Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T02:21:30.977Z Has data issue: false hasContentIssue false

Chapter 10 - Crystallizer Mixing

Understanding and Modeling Crystallizer Mixing and Suspension Flow

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Mixing determines the environment in which crystals nucleate and grow and is therefore intrinsic to industrial crystallization. Individual nucleating and growing crystals respond directly to their microenvironment and not in a simple way to the macroenvironment, often thought of as the bulk or average environment. Because the growing crystal removes solute from solution and the dissolving crystal releases it, the solute concentration and therefore the supersaturation is in general different at the crystal surface than in the bulk. Crystals grow when the microenvironment is supersaturated, stop when it is just saturated, and dissolve when it is undersaturated. In most cases, impurities are rejected by growing crystals; therefore, each growing crystal face creates a zone of locally higher impurity concentration immediately adjacent to it. The growth rate and amount of impurity taken up by the growing crystal are functions of the impurity concentration where growth is occurring – at the crystal face itself. Mixing is the family of processes that links this local microenvironment to the macroscopic scale of the crystallizer by affecting the mass transfer between crystal and the larger environment and the dynamics of crystal suspension flow in the crystallizer. Mixing, therefore, to a large extent creates the crystal microenvironments. Furthermore, it determines the homogeneity of the macroenvironment, both temporally and spatially. Inhomogeneity in the macroenvironment affects the microenvironments around crystals, causing temporal variations as the crystals circulate from one zone to another inside the crystallizer. This is particularly important because local values of key variables such as supersaturation and solids concentration are often much more important in crystallization than the bulk or global averages of these quantities, as discussed below.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J., Mondy, L A., Graham, A. L., and Brenner, H. (1993). In Rocco, M. C. (ed.), Particulate Two-Phase Flow. Boston, MA: Butterworth-Heinemann.Google Scholar
Aeschbach, S., and Bourne, J. R. (1972). Chem. Eng. J. 4, 234–42.CrossRefGoogle Scholar
Anderson, T. B., and Jackson, R. (1967). Ind. Eng. Chem. Fund. 6(4), 527–39.Google Scholar
Anderson, T. B., and Jackson, R. (1968). Ind. Eng. Chem. Fund. 7, 1221.Google Scholar
Bachalo, W. D. (1994). Int. J. Multiphase Flow 20, 261–95.CrossRefGoogle Scholar
Baldi, G., Conti, R., and Alaria, E. (1978). Chem. Eng. Sci. 33, 2125.Google Scholar
Baldyga, J., and Bourne, J. R. (1989). Chem. Eng. J. 42, 8392.Google Scholar
Baldyga, J., and Bourne, J. R. (1992). Chem. Eng. Sci. 47, 1839–48.Google Scholar
Bird, R. Byron, Stewart, W. E., and Lightfoot, E. N. (1960). Transport Phenomena. New York, NY: Wiley.Google Scholar
Bourne, J. R. (1997). In Harnby, N., Edwards, M. F., and Nienow, A. W. (eds.), Mixing in the Process Industries (pp. 184–99). Oxford: Butterworth-Heinemann.Google Scholar
Bourne, J. R., Kozicki, F., and Rys, P. (1981). Chem. Eng. Sci. 36(10), 1643–48.Google Scholar
Bourne, J. R., and Zabelka, M. (1980). Chem. Eng. Sci. 35, 533–42.Google Scholar
Brown, D. P., Kauppinen, E. I., Jokiniemi, J. K., Rubin, S. G., and Biswas, P. (2006). Comp. Fluids 35(7), 762–80.CrossRefGoogle Scholar
Buurman, C., Resoort, G., and Plaschkes, A. (1985). Scaling-up rules for solids suspension in stirred vessels. Paper presented at the 5th European Conference on Mixing, Cranfield, UK.Google Scholar
Chen, S., and Doolen, G. D. (1998). Ann. Rev. Fluid Mech. 30, 329–64.Google Scholar
Cheng, J. C., and Fox, R. O. (2010). Ind. Eng. Chem. Res. 49, 10651–62.Google Scholar
Chiampo, F., Camanni, G., and Conti, R. (1996). Thermal characterization of a crystallizer. Paper presented at the 5th International Conference on Multiphase Flow in Industrial Plants, Amalfi.Google Scholar
Chopey, N. P., and Hicks, T. G. (1984). Handbook of Engineering Calculations. New York, NY: McGraw-Hill.Google Scholar
Davies, J. T. (1986). Chem. Eng. Process. 20(4), 175–81.Google Scholar
Deen, W. M. (1998). Analysis of Transport Phenomena. Oxford: Oxford University Press.Google Scholar
Derksen, J. J. (2010). Can. J. Chem. Eng. 88, 677–81.Google Scholar
Derksen, J. J., and van der Akker, H. E. A. (1999). AIChE J. 45(2), 209–21.Google Scholar
Derksen, J. J., Kontomaris, K., and van den Akker, H. E. A. (2007). Trans. Inst. Chem. Eng. A. Chem. Eng. Res. Des. 85(A2), 169–79.Google Scholar
Donnely, R. J. (1981). In Anderson, H. L. (ed.), AIP 50th Anniversary Physics Vade Mecum. New York, NY: American Institute of Physics.Google Scholar
Drew, D. (1983). Ann. Rev. Fluid Mech. 15, 261–91.CrossRefGoogle Scholar
Durst, F., Whitelaw, J. H., and Melling, A. (1981). Principles and Practice of Laser-Doppler Anemometry (2nd edn). New York, NY: Academic Press.Google Scholar
Einenkel, W.-D., and Mersmann, A. (1977). Verfahrenstechnik (Mainz) 11(2), 9094.Google Scholar
Galperin, B., and Orzag, S. A. (1993). Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge: Cambridge University Press.Google Scholar
Gates, L. E., Morton, J. R., and Fondy, P. L. (1976). Chem. Eng. 83, 144–50.Google Scholar
Geisler, R. K., Buurman, C., and Mersmann, A. B. (1993). Chem. Eng. J. 51, 2939.CrossRefGoogle Scholar
Green, D. A., Kontomaris, K., and Kendall, R. E. (1998). Computational Fluid Dynamics as a Tool for Understanding Industrial Crystallization. Presented at AIChE Annual Meeting, November 1998.Google Scholar
Green, D. A., and Robertson, D. C. (1993). Suspension dynamics and mixing in draft tube crystallizers. Paper presented at the 12th Symposium on Industrial Crystallization, Warsaw.Google Scholar
Green, D. A., Rogers, J. M., Robertson, D. C., and Tolbert, L. F. (1995). In Proceedings of the 1995 Topical Conference Recent Developments and Future Opportunities in Separations Technology. New York, NY: AIChE.Google Scholar
Hemrajani, R. R., Smith, D. L., Koros, R. M., and Tarmy, B. l. (1988). Suspending floating solids in stirred tanks: mixer design, scale-up and optimization. Paper presented at the 6th European Conference on Mixing, Milan.Google Scholar
Herndl, G. T. (1982). Stoffuebergang in geruehrten Suspensionen. Munich: Technical University of Munich.Google Scholar
Hinze, J. O. (1975). Turbulence. New York, NY: McGraw-Hill.Google Scholar
Homsy, G. M., El-Kaissy, M. M., and Didwania, A. (1980). Int. J. Multiphase Flow 6, 305–18.Google Scholar
Hoyle, B. S., McCann, H., and Scott, D. M. (2005). In Scott, D. M. and McCann, H. (eds.), Process Imaging for Automatic Control (pp. 85126). Boca Raton, FL: CRC Press.Google Scholar
Jacobs, G. (1996). DuPont HARDTAC crystallizer feed point mixing. Ingeniers Titel, Technical University of Delft, Delft.Google Scholar
Jones, A. G., and Mullin, J. W. (1973). Chem. Ind. 21, 387–88.Google Scholar
Karnis, A., Goldsmith, H. I., and Mason, S. G. (1966). J. Colloid Interfac. Sci. 22, 531–53.Google Scholar
Kneule, F., and Weinspach, P. M. (1967). Verfahrenstechnik (Mainz) 1(12), 531–40.Google Scholar
Kunii, D., and Levenspiel, O. (1969). Fluidization Engineering. New York, NY: Wiley.Google Scholar
Levenspiel, O. (1999). Chemical Reaction Engineering (3rd edn). New York, NJ: Wiley.Google Scholar
Liu, Z. C., and Adrian, R. (1993). In Rocco, M. C. (ed.), Particulate Two Phase Flow. Boston, MA: Butterworth-Heinemann.Google Scholar
Mahajan, A., and Kirwan, D. J. (1996). AIChE J. 42, 1801–14.CrossRefGoogle Scholar
Mann, R. (1993). Computational fluid dynamics (CFD) of mixing in batch stirred vessels used as crystallizers. Paper presented at the 12th Symposium on Industrial Crystallization, Warsaw.Google Scholar
Marshall, E. M., and Bakker, A. (2004). In Paul, E. L., Atiemo-Obeng, V. A. and Kresta, S. M. (eds.), Handbook of Industrial Mixing: Science and Practice. New York, NY: Wiley.Google Scholar
McKee, S. (1994). Tomographic measurement of solid liquid mixing. Ph.D. dissertation, Manchester Institute of Science and Technology, Manchester, UK.Google Scholar
Mersmann, A., and Rennie, F. W. (1995). In Mersmann, A. (ed.), Crystallization Technology Handbook. New York, NY: Marcel Dekker.Google Scholar
Merzkirch, W. (1987). Flow Visualization (2nd edn). Orlando, FL: Academic Press.Google Scholar
Moin, P., and Mahesh, K. (1998). Ann. Rev. Fluid Mech. 30, 539–78.Google Scholar
Molerus, O., and Latzel, W. (1987). Chem. Eng. Sci. 42(6), 1423–37.Google Scholar
Mueller, W., and Todtenhaupt, E. K. (1972). Aufbereit. Tech. 1, 3842.Google Scholar
Mullin, J. W. (2004). Crystallization (4th edn). Oxford: Elsevier Butterworth-Heinemann.Google Scholar
Mumtaz, H. S., and Hounslow, M. J. (2000). Chem. Eng. Sci. 55(23), 5671–81.CrossRefGoogle Scholar
Neumann, A. M., Bermingham, S. K., Kramer, H. J. M., and van Rosmalen, G. (1999). Modeling industrial crystallizers of different scale and type. Paper presented at Industrial Crystallization 1999, 14th International Symposium on Industrial Crystallization, Cambridge, UK.Google Scholar
Nienow, A. W. (1968). Chem. Eng. Sci. 23, 1453–59.Google Scholar
Nienow, A. W. (1976). Trans. Inst. Chem. Eng. 54, 205–7.Google Scholar
Nienow, A. W. (1997). In Harnby, N., Edwards, M. F., and Nienow, A. W. (eds.), Mixing in the Process Industries (2nd edn, pp. 364–93). Oxford: Butterworth-Heinemann.Google Scholar
Nienow, A. W., Harnby, N., and Edwards, M. F. (1997). In Nienow, A. W., Harnby, N., and Edwards, M. F. (eds.), Mixing in the Process Industries (2nd edn). Oxford: Butterworth-Heinemann.Google Scholar
Niesmak, G. (1982). Festoffverteilung und Leistungsbedarf geruehrter Suspensionen. Ph.D. dissertation, Technical University of Braunschweig, Braunschweig.Google Scholar
Offermann, H., and Ulrich, J. (1982). In Industrial Crystallization (vol. 81), Jancic, S. J., and de Jong, E. J. (eds.). Amsterdam: North Holland, pp. 313–14.Google Scholar
Oldschue, J. Y. (1983). Fluid Mixing Technology. New York, NY: McGraw-Hill.Google Scholar
Rodriguez Pascual, M., Derksen, J. J., Van Rosmalen, G. M., and Witkamp, G. J. (2009). Chem. Eng. Sci. 64(24), 5153–61.Google Scholar
Rai, M. M. (1985). Navier–Stokes simulations of rotor-stator interaction using patched and overlaid grids. Paper presented at the American Institute of Aeronautics and Astronautics Meeting, Cincinnati, Ohio.Google Scholar
Ranade, V. V. (1997). Chem. Eng. Sci. 53(24), 4473–84.Google Scholar
Randolph, A. D., and Larson, M. A. (1988). Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization (2nd edn). San Diego, CA: Academic Press.Google Scholar
Randolph, A. D., Mukhopadhyay, S., Sutradhar, B. C., and Kendall, Ross E. (1990). In Myerson, A. S. and Toyokura, K. (eds.), Crystallization as a Separations Process. Washington, DC: American Chemical Society.Google Scholar
Richardson, J. F., and Zaki, W. N. (1954). Trans. Inst. Chem. Eng. 32, 3553.Google Scholar
Rieger, F., and Ditl, P. (1982). Suspension of solid particles in agitated vessels. Paper presented at the 4th European Conference on Mixing, Cranfield, UK.Google Scholar
Rieger, F., Ditl, P., and Havelkova, O. (1988). Suspension of solid particles – concentration profiles and particle layer on the vessel bottom. Paper presented at the 6th European Conference on Mixing, Milan.Google Scholar
Shamlou, P. A., and Koutsakos, E. (1989). Chem. Eng. Sci. 44, 529–42.Google Scholar
Smoluchowski, M. v. (1916). Zetischrift f. physik. Chemie 92, 129–68.Google Scholar
Stoots, C. M., and Calabrese, R. V. (1995). AIChE J. 41(1), 111.CrossRefGoogle Scholar
ten Cate, A., Derksen, J. J., Kramer, H. J. M., van Rosmalen, G. M., and Van den Akker, H. E. A. (2001). Chem. Eng. Sci. 56(7), 2495–09.Google Scholar
ten Cate, A., Derksen, J. J., Portela, L. M., and van den Akker, H. E.A. (2004). J. Fluid Mech. 519, 233–71.Google Scholar
Todtenhaupt, P., Forschner, P., Grimsley, D., and Lases, A. B. M. (1986). Design of agitators for the ERGO carbon-in-leach plant. Paper presented at the International Conference on Gold.Google Scholar
Tosun, Guray. (1988). An experimental study of mixing on the particle size distribution in BaSO4 precipitation reaction. Paper presented at the Sixth European Conference on Mixing, Cranfield, UK.Google Scholar
van Wachem, B. G. M., Schouten, J. C., van den Bleek, C. M., Krishna, R., and Sinclair, J. L. (2001). AIChE J. 47(6), 1292–302.Google Scholar
van den Akker, H. E. A. (2006). Adv. Chem. Eng. 31, 151229.Google Scholar
van den Akker, H. E. A. (2010). Ind. Eng. Chem. Res. 49, 10780–97.Google Scholar
Van Leeuwen, M. L. J., Bruinsma, O. S. L., and van Rosmalen, G. M. (1996). Chem. Eng. Sci. 51(11), 2595–600.Google Scholar
Voit, H., and Mersmann, A. (1986). German Chem. Eng. 9, 101–6.Google Scholar
Wei, H. Y., and Garside, J. (1997). Trans. Inst. Chem. Eng. 75(A), 217–27.Google Scholar
Yu, Z., and Rasmuson, A. (1999). Hydrodynamics generated by a pitched-blade turbine in a stirred suspension. Paper presented at Industrial Crystallization 1999, 14th Internatioanal Symposium on Industrial Crystallization, Cambridge, UK.Google Scholar
Zauner, R., and Jones, A. G. (1999). A hybrid CFD-mixing approach for scale-up of reactive precipitation: experimental and modelling results. Paper presented at the Industrial Crystallization 1999, 14th Symposium on Industrial Crystallization, Cambridge, UK.Google Scholar
Zehner, P. (1986). Chem. Eng. Technol. 58(10), 830–31.Google Scholar
Zlokarnik, M., and Judat, H. (1988). Stirring, in Ullmann’s Encyclopedia of Industrial Chemistry (vol. B3). Weinheim: Verlag Chemie.Google Scholar
Zwietering, T. N. (1958). Chem. Eng. Sci. 8, 244–53.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×