Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T10:34:36.862Z Has data issue: false hasContentIssue false

Chapter 10 - Immunobullous Disorders

Published online by Cambridge University Press:  04 November 2017

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coons, AH, Creech, HJ, Jones, RN. Immuno-logical properties of an antibody containing fluorescent group. Pro Soc Exp Biol Med 1941;47:200–2.CrossRefGoogle Scholar
Coons, AH, Kaplan, MH. Localization of antigen in tissue cells. II. improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 1950;91(1):113.Google Scholar
Jordon, RE, Triftshauser, CT, Schroeter, AL. Direct immunofluorescent studies of pemphigus and bullous pemphigoid. Arch Dermatol 1971;103(5):486–91.CrossRefGoogle ScholarPubMed
Beutner, EH, Jordon, RE. Demonstration of skin antibodies in sera of pemphigus vulgaris patients by indirect immunofluorescent staining. Proc Soc Exp Biol Med 1964;117:505–10.Google Scholar
Lemcke, S, Sokolowski, S, Rieckhoff, N, et al. Automated direct immunofluorescence analyses of skin biopsies. J Cutan Pathol 2016;43(3):227–35.Google Scholar
Stokes, GG. Trans Cambridge Philos Soc 1852;9:399.Google Scholar
Arbesman, J, Grover, R, Helm, TN, Beutner, EH. Can direct immunofluorescence testing still be accurate if performed on biopsy specimens after brief inadvertent immersion in formalin? J Am Acad Dermatol 2011;65(1):106–11.Google Scholar
Gammon, WR, Briggarman, RA, Imman, AO 3rd, Quenn, LL, Wheeler, CE. Differentiating anti-lamina lucida and anti-sublamina dense anti-BMZ antibodies by indirect immunofluorescence on 1.0 M sodium chloride-separated skin. J Invest Dermatol 1984;82(2):139–44.Google Scholar
Desai, BV, Harmon, RM, Green, KJ. Desmosomes at a glance. J Cell Sci 2009;122(Pt 24):4401–7.CrossRefGoogle ScholarPubMed
Hashimoto, T, Kiyokawa, C, Mori, O, et al. Human desmocollin 1 (Dsc 1) is an autoantigen for the subcorneal pustular dermatosis type of IgA pemphigus. J Invest Dermatol 1997;109(2):127–31.Google Scholar
Ishii, N, Ishida-Yamamoto, A, Hashimoto, T. Immunolocalization of target autoantigens in IgA pemphigus. Clin Exp Dermatol 2004;29(1):6266.CrossRefGoogle ScholarPubMed
Espana, A, Gimenez-Azcarate, A, Ishii, N, et al. Antidesmocollin 1 autoantibody negative subcorneal pustular dermatosis-type IgA pemphigus associated with multiple myeloma. Br J Dermatol 2015;172(1):296–98.CrossRefGoogle ScholarPubMed
Asashina, A, Koga, H, Suzuki, Y, Hashimoto, T. IgA pemphigus associated with diffuse large B-cell lymphoma showing unique reactivity with desmocollins: Unusual clinical and histopathologic features. Br J Dermatol 2013;168(1):224–26.Google Scholar
Hashimoto, T, Ebihara, T, Nishikawa, T. Studies of autoantigens recognized by IgA anti-keratinocyte cell surface antibodies. J Dermatol Sci 1996;12(1):1017.CrossRefGoogle ScholarPubMed
Hashimoto, T, Komai, A, Futei, Y, Nishikawa, T, Amagai, M. Detection of IgA autoantibodies to desmogleins by an enzyme-linked immunosorbent assay: The presence of new minor subtypes of IgA pemphigus. Arch Dermatol 2001;137(6):735–38.Google ScholarPubMed
Geller, S, Gat, A, Zeeli, T, et al. The expanding spectrum of IgA pemphigus: A case report and review of the literature. Br J Dermatol 2014;171(3):650–56.Google Scholar
Bruckner, AL, Fitzpatrick, JE, Hashimoto, T, Weston, WL, Morelli, JG. Atypical IgA/IgG pemphigus involving the skin, oral mucosa, and colon in a child: A novel variant of IgA pemphigus? Pediatr Dermatol 2005;22(4):321–27.Google Scholar
Zaraa, I, Kerkeni, N, Sellami, M, et al. IgG/IgA pemphigus with IgG and IgA antidesmoglein 3 antibodies and IgA antidesmoglein 1 antibodies detected by enzyme-linked immunosorbent assay: A case report and review of the literature. Int J Dermatol 2010;49(3):293302.CrossRefGoogle ScholarPubMed
Kowalewski, C, Hashimoto, T, Amagai, M, et al. IgA/IgG pemphigus: A new atypical subset of pemphigus? Acta Derm Venereol 2006;86(4):357–58.Google Scholar
Mentink, LF, de Jong, MC, Kloosterhuis, GJ, et al. Coexistence of IgA antibodies to desmogleins 1 and 3 in pemphigus vulgaris, pemphigus foliaceus and paraneoplastic pemphigus. Br J Dermatol 2007;156(4):635–41.CrossRefGoogle ScholarPubMed
Toosi, S, Collins, JW, Lohse, CM, et al. Clinicopathologic features of IgG/IgA pemphigus in comparison with classic (IgG) and IgA pemphigus. Int J Dermatol 2016;55(4):e184–90.Google Scholar
Hacker-Foegen, MK, Janson, M, Amagai, M, Fairley, JA, Lin, MS. Pathogenicity and epitope characteristics of anti-desmoglein-1 from pemphigus foliaceous patients expressing only IgG1 autoantibodies. J Invest Dermatol 2003;121(6):1373–78.Google Scholar
Qian, Y, Jeong, JS, Maldonado, M, et al. Cutting edge: Brazilian pemphigus foliaceus anti-desmoglein 1 autoantibodies cross-react with sand fly salivary LJM11 antigen. J Immunol 2012;189(4):1535–39.Google Scholar
Moraes, ME, Fernandez-Vina, M, Lazaro, A, et al. An epitope in the third hypervariable region of the DRB1 gene is involved in the susceptibility to endemic pemphigus foliaceus (fogo selvagem) in three different Brazilian populations. Tissue Antigens 1997;49(1):3540.Google Scholar
Howard, MS, Yepes, MM, Maldonado-Estrada, JG, et al. Broad histopathologic patterns of non-glabrous skin and glabrous skin from patients with a new variant of endemic pemphigus foliaceus- part 1. J Cutan Pathol 2010;37(2):222–30.Google Scholar
Brenner, S, Goldberg, I. Drug-induced pemphigus. Clin Dermatol 2011;29(4):455–57.Google Scholar
Parameswaran, A, Attwood, K, Sato, R, Seiffert-Sinha, K, Sinha, AA. Identification of a new disease cluster of pemphigus vulgaris with autoimmune thyroid disease, rheumatoid arthritis and type I diabetes. Br J Dermatol 2015;172(3):7129–38.CrossRefGoogle ScholarPubMed
Kavala, M, Topaloqlu Demir, F, Zindanci, I, et al. Genital involvement in pemphigus vulgaris (PV): Correlation with clinical and cervicovaginal Pap smear findings. J Am Acad Dermatol 2015;73(4):655–59.CrossRefGoogle ScholarPubMed
Zhou, C, Yu, Y, Elston, DM. Diagnostic value of eccrine glands and hair follicles in direct immunofluorescent analysis of pemphigus vulgaris and bullous pemphigoid. J Cutan Pathol 2016;43(4):334–38.Google Scholar
Alexandru, A, Zurac, S, Salavastru, CM, et al. Direct immunofluorescence on hair follicles – present and future perspectives. Am J Dermatopathol 2013;35(4):472–76.Google Scholar
Kamaresan, M, Rai, R, Sandhya, V. Immunofluorescence of the outer root sheath: An aid to diagnosis in pemphigus. Clin Exp Dermatol 2011;36(3):298301.CrossRefGoogle Scholar
Giurdanella, F, Diercks, GF, Jonkman, MF, Pas, HH. Laboratory diagnosis of pemphigus: Direct immunofluorescence remains the gold standard. Br J Dermatol 2016;175(1):185–86.Google Scholar
Zhang, X, Hyjek, E, Soltani, K, Petronic-Rosic, V, Shea, CR. Immunohistochemistry for immunoglobulin G4 on paraffin sections for the diagnosis of pemphigus. Arch Pathol Lab Med 2012;136(11):1402–7.Google Scholar
Villani, AP, Chouvet, B, Kanitakis, J. Application of C4d immunohistochemistry on routinely processed tissue sections for the diagnosis of autoimmune bullous dermatoses. Am J Dermatopathol 2016;38(3):186–88.Google Scholar
Pfaltz, K, Mertz, K, Rose, C, et al. C3d immunohistochemistry on formalin-fixed tissue is a valuable tool in the diagnosis of bullous pemphigoid of the skin. J Cutan Pathol 2010;37(6):654–58.CrossRefGoogle ScholarPubMed
Senear, FE, Usher, B. An unusual type of pemphigus combining features of lupus erythematosus. Arch Derm Syphilol 1926;13:761–81.Google Scholar
Hacker-Foegen, MK, Janson, M, Amagai, M, Fairley, JA, Lin, MS. Pathogenicity and epitope characteristics of anti-desmoglein-1 from pemphigus foliaceous patients expressing only IgG1 autoantibodies. J Invest Dermatol 2003;121(6):1373–78.CrossRefGoogle ScholarPubMed
Oktarina, DA, Poot, AM, Kramer, D, et al. The IgG “lupus-band” deposition pattern of pemphigus erythematosus. Arch Dermatol 2012;148(10):1173–78.Google Scholar
Amerian, ML, Ahmed, AR. Pemphigus erythematosus. J Am Acad Dermatol 1984;10(2 Pt 1):215–22.CrossRefGoogle ScholarPubMed
Chorzelski, T, Jablonska, S, Blaszczyk, M. Immunopathological investigations in the Senear-Usher syndrome (coexistence of pemphigus and lupus erythematosus). Br J Dermatol 1968;80(4):211–17.Google Scholar
Anhalt, GJ, Kim, SC, Stanley, JR, et al. Paraneoplastic pemphigus. An autoimmune mucocutaneous disease associated with neoplasia. N Engl J Med 1990;323(25):1729–35.Google Scholar
Nguyen, VT, Ndoye, A, Bassler, KD, et al. Classification, clinical manifestations, and immunopathological mechanisms of the epithelial variant of paraneoplastic autoimmune multiorgan syndrome: A reappraisal of paraneoplastic pemphigus. Arch Dermatol 2001;137(2):193206.Google Scholar
Ohzono, A, Sogame, R, Li, X, et al. Clinical and immunological findings in 104 cases of paraneoplastic pemphigus. Br J Dermatol 2015;173(6):1447–52.CrossRefGoogle ScholarPubMed
Czernik, A, Camilleri, M, Pittelkow, MR, Grando, SA. Paraneoplastic autoimmune multiorgan syndrome: 20 years after. Int J Dermatol 2011;50(8):905–14.CrossRefGoogle ScholarPubMed
Horn, TD, Anhalt, GJ. Histologic features of paraneoplastic pemphigus. Arch Dermatol 1992;128(8):1091–95.Google Scholar
Poot, AM, Siland, J, Jonkman, MF, Pas, HH, Diercks, GF. Direct and indirect immunofluorescence staining patterns in the diagnosis of paraneoplastic pemphigus. Br J Dermatol 2016;174(4):912–15.CrossRefGoogle ScholarPubMed
Maciejowska, E, Jablonska, S, Chorzelski, T. Is pemphigus herpetiformis an entity? Int J Dermatol 1987;26(9):571–77.CrossRefGoogle ScholarPubMed
Robinson, ND, Hashimoto, T, Amagai, M, Chan, LS. The new pemphigus variants. J Am Acad Dermatol 1999;40(5 Pt 1):649–71.CrossRefGoogle ScholarPubMed
Ohata, C, Koga, H, Teye, K, et al. Concurrence of bullous pemphigoid and herpetiform pemphigus with IgG antibodies to desmogleins 1/3 and desmocollins 1–3. Br J Dermatol 2013;168(4):879–81.Google Scholar
Duarte, IB, Bastazini, I Jr, Barreto, JA, Carvalho, CV, Nunes, AJ. Pemphigus herpetiformis in childhood. Pediatr Dermatol 2010;27(5):488–91.Google Scholar
Ishii, K, Amagai, M, Komai, A, et al. Desmoglein 1 and desmoglein 3 are the target autoantigens in herpetiform pemphigus. Arch Dermatol 1999;135(8):943–47.Google Scholar
Hertl, M, Schmidt, T. Underrecognition of the heterogeneous clinical spectrum of bullous pemphigoid. JAMA Dermatol 2013:149(8):954–55.Google Scholar
Bakker, CV, Terra, JB, Pas, HH, Jonkman, MF. Bullous pemphigoid as pruritus in the elderly: A common presentation. JAMA Dermatol 2013:149(8):950–53.Google Scholar
Cozzani, E, Gasparini, G, Buriando, M, Drago, F, Parodi, A. Atypical presentations of bullous pemphigoid: Clinical and immunopathological aspects. Autoimmun Rev 2015;14(5):438–45.CrossRefGoogle ScholarPubMed
Schiavo, AL, Ruocco, E, Brancaccio, G, et al. Bullous pemphigoid: Etiology, pathogenesis, and inducing factors: Facts and controversies. Clin Dermatol 2013;31(4):391–99.Google Scholar
Marren, P, Wojnarowska, F, Venning, V, Wilson, C, Nayar, M. Vulvar involvement in auto-immune bullous diseases. J Reprod Med 1993;38(2):101–7.Google Scholar
Vassileva, S. Drug-induced pemphigoid: Bullous and cicatricial. Clin Dermatol 1998;16(3):379–87.Google Scholar
Liu, Z, Diaz, LA. Bullous pemphigoid: End of the century overview. J Dermatol 2001;28(11):647–50.CrossRefGoogle ScholarPubMed
Arechalde, A, Braun, RP, Calza, AM, et al. Childhood bullous pemphigoid associated with IgA antibodies against BP180 or BP230 antigens. Br J Dermatol 1999;140(1):112–18.Google Scholar
Collier, P, Wojnarowska, F, Allen, J, Kirtschiq, G. Molecular overlap of the IgA target antigens in the subepidermal blistering diseases. Dermatology 1994;189(Suppl 1):105–7.Google Scholar
Korman, NJ. Bullous pemphigoid. The latest in diagnosis, prognosis, and therapy. Arch Dermatol 1998;134(9):1137–41.Google Scholar
Lehman, JS, Carnilleri, MJ. Diagnostic utility of direct immunofluorescence findings around hair follicles and sweat glands in immunobullous disease. J Cutan Pathol 2013;40(2):230–35.Google Scholar
Ingen-Housz-Oro, S, Plee, J, Belmondo, T, et al. Positive direct immunofluorescence is of better value than ELISA-BP180 and ELISA-BP230 values for the prediction of relapse after treatment cessation in bullous pemphigoid: A retrospective study of 97 patients. Dermatology 2015;231(1):5055.Google Scholar
Magro, CM, Dyrsen, ME. The use of C3d and C4d immunohistochemistry on formalin-fixed tissue as a diagnostic adjunct in the assessment of inflammatory skin disease. J Am Acad Dermatol 2008;59(5):822–33.CrossRefGoogle ScholarPubMed
Kwon, EJ, Ntiamoah, P, Shulman, KJ. The utility of C4d immunohistochemistry on formalin-fixed paraffin-embedded tissue in the distinction of polymorphic eruption of pregnancy from pemphigoid gestationis. Am J Dermatopathol 2013;35(8):787–91.Google Scholar
Glauser, S, Rutz, M, Cazzaniga, S, et al. Diagnostic value of immunohistochemistry on formalin-fixed paraffin-embedded skin biopsy specimens for bullous pemphigoid. Br J Dermatol 2016;175(5):988–93.CrossRefGoogle ScholarPubMed
Chan, LS, Ahmed, AR, Anhalt, GJ, et al. The first international consensus on mucous membrane pemphigoid: Definition, diagnostic criteria, pathogenic factors, medical treatment, and prognostic indicators. Arch Dermatol 2002;138(3):370–79.CrossRefGoogle ScholarPubMed
Schmidt, E, Zillikens, D. Pemphigoid diseases. Lancet 2013;381(9863):320–32.Google Scholar
Daito, J, Katoh, N, Asai, J, et al. Brunsting-Perry cicatricial pemphigoid associated with autoantibodies to the C-terminal domain of BP180. Br J Dermatol 2008;159(4):984–86.Google Scholar
Leverkus, M, Bhol, K, Hirako, Y, et al. Cicatricial pemphigoid with circulating autoantibodies to beta4 integrin, bullous pemphigoid 180 and bullous pemphigoid 230. Br J Dermatol 2001;145(6):9981004.CrossRefGoogle ScholarPubMed
Ghohestani, RF, Nicolas, JF, Rouselle, P, Claudy, AL. Identification of 168-kDa mucosal antigen in a subset of patients with cicatricial pemphigoid. J Invest Dermatol 1996;107(1):136–39.Google Scholar
Chan, LS, Majmudar, AA, Tran, HH, et al. Laminin-6 and laminin-5 are recognized by autoantibodies in a subset of cicatricial pemphigoid. J Invest Dermatol 1997;108(6):848–53.Google Scholar
Rashid, KA, Gurcan, HM, Ahmed, AR. Antigen specificity in subsets of mucous membrane pemphigoid. J Invest Dermatol 2006;126(12):2631–36.Google Scholar
Egan, CA, Lazarova, Z, Darling, TN, et al. Anti-epiligrin cicatricial pemphigoid and relative risk for cancer. Lancet 2001;357(9271):1850–51.Google Scholar
Setterfield, J, Shirlaw, PJ, Kerr-Muir, M, et al. Mucous membrane pemphigoid: A dual circulating antibody response with IgG and IgA signified a more severe and persistent disease. Br J Dermatol 1998;138(4):602–10.Google Scholar
Mehra, T, Guenova, E, Dechent, F, et al. Diagnostic relevance of direct immunofluorescence in ocular mucous membrane pemphigoid. J Dtsch Dermatol Ges 2015;13(12):1268–74.Google Scholar
Lipozencic, J, Ljubojevic, S, Bukvic-Mokos, Z. Pemphigoid gestationis. Clin Dermatol 2012;30(1):5155.Google Scholar
Semkova, K, Black, M. Pemphigoid gestationis: Current insights into pathogenesis and treatment. Eur J Obstet Reprod Biol 2009;145(2):138–44.Google Scholar
Castro, LA, Lundell, RB, Krause, PK, Gibson, LE. Clinical experience in pemphigoid gestationis: Report of 10 cases. J Am Acad Dermatol 2006;55(5):823–28.CrossRefGoogle ScholarPubMed
Tani, N, Kimura, Y, Koga, H, et al. Clinical and immunological profiles of 25 patients with pemphigoid gestationis. Br J Dermatol 2015;172(1):120–29.Google Scholar
Barnadas, MA, Rubiales, V, Gonzalez, MJ, et al. Enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence testing in a bullous pemphigoid and pemphigoid gestationis. Int J Dermatol 2008;47(12):1245–49.Google Scholar
Dilling, A, Rose, C, Hashimoto, T, Zillikens, D, Shimanovich, I. Anti-p200 pemphigoid: A novel autoimmune subepidermal blistering disease. J Dermatol 2007;34(1):18.Google Scholar
Shimanovich, I, Hirako, Y, Sitaru, C, et al. The autoantigen of anti-p200 pemphigoid is an acidic noncollagenous N-linked glycoprotein of the cutaneous basement membrane. J Invest Dermatol 2003;121(6):1402–8.Google Scholar
Dainichi, T, Kurono, S, Ohyama, B, et al. Anti-laminin gamma-1 pemphigoid. Proc Natl Acad Sci USA 2009;106(8):2800–5.Google Scholar
Rose, C, Weyers, W, Denisjuk, N, et al. Histopathology of anti-p200 pemphigoid. Am J Dermatopathol 2007;29(2):119–24.Google Scholar
Groth, S, Recke, A, Vafia, K, et al. Development of a simple enzyme-linked immunosorbent assay for the detection of autoantibodies in anti-p200 pemphigoid. Br J Dermatol 2011;164(1):7682.CrossRefGoogle ScholarPubMed
Solomon, LW, Helm, TN, Stevens, C, et al. Clinical and immunopathologic findings in oral lichen planus pemphigoides. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(6):808–13.Google Scholar
Zillikens, D, Caux, F, Mascaro, JM, et al. Autoantibodies in lichen planus pemphigoides react with a novel epitope within the C-terminal NC16A domain of BP180. J Invest Dermatol 1999;113(1):117–21.Google ScholarPubMed
Okochi, H, Nashiro, K, Tsuchida, T, Seki, Y, Tamaki, K. Lichen planus pemphigoides: Case report and results of immunofluorescence and immunoelectron microscopic study. J Am Acad Dermatol 1990;22(4):626–31.Google Scholar
Jang, SH, Yun, SJ, Lee, SC, Lee, JB. Lichen planus pemphigoides associated with chronic hepatitis B virus infection. Clin Exp Dermatol 2015;40(8):868–71.Google Scholar
Chorzelski, TP, Jablonska, S. IgA linear dermatosis of childhood (chronic bullous disease of childhood). Br J Dermatol 1979;101(5):535–42.Google Scholar
Egan, CA, Zone, JJ. Linear IgA bullous dermatosis. Int J Dermatol 1999;38(11):818–27.Google Scholar
Ishiko, A, Shimizu, H, Masunaga, T, et al. 97-kDa linear IgA bullous dermatosis antigen localizes in the lamina lucida between the NC16A and carboxyl terminal domain of the 180 kDa bullous permphigoid antigen. J Invest Dermatol 1998;111(1):9396.Google Scholar
Tsuchisaka, A, Ohara, K, Ishii, N, et al. Type VII collagen is the major autoantigen for sublamina densa-type linear IgA bullous dermatosis. J Invest Dermatol 2015;135(2):626–29.Google Scholar
Chanal, J, Ingen-Housz-Oro, S, Ortonne, N, et al. Linear IgA bullous dermatosis: Comparison between the drug-induced and spontaneous forms. Br J Dermatol 2013;169(5):1041–48.Google Scholar
Willsteed, E, Bhogal, BS, Black, MM, McKee, P, Wojnarowska, F. Use of 1 M NaCl split skin in the direct immunofluorescence of the linear IgA bullous dermatoses. J Cutan Pathol 1990;17(3):144–48.Google Scholar
El-Domyati, M, Abdel-Wahab, H, Ahmad, H. Immunohistochemical localization of basement membrane laminin 5 and collagen IV in adult linear IgA disease. Int J Dermatol 2015;54(8):922–28.Google Scholar
Woodley, DT, Burgeson, RE, Lunstrum, G, et al. Epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII procollagen. J Clin Invest 1988;81(3):683–87.Google Scholar
Gammon, WR, Heise, ER, Burke, WA, et al. Increased frequency of HLA-DR2 in patients with autoantibodies to epidermolysis bullosa acquisita antigen: Evidence that the expression of autoimmunity to type VII collagen is HLA class II allele associated. J Invest Dermatol 1988;91(3):228–32.Google Scholar
Hundorfean, G, Neurath, MF, Sitaru, C. Autoimmunity against type VII collagen in inflammatory bowel disease. J Cell Mol Med 2010;14(10):2393–403.CrossRefGoogle ScholarPubMed
Seta, V, Aucouturier, F, Bonnefoy, J, et al. Comparison of 3 type VII collagen (C7) assays for serologic diagnosis of epidermolysis bullosa acquisita (EBA). J Am Acad Dermatol 2016;74(6):1166–72.Google Scholar
Burnham, TK, Neblett, TR, Fine, G. Immunofluorescent “band” test for lupus erythematosus. II. Employing skin lesions. Arch Dermatol 1970;102(1):4250.Google Scholar
Cardinali, C, Caproni, M, Fabbri, P. The utility of the lupus band test on sun-protected non-lesional skin for the diagnosis of systemic lupus erythematosus. Clin Exp Rheumatol 1999;17(4):427–32.Google ScholarPubMed
Leibold, AM, Bennion, S, David-Bajar, K, Schleve, MJ. Occurrence of positive immunofluorescence in the dermo-epidermal junction of sun-exposed skin of normal adults. J Cutan Pathol 1994;21(3):200–6.Google Scholar
Kontos, AP, Jirsari, M, Jacobsen, G, et al. Immunoglobulin M predominance in cutaneous lupus erythematosus. J Cutan Pathol 2005;32(5):352–55.Google Scholar
Magro, CM, Crowson, AN. The immunofluorescent profile of dermatomyositis. A comparative study with lupus erythematosus. J Cutan Pathol 1997;24(9):543–52.Google Scholar
Magro, CM, Crowson, AN, Regauer, S. Mixed connective tissue disease. A clinical, histologic, and immunofluorescence study of eight cases. Am J Dermatopathol 1997;19(3):206–13.Google Scholar
Magro, CM, Crowson, AN, Harrist, TJ. The use of antibody to C5b-9 in the subclassification of lupus erythematosus. Br J Dermatol 1996;134(5):855–62.Google Scholar
Maynard, B, Peters, MS. Histologic and immunofluorescence study of cutaneous porphyrias. Histologic and immunofluorescence study of cutaneous porphyrias. J Cutan Pathol 1992;19(1):4047.Google Scholar
Green, JJ, Manders, SM. Pseudoporphyria. J Am Acad Dermatol 2001;44(1):100–8.Google Scholar
Dabski, C, Beutner, EH. Studies of laminin and type IV collagen in blisters of porphyria cutanea tarda and drug-induced pseudoporphyria. J Am Acad Dermatol 1991;25(1 Pt 1):2832.Google Scholar
Mobacken, H, Kastrup, W, Nilsson, LA. Incidence and prevalence of dermatitis herpetiformis in western Sweden. Acta Derm Venereol 1984;64(5):400–4.Google Scholar
Fry, L. Dermatitis herpetiformis: Problems, progress and prospects. Eur J Dermatol 2002;12(6):523–31.Google Scholar
Sardy, M, Karpati, S, Merkl, B, Paulsson, M, Smyth, N. Epidermal transglutaminase (Tgase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 2002;195(6):747–57.Google Scholar
Fuertes, I, Mascaro, JM, Bombi, JA, Iranzo, P. A retrospective study of clinical, histological, and immunological characteristics in patients with dermatitis herpetiformis. The experience of Hospital Clinic de Barcelona, Spain, between 1995 and 2010 and a review of the literature. Actas Dermosifiliogr 2011;102(9):699705.Google Scholar
Barnadas, MA. Dermatitis herpetiformis: A review of direct immunofluorescence findings. Am J Dermatopathol 2016;38(4):283–88.CrossRefGoogle ScholarPubMed
Irvine, A, McLean, W. Human keratin diseases: The increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br J Dermatol 1999;140(5):815–28.Google Scholar
Ishida-Yamamoto, A, McGrath, J, Chapman, S, et al. Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic disease characterized by an abnormal keratin-filament network involving keratins K5 and K14. J Invest Dermatol 1991;97(6):959–68.Google Scholar
McGrath, J, Kivirikko, S, Ciatti, S, et al. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in Herlitz junctional epidermolysis bullosa: Prenatal exclusion in a fetus at risk. Genomics 1995;29(1):282–84.Google Scholar
Vidal, F, Aberdam, D, Miquel, C, et al. Integrin beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat Genet 1995;10(2):229–34.Google Scholar
Christiano, A, Greenspan, D, Hoffman, G, et al. A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nat Genet 1993;4(1):6266.Google Scholar
Nordal, EJ, Mecklenbeck, S, Hausser, I, Skranes, J, Bruckner-Tuderman, L, Gedde-Dahl, T Jr. Generalized dystrophic epidermolysis bullosa: Identification of a novel, homozygous glycine substitution, G2031S, in exon 73 of COL7A1 in monozygous triplets. Br J Dermatol 2001;144(1):151–57.Google Scholar
Magro, CM, Crowson, AN. A clinical and histologic study of 37 cases of immunoglobulin A associated vasculitis. Am J Dermatopathol 1999;21(3):234–40.Google Scholar
Michel, BA, Hunder, GG, Bloch, DA, Calabrese, LH. Hypersensitivity vasculitis and Henoch-Schonlein purpura: A comparison between the 2 disorders. J Rheumatol 1992;19(5):721–28.Google Scholar
Barnadas, MA, Perez, E, Gich, I, et al. Diagnostic, prognostic and pathogenic value of the direct immunofluorescence test in cutaneous leukocytoclastic vasculitis. Int J Dermatol 2004;43(1):1926.CrossRefGoogle ScholarPubMed
Linskey, KR, Kroshinsky, D, Mihm, MC Jr, Hoang, MP. Immunoglobulin A-associated small-vessel vasculitis: A 10-year experience at the Massachusetts General Hospital. J Am Acad Dermatol 2012;66(5):813–22.Google Scholar
Poterrucha, TJ, Wetter, DA, Gibson, LE, Camilleri, MJ, Lohse, CM. Correlates of systemic disease in adult Henoch-Schonlein purpura: A retrospective study of direct immunofluorescence and skin lesion distribution in 87 patients at Mayo Clinic. J Am Acad Dermatol 2012;67(4):612–16.Google Scholar
Thompson, AJ, Chan, YL, Woodroffe, AJ, et al. Vascular IgA deposits in clinically normal skin of patients with renal disease. Pathology 1980;12(3):407–13.Google Scholar
Saklayen, MG, Schroeter, AL, Nafz, MA, Jalik, K. IgA deposition in the skin of patients with alcoholic liver disease. J Cutan Pathol 1996;23(1):1218.Google Scholar
Takeuchi, S, Soma, Y, Kawakami, T. IgM in lesional skin of adults with Henoch-Schonlein purpura is an indication of renal involvement. J Am Acad Dermatol 2010;63(6):1026–29.Google Scholar
Tirado-Sanchez, A, Bonifaz, A, Ponce-Olivera, RM. IgM in lesional skin is indicative of renal involvement in adults with Henoch-Schonlein purpura but not children. J Am Acad Dermatol 2011;64(6):1183–84.Google Scholar
Schepens, I, Jaunin, F, Begre, N, et al. The protease inhibitor alpha-2-macroglobulin-like-1 is the p170 antigen recognized by paraneoplastic pemphigus autoantibodies in human. PLoS One 2010;5:e12250.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×