo, S. & Warner, R. (2000) Dynamic games and field experiments examining intra- and inter-sexual conflict: explaining counter-intuitive mating behavior in a Mediterranean wrasse, Symphodus ocellatus. Behavioral Ecology, 11, 56–70.CrossRefGoogle Scholar
Aragona, B. J., Liu, Y., Yu, Y. J.et al. (2006) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature Neuroscience, 9, 133–139.CrossRefGoogle ScholarPubMed
Arnqvist, G. & Rowe, L. (2005) Sexual Conflict. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Balshine-Earn, S., Kempenaers, B. & Székely, T. (2002) Conflict and co-operation in parental care. Philosophical Transactions of the Royal Society, 357, 237–404.Google Scholar
Bamshad, M., Novak, M. A. & Devries, G. J. (1993) Sex and species differences in the vasopressin innervation of sexually naive and parental prairie voles, Microtus ochrogaster and meadow voles, M. pennsylvanicus. Journal of Neuroendocrinology, 5, 247–255.CrossRefGoogle Scholar
Bateman, A. J. (1948) Intra-sexual selection in Drosophila. Heredity, 2, 349–368.CrossRefGoogle ScholarPubMed
Bennett, P. M. & Owens, I. P. F. (2002) Evolutionary Ecology of Birds. Oxford:Oxford University Press.Google Scholar
Bester-Meredith, J. K., Young, L. J. & Marler, C. A. (1999) Species differences in paternal behavior and aggression in Peromyscus and their associations with vasopressin immunoreactivity and receptors. Hormones and Behavior, 36, 25–38.CrossRefGoogle ScholarPubMed
Bickford, D. (2002) Male parenting of New Guinea froglets. Nature, 418, 601–602.CrossRefGoogle ScholarPubMed
Bielsky, I. F. & Young, L. J. (2004) Oxytocin, vasopressin and social recognition in mammals. Peptides, 25, 1564–1574.CrossRefGoogle ScholarPubMed
Bielsky, I. F., Hu, S.-B., Szegda, K. L., Westphal, H. & Young, L. J. (2004) Profound impairment in social recognition and reduction in anxiety in vasopressin V1a receptor knockout mice. Neuropsychopharmacology, 29, 483–493.CrossRefGoogle ScholarPubMed
Black, J. M., ed. (1996) Partnerships in Birds. Oxford: Oxford University Press.
Bonneaud, C., Mazuc, J., Gonzalez, G.et al. (2003) Assessing the cost of mounting an immune response. American Naturalist, 161, 367–379.CrossRefGoogle ScholarPubMed
Bosch, O. J., Nair, H. P., Ahern, T., Neumann, I. D. & Young, L. J. (2009) The CRF system mediates increased passive stress-coping behavior following the loss of a bonded partner in a monogamous rodent. Neuropsychopharmacology, 34, 1406–1415.CrossRefGoogle Scholar
Burbach, P., Young, L. J. & Russell, J. (2006) Oxytocin: synthesis, secretion and reproductive functions. In: Knobil and Neill's Physiology of Reproduction, 3rd edn, ed. Neill, J. D.. St Louis, MO: Elsevier, pp. 3055–3128.Google Scholar
Cantoni, D. & Brown, R. (1997) Paternal investment and reproductive success in the California mouse, Peromyscus californicus. Animal Behaviour, 54, 377–386.CrossRefGoogle ScholarPubMed
Carter, C. S., Devries, A. C. & Getz, L. L. (1995) Physiological substrates of mammalian monogamy: the prairie vole model. Neuroscience and Biobehavioral Reviews, 19, 303–14.CrossRefGoogle ScholarPubMed
Cheney, K. & Cote, I. (2003) Indirect consequences of parental care: sex differences in ectoparasite burden and cleaner-seeking activity in longfin damselfish. Marine Ecology Progress Series, 262, 267–275.CrossRefGoogle Scholar
Chivian, E. & Bernstein, A. (2008) Sustaining Life. Oxford: Oxford University Press.Google Scholar
Clutton-Brock, T. H. (1989) Mammalian mating systems. Proceedings of the Royal Society B, 236, 339–372.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H. (1991) The Evolution of Parental Care. Princeton, NJ: Princeton University Press.Google Scholar
Cochran, G. & Solomon, N. (2000) Effects of food supplementation on the social organization of prairie voles (Microtus ochrogaster). Journal of Mammology, 81, 746–757.2.3.CO;2>CrossRefGoogle Scholar
Crump, M. (1996) Parental care among the amphibia. Advances in the Study of Behavior, 25, 109–144.CrossRefGoogle Scholar
Curley, J. P. & Keverne, E. B. (2005) Genes, brains and mammalian social bonds. Trends in Ecology and Evolution, 20, 561–567.CrossRefGoogle ScholarPubMed
Cushing, B. S., Martin, J., Young, L. J. & Carter, C. S. (2001) The effects of peptides on partner preference formation are predicted by habitat in prairie voles. Hormones and Behavior, 39, 48–58.CrossRefGoogle ScholarPubMed
Davies, N. B. (1989) Sexual conflict and the polygamy threshold. Animal Behavior, 38, 226–234.CrossRefGoogle Scholar
Davies, N. B. (1991) Mating systems. In: Behavioural Ecology, 3rd edn, ed. Krebs, J. R. & Davies, N. B.. Oxford: Blackwell, pp. 263–294.Google Scholar
Davies, N. B. (1992) Dunnock Behaviour and Social Evolution. Oxford: Oxford University Press.Google Scholar
Davies, N. B. & Lundberg, A. (1984) Food distribution and a variable mating system in the dunnock (Prunella modularis). Journal of Animal Ecology, 53, 895–912.CrossRefGoogle Scholar
Diesel, R., Baurle, G. & Vogel, P. (1995) Cave breeding and froglet transport: a novel pattern of anuran brood care in the Jamaican frog, Eleutherodactylus cundalli. Copeia, 1995, 354–360.CrossRefGoogle Scholar
Dietz, J. (1993) Polygyny and female reproductive success in golden lion tamarins, Leontopithecus rosalia. Animal Behaviour, 46, 1067–1078.Google Scholar
Dunbar, R. & Dunbar, E. (1980) The pairbond in klipspringer. Animal Behaviour, 28, 219–229.CrossRefGoogle Scholar
Emlen, S. T. & Oring, L. W. (1977) Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215–223.CrossRefGoogle ScholarPubMed
Ens, B., Choudhury, S. & Black, J. M. (1996) Mate fidelity in monogamous birds. In: Partnerships in Birds, ed. J. M. Black. Oxford: Oxford University Press, pp. 344–401.Google Scholar
Everts, H. G. & Koolhaas, J. M. (1999) Differential modulation of lateral septal vasopressin receptor blockade in spatial learning, social recognition, and anxiety-related behaviors in rats. Behavioural Brain Research, 99, 7–16.CrossRefGoogle ScholarPubMed
Ferguson, J. N., Young, L. J., Hearn, E. F., Insel., T. R. & Winslow, J. T. (2000) Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284–288.CrossRefGoogle ScholarPubMed
Fink, S., Excoffier, L. & Heckel, G. (2006) Mammalian monogamy is not controlled by a single gene. Proceedings of the National Academy of Sciences of the USA, 103, 10956–10960.CrossRefGoogle Scholar
Forsgren, E., Amundsen, T., Borg, A. & Bjelvenmark, J. (2004) Unusually dynamic sex roles in a fish. Nature, 429, 551–554.CrossRefGoogle ScholarPubMed
Fuentes, A. (1999) Reevaluating primate monogamy. American Anthropologist, 100, 890–907.CrossRefGoogle Scholar
Getz, L. L. & Carter, C. S. (1996) Prairie-vole partnerships. American Scientist, 84, 56–62.Google Scholar
Getz, L. L. & Hofmann, J. E. (1986) Social-organization in free-living prairie voles, Microtus ochrogaster. Behavioral Ecology and Sociobiology, 18, 275–282.CrossRefGoogle Scholar
Getz, L. L., Carter, C. S. & Gavish, L. (1981) The mating system of the prairie vole Microtus ochrogaster: field and laboratory evidence for pair bonding. Behavioral Ecology and Sociobiology, 8, 189–194.CrossRefGoogle Scholar
Getz, L. L., Hofmann, J. E., Klatt, B., Verner, L., Cole, F. & Lindroth, R. (1987) Fourteen years of population fluctuations of Microtus ochrogaster and M. pennsylvanicus in east-central Illinois. Canadian Journal of Zoology, 65, 1317–1325.CrossRefGoogle Scholar
Getz, L. L., McGuire, B., Hofmann, J. E., Pizzuto, T. & Frase, B. (1990) Social organization and mating system of the prairie vole, Microtus ochrogaster. In: Social Systems and Population Cycles in Voles, ed. Tamarin, T., Ostfeld, R., Pugh, S. & Bujalska, G.. Basel: Birkhauser, pp. 69–80.Google Scholar
Getz, L. L., Gudermuth, D. & Benson, S. (1992) Pattern of nest occupancy of the prairie vole, Microtus ochrogaster, in different habitats. American Midland Naturalist, 128, 197–202.CrossRefGoogle Scholar
Getz, L. L., McGuire, B., Hofmann, J. E., Pizzuto, T. & Frase, B. (1993) Social organization of the prairie vole (Microtus ochrogaster). Journal of Mammalogy, 74, 44–58.CrossRefGoogle Scholar
Getz, L. L., McGuire, B. & Carter, C. (2003) Social behavior, reproduction and demography of the prairie vole, Microtus ochrogaster. Ethology, Ecology and Evolution, 15, 105–118.CrossRefGoogle Scholar
Gonzales-Voyeur, A., Fitzpatrick, J. & Kolm, N. (2008) Sexual selection determines parental care in cichlid fishes. Evolution, 62, 2015–2026.CrossRefGoogle Scholar
Goodson, J. L. & Bass, A. H. (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin system in vertebrates. Brain Research Reviews, 35, 246–265.CrossRefGoogle Scholar
Goodson, J. L., Saldanha, C., Hahn, T. & Soma, K. (2005) Recent advances in behavioral neuroendocrinology: insights from studies on birds. Hormones and Behavior, 48, 461–473.CrossRefGoogle ScholarPubMed
Gowaty, P. (1996) Battles of the sexes and origins of monogamy. In: Partnerships in Birds, ed. Black, J. M.. Oxford: Oxford University Press, pp. 21–52.Google Scholar
Griggio, M., Matessi, G. & Pilastro, A. (2005) Should I stay or should I go? Female brood desertion and male counterstrategy in rock sparrows. Behavioral Ecology, 16, 435–441.CrossRefGoogle Scholar
Gubernick, D. & Teferi, T. (2000) Adaptive significance of male parental care in a monogamous mammal. Proceedings of the Royal Society B, 267, 147–150.CrossRefGoogle Scholar
Gunther, R. (2005) Derived reproductive modes in New Guinean anuran amphibians and description of a new species with paternal care in the genus Callulops (Microhylidae). Journal of Zoology, 268, 153–170.CrossRefGoogle Scholar
Hammock, E. A. D. & Young, L. J. (2004) Functional microsatellite polymorphisms associated with divergent social structure in vole species. Molecular Biology and Evolution, 21, 1057–1063.CrossRefGoogle ScholarPubMed
Hammock, E. A. D. & Young, L. J. (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science, 308, 1630–1634.CrossRefGoogle ScholarPubMed
Hammock, E. A. D. & Young, L. J., eds. (2007a) Neuroendocrinology, Neurochemistry, and Molecular Neurobiology of Affiliative Behavior. New York, NY: Springer-Verlag.CrossRef
Hammock, E. A. D. & Young, L. J. (2007b) On switches and knobs, microsatellites and monogamy. Trends in Genetics, 23, 209–212.Google Scholar
Hansell, M. (2000) Bird Nests and Construction Behaviour. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Harrison, F., Barta, Z., Cuthill, I. & Székely, T. (2009) How is sexual conflict over parental care resolved: a meta-analysis. Journal of Evolutionary Biology, 22, 1800–1812.CrossRefGoogle Scholar
Houston, A. I. & Davies, N. B. (1985) Evolution of cooperation and life history in dunnocks. In: Behavioural Ecology: the Ecological Consequences of Adaptive Behaviour, ed. Sibly, R. & Smith, R. H.Oxford: Blackwell, pp. 471–487.Google Scholar
Houston, A. I., Székely, T. & McNamara, J. (2005) Conflict over parental care. Trends in Ecology and Evolution, 20, 33–38.CrossRefGoogle Scholar
Hunt, J. & Simmons, L. (2002) Behavioural dynamics of biparental care in the dung beetle Onthophagus taurus. Animal Behaviour, 64, 65–75.CrossRefGoogle Scholar
Ims, R. (1987) Responses in spatial organisation and behaviour to manipulations of the food resource in the vole Clethrionomys rufocanus. Journal of Animal Ecology, 56, 585–596.CrossRefGoogle Scholar
Insel, T. R. & Hulihan, T. (1995) A gender-specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles. Behavioral Neuroscience, 109, 782–789.CrossRefGoogle ScholarPubMed
Insel, T. R. & Shapiro, L. E. (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences of the USA, 89, 5981–5985.CrossRefGoogle ScholarPubMed
Insel, T. R. & Young, L. J. (2000) Neuropeptides and the evolution of social behavior. Current Opinion in Neurobiology, 10, 784–789.CrossRefGoogle ScholarPubMed
Insel, T. R., Wang, Z. & Ferris, C. F. (1994) Patterns of vasopressin receptor distribution associated with social organization in microtine rodents. Journal of Neuroscience, 14, 5381–5392.CrossRefGoogle ScholarPubMed
Itzkowitz, M., Santangelo, N. & Richter, M. (2001) Parental division of labour and the shift from minimal to maximal role specializations: an examination using a biparental fish. Animal Behaviour, 61, 1237–1245.CrossRefGoogle Scholar
Ivell, R. & Dietmar, R. (1985) Structure and comparison of the oxytocin and vasopressin genes from rat. Proceedings of the National Academy of Sciences of the USA, 81, 2006–2010.CrossRefGoogle Scholar
Jennions, M. & Petrie, M. (2000) Why do females mate multiply? A review of the genetic benefits. Biological Reviews, 59, 677–688.Google Scholar
Johnstone, R. A. & Hinde, C. A. (2006) Negotiation over offspring care: how should parents respond to each other's efforts?Behavioral Ecology, 17, 818–827.CrossRefGoogle Scholar
Kempenaers, B. (2007) Mate choice and genetic quality: a review of the heterozygosity theory. Advances in the Study of Behavior, 37, 189–278.CrossRefGoogle Scholar
Kendrick, K. M., Keverne, E. B. & Baldwin, B. A. (1987) Intracerebroventricular oxytocin stimulates maternal behaviour in the sheep. Neuroendocrinology, 46, 56–61.CrossRefGoogle ScholarPubMed
Kendrick, K. M., Costa, A. P. C. D., Broad, K. D.et al. (1997) Neural control of maternal behavior and olfactory recognition of offspring. Brain Research Bulletin, 44, 383–395.CrossRefGoogle ScholarPubMed
Kock, K. & Pshenichnov, (2006) Evidence for egg brooding and parental care in icefish and other notothenioids in the Southern Ocean. Antarctic Science, 18, 223–227.CrossRefGoogle Scholar
Kokko, H. & Jennions, M. (2003) It takes two to tango. Trends in Ecology and Evolution, 18, 103–104.CrossRefGoogle Scholar
Kokko, H. & Jennions, M. (2008) Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 21, 919–948.CrossRefGoogle ScholarPubMed
Kolm, N., Goodwin, N., Balshine, S. & Reynolds, J. (2006) Life history evolution in cichlids 1: revisiting the evolution of life histories in relation to parental care. Journal of Evolutionary Biology, 19, 66–75.CrossRefGoogle ScholarPubMed
Komers, P. & Brotherton, P. (1997) Female space use is the best predictor of monogamy in mammals. Proceedings of the Royal Society B, 264, 1261–1270.CrossRefGoogle ScholarPubMed
Kosztolányi, A., Székely, T., Cuthill, I., Yilmaz, K. & Berberoglu, S. (2006) The influence of habitat on brood-rearing behaviour in the Kentish plover. Journal of Animal Ecology, 75, 257–265.CrossRefGoogle Scholar
Kupfer, A., Muller, H., Antoniazzi, M.et al. (2006) Parental investment by skin feeding in a caecilian amphibian. Nature, 440, 926–929.CrossRefGoogle Scholar
Lack, D. (1968) Ecological Adaptations for Breeding in Birds, London: Methuen.Google Scholar
Landgraf, R., Gerstberger, R., Montkowski, A.et al. (1995) V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. Journal of Neuroscience, 6, 4250–4258.CrossRefGoogle Scholar
Landgraf, R., Frank, E., Aldag, J. M.et al. (2003) Viral vector-mediated gene transfer of the vole V1a vasopressin receptor in the rat septum: improved social discrimination and active social behaviour. European Journal of Neuroscience, 18, 403–411.CrossRefGoogle ScholarPubMed
Leengoed, E. V., Kerker, E. & Swanson, H. H. (1987) Inhibition of postpartum maternal behaviour in the rat by injecting an oxytocin antagonist into the cerebral ventricles. Journal of Endocrinology, 112, 275–282.CrossRefGoogle ScholarPubMed
Lehtinen, R. & Nussbaum, R. (2003) Parental care: a phylogenetic perspective. In: Reproductive Biology and Phylogeny of Anura, ed. Jamieson, B. G. M.. Enfield, NH: Science Publishers, pp. 343–386.Google Scholar
Lessells, C. M. (1999) Sexual conflict in animals. In: Levels of Selection in Evolution, ed. Keller, L.. Princeton, NJ: Princeton University Press, pp. 75–99.Google Scholar
Ligon, J. (1999) Evolution of Avian Breeding Systems. New York, NY: Oxford University Press.Google Scholar
Liker, A. (1995) Monogamy in precocial birds: a review. Ornis Hungarica, 5, 1–14.Google Scholar
Liker, A. & Székely, T. (1997) Aggression among female lapwings, Vanellus vanellus. Animal Behaviour, 54, 797–802.CrossRefGoogle ScholarPubMed
Lim, M. M., Murphy, A. & Young, L. J. (2004a) Ventral striatopallidal oxytocin and vasopressin V1a receptors in the monogamous prairie vole (Microtus ochrogaster). Journal of Comparative Neurology, 468, 555–570.CrossRefGoogle ScholarPubMed
Lim, M. M., Wang, Z., Olazábal, D. E., Ren, X., Terwillger, E. F. & Young, L. J. (2004b) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature, 429, 754–757.CrossRefGoogle Scholar
Liu, Y., Curtis, J. T. & Wang, Z. (2001) Vasopressin in the lateral septum regulates pair bond formation in male prairie voles (Microtus ochrogaster). Behavioral Neuroscience, 115, 910–919.CrossRefGoogle Scholar
Lonstein, J. & Vries, G. (1999) Comparison of the parental behavior of pairbonded female and male prairie voles (Microtus ochrogaster). Physiology and Behavior, 66, 33–40.CrossRefGoogle Scholar
Lott, D. (1991) Intraspecific Variation in the Social Systems of Wild Vertebrates. Cambridge: Cambridge University Press.Google Scholar
Lucia, K., Keane, B., Hayes, L.et al. (2008) Philopatry in prairie voles: an evaluation of the habitat saturation hypothesis. Behavioral Ecology, 19, 774–783.CrossRefGoogle Scholar
Mank, J. & Avise, J. (2006) The evolution of reproductive and genomic diversity in ray-finned fishes: insights from phylogeny and comparative analysis. Journal of Fish Biology, 69, 1–27.CrossRefGoogle Scholar
McGuire, B. & Bemis, W. E. (2007) Parental care. In: Rodent Societies: an Ecological and Evolutionary Perspective, ed. Wolff, J. O. & Sherman, P. W.. Chicago, IL: University of Chicago Press, pp. 231–242.Google Scholar
McGuire, B. & Novak, M. (1984a) A comparison of maternal behaviour in the meadow vole (Microtus pennsylvanicus), prairie vole (M. ochrogaster) and pine vole (M. pinetorum). Animal Behaviour, 32, 1132–1141.CrossRefGoogle Scholar
McGuire, B. & Novak, M. (1984b) A comparison of maternal behaviors in the meadow vole, prairie vole and pine vole. Animal Behaviour, 32, 1132–1141.CrossRefGoogle Scholar
McKinney, F., Cheng, K. & Bruggers, D. (1984) Sperm competition in apparently monogamous birds. In: Sperm Competition and the Evolution of Animal Mating Systems, ed. Smith, R. L.. New York, NY: Academic Press, pp. 523–545.Google Scholar
McNamara, J. M. & Forslund, P. (1996) Divorce rates in birds: predictions from an optimization model. American Naturalist, 147, 609–640.CrossRefGoogle Scholar
McNamara, J. M., Gasson, C. & Houston, A. (1999) Incorporating rules for responding into evolutionary games. Nature, 401, 368–371.CrossRefGoogle ScholarPubMed
McNamara, J. M., Houston, A., Barta, Y. & Osorno, J.-L. (2002) Should young ever be better off with one parent than with two?Behavioral Ecology, 14, 301–310.CrossRefGoogle Scholar
Meaney, M. J. (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 1161–1192.CrossRefGoogle Scholar
Mock, D. W. & Parker, G. A. (1997) The Evolution of Sibling Rivalry. Oxford:Oxford University Press.Google Scholar
Møller, A. (2007) The evolution of monogamy: mating relationships, parental care and sexual selection. In: Monogamy: Mating Strategies and Partnerships in Birds, Humans and Other Mammals, ed. Reichard, U. H. & Boesch, C.. Cambridge: Cambridge University Press, pp. 29–41.Google Scholar
Nettle, D. (2008) Why do some dads get more involved than others? Evidence from a large British cohort. Evolution and Human Behavior, 29, 416–423.CrossRefGoogle Scholar
Numan, M. & Insel, T. R. (2003) The Neurobiology of Parental Behavior. New York, NY: Springer-Verlag.Google Scholar
Ó Foighil, D. & Taylor, D. (2000) Evolution of parental care and ovulation behavior in oysters. Phylogenetics and Evolution, 15, 301–313.CrossRefGoogle Scholar
Olazábal, D. E. & Young, L. J. (2005) Variability in ‘spontaneous’ maternal behavior is associated with anxiety-like behavior and affiliation in naive juvenile and adult female prairie voles (Microtus ochrogaster). Developmental Psychobiology, 47, 166–178.CrossRefGoogle ScholarPubMed
Olazábal, D. E. & Young, L. J. (2006a) Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum. Hormones and Behavior, 49, 681–687.CrossRefGoogle ScholarPubMed
Olazábal, D. E. & Young, L. J. (2006b) Oxytocin receptors in the nucleus accumbens facilitate ‘spontaneous’ maternal behavior in adult female prairie voles. Neuroscience, 141, 559–568.CrossRefGoogle ScholarPubMed
Oliveras, D. & Novak, M. (1986) A comparison of paternal behavior in the meadow vole Microtus pennsylvanicus, the pine vole M. pinetorum and the prairie vole M. ochrogaster. Animal Behaviour, 34, 519–526.CrossRefGoogle Scholar
Ophir, A.G., Phelps, S.M., Sorin, A.B. & Wolff, J.O. (2007) Morphological, genetic, and behavioural comparisons of two prairie vole populations in the field and laboratory. Journal of Mammalogy, 88, 989–999.CrossRefGoogle Scholar
Ophir, A. G., Phelps, S. M., Sorin, A. B. & Wolff, J. O. (2008a) Social but not genetic monogamy is associated with greater breeding success in prairie voles. Animal Behaviour, 75, 1143–1154.CrossRefGoogle Scholar
Ophir, A. G., Campbell, P., Hanna, K. & Phelps, S. M. (2008b) Field tests of cis-regulatory variation at the prairie vole avpr1a locus: Association with V1aR abundance but not sexual or social fidelity. Hormones and Behavior, 54, 694–702.CrossRefGoogle ScholarPubMed
Ophir, A., Wolff, J. & Phelps, S. (2008c) Variation in neural V1aR predicts sexual fidelity and space use among male prairie voles in semi-natural settings. Proceedings of the National Academy of Sciences of the USA, 105, 1249–1254.CrossRefGoogle ScholarPubMed
Osorno, J. & Székely, T. (2004) Sexual conflict and parental care in magnificent frigatebirds: full compensation by deserted females. Animal Behaviour, 68, 337–342.CrossRefGoogle Scholar
Ostfeld, R. (1986) Territoriality and mating systems of California voles. Journal of Animal Ecology, 55, 691–706.CrossRefGoogle Scholar
Pedersen, C. A. & Prange, A. J. (1979) Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences of the USA, 76, 6661–6665.CrossRefGoogle ScholarPubMed
Pedersen, C. A., Caldwell, J., Walker, C., Ayers, G. & Mason, G. (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behavioral Neuroscience, 108, 1163–1171.CrossRefGoogle ScholarPubMed
Persson, O. & Öhrström, P. (1989) A new avian mating system: ambisexual polygamy in the penduline titRemiz pendulinus. Ornis Scandinavica, 20, 105–111.Google Scholar
Pilastro, A., Biddau, T., Marin, G. & Mingozzi, T. (2001) Female brood desertion increases with number of available mates in the rock sparrow. Journal of Avian Biology, 32, 68–72.CrossRefGoogle Scholar
Pizzuto, T. & Getz, L. L. (1998) Female prairie voles (Microtus ochrogaster) fail to form a new pair after loss of mate. Behavioural Processes, 43, 79–86.CrossRefGoogle Scholar
Poelman, E. & Dicke, M. (2007) Offering offspring as food to cannibals: oviposition strategies of Amazonian poison frogs (Dendrobates ventrimaculatus). Evolutionary Ecology, 21, 215–227.CrossRefGoogle Scholar
Raadik, T., Bourke, D., Clarke, M. & Martin, A. (1990) Behaviour and reproductive success of pairs and lone parents in the convict cichlidHeros nigrofasciatus. Animal Behaviour, 39, 594–596.Google Scholar
Rauter, C. M. & Moore, A. J. (2004) Time constraints and trade-offs among parental care behaviours: effects of brood size, sex and loss of mate. Animal Behaviour, 68, 695–702.CrossRefGoogle Scholar
Reichard, U. H. (2007) Monogamy: past and present. In: Monogamy: Mating Strategies and Partnerships in Birds, Humans and Other Mammals, ed. Reichard, U. H. & Boesch, C.. Cambridge: Cambridge University Press, pp. 3–26.Google Scholar
Reynolds, J. D., Goodwin, N. B. & Freckleton, R. P. (2002) Evolutionary transitions in parental care and live-bearing in vertebrates. Philosophical Transactions of the Royal Society B, 357: 269–281.CrossRefGoogle ScholarPubMed
Roberts, R. L., Miller, A. K., Taymans, S. E. & Carter, C. S. (1998) Role of social and endocrine factors in alloparental behavior of prairie voles (Microtus ochrogaster). Canadian Journal of Zoology, 76, 1862–1868.CrossRefGoogle Scholar
Royle, N., Hartley, I. & Parker, G. (2002) Sexual conflict reduces offspring fitness in zebra finches. Nature, 416, 733–736.CrossRefGoogle ScholarPubMed
Sanz, J., Kranenbarg, S. & Tinbergen, J. (2000) Differential response by males and females to manipulation of partner contribution in the great tit (Parus major). Journal of Animal Ecology, 69, 74–84.CrossRefGoogle Scholar
Searcy, W. & Yasukawa, K. (1995) Polygyny and Sexual Selection in Red-Winged Blackbirds. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Slagsvold, T. & Lifjeld, J. T. (1994) Polygyny in birds: the role of competition between females for male parental care. American Naturalist, 143, 59–94.CrossRefGoogle Scholar
Smiseth, P. T., Dawson, C., Varley, E. & Moore, A. J. (2005) How do caring parents respond to mate loss? Differential response by males and females. Animal Behaviour, 69, 551–559.CrossRefGoogle Scholar
Solomon, N. G. (1991) Current indirect fitness benefits associated with philopatry in juvenile prairie voles. Behavioral Ecology and Sociobiology, 29, 277–282.CrossRefGoogle Scholar
Solomon, N. G. (1993) Comparison of parental behavior in male and female prairie voles (Microtus ochrogaster). Canadian Journal of Zoology, 71, 434–437.CrossRefGoogle Scholar
Solomon, N. G. & Crist, T. (2008) Estimates of reproductive success for group-living prairie voles, Microtus ochrogaster, in high-density populations. Animal Behaviour, 76, 881–892.CrossRefGoogle Scholar
Solomon, N. G. & Keane, B. (2007) Reproductive strategies in female rodents. In: Rodent Societies: an Ecological and Evolutionary Perspective, ed. Wolff, J. O. & Sherman, P. W.. Chicago, IL: University of Chicago Press, pp. 42–56.Google Scholar
Solomon, N. G., Keane, B., Knoch, L. & Hogan, P. (2004) Multiple paternity in socially monogamous prairie voles (Microtus ochrogaster). Canadian Journal of Zoology, 82, 1667–1671.CrossRefGoogle Scholar
Soma, K. (2006) Testosterone and aggression: Berthold, birds and beyond. Journal of Neuroendocrinology, 18, 543–551.CrossRefGoogle ScholarPubMed
Summers, K., Mckeon, C. & Heying, H. (2006) The evolution of parental care and egg size: a comparative analysis in frogs. Proceedings of the Royal Society B, 273, 687–692.CrossRefGoogle ScholarPubMed
Székely, T., Cuthill, I. & Kis, J. (1999) Brood desertion in Kentish plover: sex differences in remating opportunities. Behavioral Ecology, 10, 983–993.CrossRefGoogle Scholar
Székely, T., Webb, J. & Cuthill, I. (2000) Mating patterns, sexual selection and parental care: an integrative approach. In: Vertebrate Mating Systems, ed. Apollonio, M., Festa-Bianchet, M. & Mainardi, D.. London: World Science Press, pp. 194–223.Google Scholar
Szentirmai, I., Székely, T. & Komdeur, J. (2007) Sexual conflict over care: antagonistic effects of clutch desertion on reproductive success of male and female penduline tits. Journal of Evolutionary Biology, 20, 1739–1744.CrossRefGoogle ScholarPubMed
Tallamy, D. (1999) Semelparity and the evolution of maternal care in insects. Animal Behavior, 57, 2373–2383.CrossRefGoogle ScholarPubMed
Thomas, G. & Székely, T. (2005) Evolutionary pathways in shorebird breeding systems: sexual conflict, parental care, and chick development. Evolution, 59, 2222–2230.CrossRefGoogle ScholarPubMed
Thomas, G., Freckleton, R. & Székely, T. (2006) Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proceedings of the Royal Society B, 273, 1619–1624.CrossRefGoogle ScholarPubMed
Tieleman, B. I., Dijkstra, T., Klasing, K., Visser, G. & Williams, J. (2008) Effects of experimentally increased costs of activity during reproduction on parental investment and self-maintenance in tropical house wrensBehavioral Ecology, 19, 949–959.CrossRefGoogle Scholar
Tregenza, T. & Wedell, N. (2000) Genetic compatibility, mate choice and patterns of parentage. Molecular Ecology, 9, 1013–1027.CrossRefGoogle ScholarPubMed
Trivers, R. L. (1972) Parental investment and sexual selection. In: Sexual Selection and the Descent of Man, 1871–1971, ed. Campbell, B.. Chicago, IL: Aldine, pp. 136–179.Google Scholar
Trivers, R. L. (1974) Parent–offspring conflict. American Zoologist, 14, 249–264.CrossRefGoogle Scholar
Tyler, M. & Carter, D. (1981) Oral birth of the young of the gastric brooding frog Rheobatrachus silus. Animal Behaviour, 29, 280–282.CrossRefGoogle Scholar
Veiga, J. (1992) Why are house sparrows predominantly monogamous: a test of hypotheses. Animal Behaviour, 43, 361–370.CrossRefGoogle Scholar
Walling, C. A., Stamper, C. E., Smiseth, P. T. & Moore, A. J. (2008) Genetic architecture of sex differences in parental care. Proceedings of the National Academy of Sciences of the USA, 105, 18430–18435.CrossRefGoogle Scholar
Wang, Z., Ferris, C. F. & Vries, G. J. (1994) Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proceedings of the National Academy of Sciences of the USA, 91, 400–4.CrossRefGoogle ScholarPubMed
Wang, Z., Zhou, L., Hulihan, T. J. & Insel, T. R. (1996) Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. Journal of Comparative Neurology, 366, 726–737.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Wang, Z. X. & Insel, T. R. (1996) Parental behavior in voles. Advances in the Study of Behavior, 25, 361–384.CrossRefGoogle Scholar
Westneat, D. F. & Stewart, I. R. K. (2003) Extra-pair paternity in birds: causes, correlates and conflict. Annual Review of Ecology, Evolution and Systematics, 34, 365–396.CrossRefGoogle Scholar
Whittingham, L., Dunn, P. & Robertson, R. (1994) Female response to reduced male parental care in birds: an experiment in tree swallows. Ethology, Ecology and Evolution, 96, 260–269.Google Scholar
Williams, J. R., Catania, K. & Carter, C. (1992) Development of partner preferences in female prairie voles (Microtus ochrogaster): the role of social and sexual experience. Hormones and Behavior, 26, 339–349.CrossRefGoogle ScholarPubMed
Williams, J. R., Insel, T. R., Harbaugh, C. R. & Carter, C. S. (1994) Oxytocin administered centrally facilitates formation of a partner preference in prairie voles (Microtus ochrogaster). Journal of Neuroendocrinology, 6, 247–250.CrossRefGoogle ScholarPubMed
Williams, T. (1996) Mate fidelity in penguins. In: Partnerships in Birds, ed. Black, J. M.. Oxford: Oxford University Press, pp. 268–285.Google Scholar
Wilson, E. O. (1975) Sociobiology: the New Synthesis, Cambridge, MA:Harvard University Press.Google Scholar
Wingfield, J., Hegner, R.-E., Dufty Jr., A. & Ball, G. (1990) The ‘challenge hypothesis’: theoretical implications for patterns of testosterone secretion, mating systems and breeding strategies. American Naturalist, 136, 829–846.CrossRefGoogle Scholar
Winslow, J., Hastings, N., Carter, C. S., Harbaugh, C. & Insel., T. (1993) A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548.CrossRefGoogle ScholarPubMed
Wise, R. A. (2002) Brain reward circuitry: insights from unsensed incentives. Neuron, 36, 229–240.CrossRefGoogle ScholarPubMed
Wolff, J. O. & MacDonald, D. W. (2004) Promiscuous females protect their offspring. Trends in Ecology and Evolution, 19, 127–134.CrossRefGoogle ScholarPubMed
Wright, J. & Cuthill, I. (1990) Biparental care: short-term manipulations of partner contribution and brood size in the starling. Behavioral Ecology, 1, 116–124.CrossRefGoogle Scholar
Young, L. J. (1999) Frank A. Beach Award. Oxytocin and vasopressin receptors and species-typical social behaviors. Hormones and Behavior, 36, 212–221.CrossRefGoogle Scholar
Young, L. J. & Insel, T. R. (2002) Hormones and parental behaviour. In: Behavioral Endocrinology, 2nd edn, ed. Becker, J. B., Breedlove, S. M., Crews, D. & McCarthy, M. M.. Cambridge, MA: MIT Press, pp. 331–369.Google Scholar
Young, L. J. & Wang, Z. (2004) The neurobiology of pair bonding. Nature Neuroscience, 7, 1048–1054.CrossRefGoogle ScholarPubMed
Young, L. J., Wang, Z. & Insel, T. R. (1999) Neuroendocrine bases of monogamy. Trends in Neuroscience, 21, 71–75.CrossRefGoogle Scholar
Young, L. J., Lim, M. M., Gingrich, B. & Insel, T. R. (2001) Cellular mechanisms of social attachment. Hormones and Behavior, 40, 133–138.CrossRefGoogle ScholarPubMed
Yu, G.-Z., Kaba, H., Okutani, F. & Higuchi, T. (1996) The olfactory bulb: a critical site of action for oxytocin in the induction of maternal behaviour in the rat. Neuroscience, 72, 1083–1088.CrossRefGoogle ScholarPubMed
Zeh, J. & Zeh, D. (2001) Reproductive mode and the genetic benefits of polyandry. Animal Behaviour, 61, 1051–1063.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×