Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T18:58:32.373Z Has data issue: false hasContentIssue false

Chapter 9 - Melt Crystallization

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Melt crystallization is an important separation, purification, and concentration technique used in the chemical, pharmaceutical, and food industries. Crystallization from melt is a very powerful separation process for the purification of organic compounds up to very high purities of 99.99 percent. Therefore, the objectives of melt crystallization (i.e., purity, separation, or concentration) are quite often different from crystallization from solution (i.e., purity and defined crystal size distribution). Good background information about the theory of melt crystallization can be found, for example, in Arkenbout (1995), Atwood (1972), Jansens and van Rosmalen (1994), Matsuoka (1991), Matz (1969), Molinari (1967), Mullin (2001), Özoğuz (1992), Rittner and Steiner (1985), Sloan and McGhie (1988), Toyokura and Hirasawa (2001), Ulrich and Bierwirth (1995), Ulrich and Kallies (1994), Ulrich and Nordhoff (2006), Ulrich and Stelzer (2011), Verdoes et al. (1997), and Wintermantel and Wellinghoff (2001). In the following sections, the basics and design examples of plants for melt crystallization will be given.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab-der-Halden, C. (1960). Great Britain Patent No. 837,295, London.Google Scholar
Ab-der-Halden, C., and Thomas, B. E. A. (1962). Great Britain Patent No. 899,799, London.Google Scholar
Arkenbout, G. J. (ed.). (1995). Melt Crystallization Technology. Lancaster, PA: Technomic Publishing Company.Google Scholar
Atwood, G. R. (1972). In Li, N. I. (ed.), Recent Developments in Separation Science (vol. 1, pp. 133). Boca Raton, FL: CRC Press.Google Scholar
Barton, E. (1967). Great Britain Patent No. 1,083,850, London.Google Scholar
Bischof, R. (1997). European Patent No. 0811410 A1, Brussels.Google Scholar
Brodie, J. A. (1971). Mech. Chem. Eng. Trans. 7(1), 3744.Google Scholar
Burton, J. A., Prim, R. C., and Slichter, W. P. (1953). J. Chem. Phys. 21(11), 1987–91.Google Scholar
Chianese, A., and Santilli, N. (1998). Chem. Eng. Sci. 53(1), 107–11.Google Scholar
Chowdhury, J. (1988). Chem. Eng. 25, 2431.Google Scholar
Delannoy, C., Ulrich, J., and Fauconet, M. (1993). In Rojkowski, Z. H. (ed.), Proceedings from 12th International Symposium on Industrial Crystallization (pp. 4954). Amsterdam: Elsevier.Google Scholar
Dette, S. S., (2010). Chem. Technik 39(3), 1819.Google Scholar
Freund, H., König, A., and Steiner, R. (1997). In Ulrich, J. (ed.), Proceedings of Crystal Growth of Organic Materials (vol. 4, pp. 114–22). Aachen: Shaker Verlag.Google Scholar
Genceli, F. E., Gärtner, R., and Witkamp, G. J. (2005). J. Crystal Growth, 275(1–2), e1369–72.Google Scholar
Genceli, F. E., (2008). Scaling-up eutectic freeze crystallization. Ph.D. dissertation, University Delft, Delft, Netherlands.Google Scholar
Genin, R. (2003). In Ulrich, J. and Glade, H. (eds.), Melt Crystallization: Fundamentals, Equipment and Applications (pp. 213–25). Aachen: Shaker Verlag GEA Messo PT.Google Scholar
Gmehling, J., Kolbe, B., Kleiber, M., and Rarey, J. (eds.) (2012). Chemical Thermodynamics for Process Simulation (3rd edn). Weinheim: Wiley-VCH.Google Scholar
Hartel, R. W. (ed.) (2001). Crystallization in Foods. Gaithersburg, MD: Aspen Publishers.Google Scholar
Henning, S., Ulrich, J., and Niehörster, S. (1996). In Myerson, A. S., Green, D. A., and Meenan, P. (eds.), Crystal Growth of Organic Materials (pp. 163–70). Washington, DC: American Chemical Society.Google Scholar
Henning, S., and Ulrich, J. (1997). Chem. Eng. Res. Des. 75(A),233–36.Google Scholar
Holzknecht, B., Fuchs, H., Hetzel, E., Wintermantel, K., and Thoma, P. (1988). DE Patent No. 3708709 a1, Berlin.Google Scholar
Hünken, I., and Ulrich, J. (1993). Chem. Ingenieur Technik 65(1), 5860.Google Scholar
Hynes, W. E. (ed.) (2013). CRC Handbook of Chemistry and Physics (94th edn). Boca Raton, FL: CRC Press.Google Scholar
Jančić, S. J. (1989). In Nývlt, J., and Žáček, S. (eds.), Proceedings from Industrial Crystallization 87 (pp. 5770). Amsterdam: Elsevier.Google Scholar
Jansens, P. J., and van Rosmalen, G. M. (1994). In Hurle, D. T. J. (ed.), Handbook of Crystal Growth (vol. 2, pp. 287314). Amsterdam: Elsevier Science BV.Google Scholar
Kim, K.-J., and Ulrich, J. (2002). Sep. Sci. Technol. 37(11), 2717–37.Google Scholar
Kirk-Othmer (ed.) (2014). Kirk-Othmer Encyclopedia of Chemical Technology. Available at http://onlinelibrary.wiley.com/book/10.1002/0471238961 (accessed May 6, 2014).Google Scholar
König, A. (2003). In Ulrich, J. and Glade, H. (eds.), Melt Crystallization: Fundamentals, Equipment and Applications (pp. 740). Aachen: Shaker Verlag Kureha Engineering Co.Google Scholar
Lechner, M. D. (ed.). (1983). Taschenbuch für Chemiker und Physiker (4th edn). Berlin: Springer-Verlag.Google Scholar
Luckenbach, R. (ed.). (1992). Beilstein’s Handbook of Organic Chemistry (4th edn). Berlin: Springer-Verlag.Google Scholar
Lüdecke, U., Brendler, L., and Ulrich, J. (2003). Eng. Life Sci. 3(3), 154–58.Google Scholar
Matsuoka, M. (1977). Bunri Gijutsu 7, 245–49.Google Scholar
Matsuoka, M., and Fukushima, H. (1986). Bunri Gijutsu 16, 410.Google Scholar
Matsuoka, M. (1991). In Garside, J., Davey, R. J., and Jones, A. G. (eds.), Advances in Industrial Crystallization (pp. 229–44). Oxford: Butterworth-Heinemann.Google Scholar
Matz, G. (ed.) (1969). Kristallisation; Grundlagen und Technik (2nd edn). Berlin: Springer-Verlag.Google Scholar
Molinari, J. G. D. (1967). In Zief, M. and Wilcox, W. R. (eds.), Fractional Solidification (pp. 393400). New York, NY: Marcel Dekker.Google Scholar
Moritoki, M., and Fujikawa, T. (1984). In Jančić, S. J. and de Jong, E. J. (eds.), Proceedings of Industrial Crystallization (vol. 84, pp. 369–72). Amsterdam: Elsevier Science.Google Scholar
Moritoki, M., Ito, M., Sawada, T., et al. (1989). In Nývlt, J., and Žáček, S. (eds.), Proceedings of Industrial Crystallization (vol. 87, pp. 485–88). Amsterdam: Elsevier Science.Google Scholar
Moritoki, M., Wakabayashi, M., and Fujikawa, T. (1979). In de Jong, E. J. and Jančić, S. J. (eds.), Proceedings of Industrial Crystallization (vol. 78, pp. 583–84). Amsterdam: Elsevier Science.Google Scholar
Mullin, J. W. (ed.) (2001). Crystallization (4th edn). Oxford: Butterworth-Heinemann.Google Scholar
Mullins, W. W., and Sekerka, R. F. (1964). J. Appl. Phys. 35(2), 444–51.Google Scholar
Neumann, M. (1996). Vergleich statischer und dynamischer Schichtkristallisation und das Reinigungspotential der Diffusionswäsche. Ph.D. dissertation, Universiẗat Bremen, Bremen, Germany.Google Scholar
Nývlt, J., Söhnel, O., Matuchová, M., and Broul, M. (eds.) (1985). The Kinetics of Industrial Crystallization. Amsterdam: Elsevier.Google Scholar
Özoğuz, Y. (1992). Zur Schichtkristallisation als Schmelzkristallisationsverfahren. Ph.D. dissertation, Universiẗat Bremen, Bremen, Germany.Google Scholar
Paspek, S. C., and Every, W. A. (1980). US Patent No. 4,230,888, Washington, DC.Google Scholar
Pavlou, F., Nepveux, K., Schoeters, K., Weiler, A., and Whitfield, S. (2010). Pharm. Technol. Eur. 22, 4450.Google Scholar
Poschmann, M., and Ulrich, J. (1996). J. Crystal Growth 167(1–2), 248–52.Google Scholar
Proabd, S. A. (1972). DE Patent No. 1793345, Berlin.Google Scholar
Rittner, S., and Steiner, R. (1985). Chem. Ingenieur Technik 57(2), 91102.Google Scholar
Rutter, J. W., and Chalmers, B. (1953). Can. J. Phys. 31(1), 1539.Google Scholar
Ryu, B., Jones, M. J., and Ulrich, J. (2010). Chem. Eng. Technol. 33(10), 1695–98.Google Scholar
Saxer, K. (1971). CH Patent No. 501421, Bern.Google Scholar
Saxer, K., Stadler, R., and Ignjatovic, M. (1993). In Rojkowski, Z. H. (ed.), Proceedings of the 12th International Symposium on Industrial Crystallization (vol. 1, pp. 1318). Amsterdam: Elsevier.Google Scholar
Scholz, R. (1993). Die Schichtkristallisation als thermisches Trennverfahren. Ph.D. dissertation, Universiẗat Bremen, Bremen, Germany.Google Scholar
Scholz, R., and Ruemekorf, R. (2003). In Ulrich, J. and Glade, H. (eds.), Melt Crystallization: Fundamentals, Equipment and Applications (pp. 191212). Aachen: Shaker-Verlag.Google Scholar
Schwartz, G. (1982). EP Patent No. 0051551 A1, Brussels.Google Scholar
Sloan, G. J., and McGhie, K. (eds.). (1988). Techniques of Melt Crystallization; Techniques of Chemistry (vol. 19). New York, NY: Wiley.Google Scholar
Smith, M. F. (1988). J. Fluid Mech. 188, 547–70.Google Scholar
Springer (2014). Landolt-Börnstein Database. Available at www.springermaterials.com/docs/index.html (accessed May 6, 2014).Google Scholar
Stelzer, T., and Ulrich, J. (2009). Chem. Ingenieur Technik 81(9), 1348–50.Google Scholar
Stepakoff, G. L., Siegelman, D., Johnson, R., and Gibson, W. (1974). Desalination 15(1), 2538.Google Scholar
Stepanski, M., and Schäfer, E. (2003). Ulrich, J. and Glade, H. (eds.), Melt Crystallization: Fundamentals, Equipment and Applications (pp. 167–89). Aachen: Shaker-Verlag.Google Scholar
Tiedtke, M., Ulrich, J., and Hartel, R. W. (1996). In Myerson, A. S., Green, D. A., and Meenan, P. (eds.), Crystal Growth of Organic Materials (pp. 137–44). Washington, DC: American Chemical Society.Google Scholar
Tiedtke, M. (1997). Die Fraktionierung von Milchfett – ein neues Einsatzgebiet für die Schichtkristallisation. Ph.D. dissertation, Universiẗat Bremen, Bremen, Germany.Google Scholar
Toyokura, K., and Hirasawa, I. (2001). In Mersmann, A. (ed.), Crystallization Technology Handbook (2nd edn, pp. 617–62), New York, NY: Marcel Dekker.Google Scholar
Ulrich, J. (1988). Chem. Eng. Symp. Series Jpn 18, 172–75.Google Scholar
Ulrich, J. (2003). In Ulrich, J. and Glade, H. (eds.), Melt Crystallization: Fundamentals, Equipment and Applications (pp. 16). Aachen: Shaker-Verlag.Google Scholar
Ulrich, J., and Bierwirth, J. (1995). In von der Erden, J. P. and Bruinsma, O. S. L. (eds.), Science and Technology of Crystal Growth (pp. 245–58). Dordrecht: Kluwer Academic.Google Scholar
Ulrich, J., Bierwirth, J., and Henning, S. (1996). Sep. Purific. Methods 25(1), 145.Google Scholar
Ulrich, J., and Kallies, B. (1994). Curr. Top. Crystal Growth Res. 1, 114.Google Scholar
Ulrich, J., and Neumann, M. (1997). J. Thermal Anal. 48(3), 527–33.Google Scholar
Ulrich, J., and Nordhoff, S. (2006). In Goedecke, R. (ed.), Fluidverfahrenstechnik: Grundlagen, Methodik, Technik, Praxis (vol. 2, pp. 1131–96). Weinheim: Wiley-VCH.Google Scholar
Ulrich, J., and Özoğuz, Y. (1989). Chem. Ingen. Tech. 61(1), 7677.Google Scholar
Ulrich, J., and Özoğuz, Y. (1990). J. Crystal Growth 99(1–4, part 2), 1134–37.Google Scholar
Ulrich, J., Özoğuz, Y., and Stepanski, M. (1988). Chem. Ingen. Tech. 60(6), 481–83.Google Scholar
Ulrich, J., and Stelzer, T. (2011). In Kirk-Othmer Encyclopedia of Chemical Technology. Available at http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0318251918152119.a01.pub3/pdf (accessed May 6, 2014).Google Scholar
Ulrich, J., Stepanski, M., and Özoğuz, Y. (1992). EP Patent No. 0488953 A1, Brussels.Google Scholar
Vaessen, R. J. C., van der Ham, F., and Witkamp, G. J. (2000). Ann. N.Y. Acad. Sci. 912(1), 483–95.Google Scholar
Verdoes, D., Arkenbout, G. J., Bruinsma, O. S. L., Koutsoukos, P., and Ulrich, J. (1997). Appl. Therm. Eng. 17(810), 879–88.Google Scholar
Verein Deutscher Ingenieure (VDI) (ed.) (2010). VDI Heat Atlas (2nd edn). Berlin: Springer-Verlag.Google Scholar
Wangnick, K. (1994). Das Waschen als Nachbehandlungsprozeß der Schichtkristallisation. Ph.D. dissertation, Universiẗat Bremen, Bremen, Germany.Google Scholar
Wangnick, K., and Ulrich, J. (1994). Crystal Res. Technol. 29(3), 349–56.Google Scholar
Washburn, E. W. (ed.) (1928). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (vol. 4). New York, NY: McGraw-Hill.Google Scholar
Washburn, E. W. (ed.). (2003). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (1st edn). Retrieved from www.knovel.com/web/portal/basic_search/display?_EXT_KNOVEL_DISPLAY_bookid=735 (accessed May 6, 2014).Google Scholar
Weast, R. C. (ed.) (1976). CRC Handbook of Chemistry and Physics (57th edn). Boca Raton, FL: CRC Press.Google Scholar
Wellinghoff, G., Holzknecht, B., and Kind, M. (1995). Chem. Ingen. Technik 67(3), 333–37.Google Scholar
Wilcox, W. R. (1968). Ind. Eng. Chem. 60(3), 1323.Google Scholar
Wiley-VCH (ed.). (2011). Ullmann’s Encyclopedia of Industrial Chemistry (7th edn). Weinheim: Wiley-VCH.Google Scholar
Wintermantel, K. (1986). Chem. Ingen. Tech. 58(6), 498–99.Google Scholar
Wintermantel, K., and Kast, W. (1973). Chem. Ingen. Tech. 45(9–10), 728–31.Google Scholar
Wintermantel, K., Stockburger, D., and Fuchs, H. (1988). DE Patent No. 2606364 C3, Berlin.Google Scholar
Wintermantel, K., and Wellinghoff, G. (2001). In Mersmann, A. (ed.), Crystallization Technology Handbook (2nd edn, pp. 663702), New York, NY: Marcel Dekker.Google Scholar
Yamada, J., Shimizu, C., and Saitoh, S. (1982). In Jančić, S. J. and de Jong, E. J. (eds.), Proceedings of Industrial Crystallization (vol. 81, pp. 265–70). Amsterdam: Elsevier.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×