Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T08:49:21.955Z Has data issue: false hasContentIssue false

Chapter 5 - Molecular Modeling Applications in Crystallization

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Crystallization is an extremely important process with extensive industrial applications including, but not limited to, the manufacture of electronics, explosives, fine chemicals, and pharmaceuticals. As such, controlling both crystal shape and crystal structure is vital for the production of high-quality products with desirable properties. However, the processes that govern crystallization, crystal growth, and crystal nucleation are not well understood at present. This is due in part to the limitations of experimental techniques in studying such processes because of the small number of molecules, often tens or hundreds, involved. Furthermore, experimental strategies for identifying and analyzing crystal structures (which may have serious implications in terms of intellectual property rights) and controlling crystal shape are not always successful in yielding the optimal product and often can be costly and time consuming.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakeröy, C. B., and Salmon, D. J. Crystal Eng. Commun 2005; 7:439–48.Google Scholar
Adamson, A. W., and Gast, A. P. Physical Chemistry of Surfaces (6th edn). Wiley-Interscience, New York, NY, 1997.Google Scholar
Allen, M. P., and Tildesley, D. J. Computer Simulation of Liquids. Oxford University Press, New York, NY, 1989.Google Scholar
Altomare, A., Campi, G., Cuocci, C., et al. J. Appl. Crystallogr. 2009; 42:768–75.Google Scholar
Andreev, Y. G., MacGlashan, G. S., and Bruce, P. G. Phys. Rev. B 1997; 55:12011–17.Google Scholar
Asmadi, A., Neumann, M. A., Kendrick, J., et al. J. Phys. Chem. B 2009; 113:16303–13.Google Scholar
Bartell, L. S. Theoretical Aspects and Computer Modeling of the Theoretical Solid State (vol. 1). Wiley, Chichester, 1997, p. 147.Google Scholar
Bazterra, V. E., Thorley, M., Ferraro, M. B., and Facelli, J. C. J. Chem. Theory Comput. 2007; 3:201–9.Google Scholar
Beckham, G. T., and Peters, B. J. Phys Chem Lett 2011; 2:1133–38.CrossRefGoogle Scholar
Beckham, G. T., Peters, B., Starbuck, C., Variankaval, N., and Trout, B. L. J. Am. Chem. Soc. 2007; 129:4714–23.Google Scholar
Beckham, G. T., Peters, B., and Trout, B. L. J. Phys. Chem. B 2008; 112:7460–66.Google Scholar
Bernstein, J. Polymorphism in Molecular Crystals. Oxford University Press, New York, NY, 2008.Google Scholar
Biovia. Materials Studio, 2002–14. Available at http://accelrys.com/products/materials-studio/.Google Scholar
Blum, C., Roli, A., and Sampels, M. Hybrid Metaheuristics: An Emerging Approach to Optimization (1st edn). Springer-Verlag, Berlin, 2008.Google Scholar
Boerrigter, S. X. M., Josten, G. P. H., van de Streek, J., et al. J. Phys. Chem. A 2004; 108:5894–902.CrossRefGoogle Scholar
Bolhuis, P. G., Chandler, D., Dellago, C., and Geissler, P. L. Ann. Rev. Phys. Chem. 2002; 53:291318.Google Scholar
Bonafede, S. J., and Ward, M. D. J. Am. Chem. Soc. 1995; 117:7853–61.CrossRefGoogle Scholar
Boultif, A. Powder Diffraction 2005; 20:284–87.Google Scholar
Bravais, A. Études Crystallographiques. Gauthier-Villars, Paris, 1866.Google Scholar
Briels, W. J. J. Chem. Phys. 1980; 73:1850.Google Scholar
Broughton, J. Q., Gilmer, G. H., and Jackson, K. A. Phys. Rev. Lett. 1982; 49:1496.Google Scholar
Bruker Corporation. XRD Software – Diffrac.Suite, Topas Software, 2014. Available at www.bruker-axs.com/topas.html.Google Scholar
Burton, W. K., Cabrera, N., and Frank, F. C. Philos. Trans. R. Soc. A 1951; 243:299358.Google Scholar
Busing, W. R. WMIN, A Computer Program to Model Molecules and Crystals in Terms of Potential Energy Functions. Oak Ridge National Laboratory, Oak Ridge, CA, 1981.Google Scholar
Bussi, G., Laio, A., and Parrinello, M. Phys. Rev. Lett. 2006; 96:090601.Google Scholar
Cambridge Crystallographic Data Centre. Mercury User Guide and Tutorials, 2013. Available at www.ccdc.cam.ac.uk/Lists/DocumentationList/mercury.pdf.Google Scholar
Campione, M., Sassella, A., Moret, M., et al. J. Am. Chem. Soc. 2006; 128:13378–87.Google Scholar
Chadwick, K., Chen, J., Myerson, A. S., and Trout, B. L. Crystal Growth Des. 2012; 12:1159–66.Google Scholar
Chandler, D. Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics. Lerici, Villa Marigola, 1998, pp. 323.Google Scholar
Chattopadhyay, S., Erdemir, D., Evans, J. M. B., et al. Crystal Growth Des. 2005; 5:523–27.Google Scholar
Chen, C.-C., and Crafts, P. A. 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, ed. Marquardt, W., and Pantelides, C. Elsevier, New York, NY, 2006.Google Scholar
Chen, C.-C., and Song, Y. Ind. Eng. Chem. Res. 2004; 43:8354–62.Google Scholar
Chen, J., and Trout, B. L. Crystal Growth Des. 2010a; 10:4379–88.Google Scholar
Chen, J., and Trout, B. L. J. Phys. Chem. B 2010b; 114:13764–72.Google Scholar
Chernov, A. A. Modern Crystallography III: Crystal Growth. Springer-Verlag, Berlin, 1984.CrossRefGoogle Scholar
Ciccotti, G., and Ferrario, M. J. Mol. Liquids 2000; 89:118.Google Scholar
Cooke, C. L., Davey, R. J., Black, S., Muryn, C., and Pritchard, R. G. Crystal Growth Des. 2010; 10:5270–78.CrossRefGoogle Scholar
Cuppen, H. M., van Eerd, A. R. T., and Meekes, H. Crystal Growth Des. 2004a; 4:989–97.Google Scholar
Cuppen, H. M., Day, G. M., Verwer, P., and Meekes, H. Crystal Growth Des. 2004b; 4:1341–49.Google Scholar
Davey, R. J., Blagden, N., Potts, G. D., and Docherty, R. J. Am. Chem. Soc. 1997; 119:1767–72.Google Scholar
Day, G. M., Cooper, T. G., Cruz-Cabeza, A. J., et al. Acta Crystallogr. B: Struct. Sci. 2009; 65:107–25.Google Scholar
Day, G. M., Motherwell, W. D., Ammon, H. L., et al. Acta Crystallogr. B: Struct. Sci. 2005a; 61:511–27.Google Scholar
Day, G. M., Motherwell, W. D. S., and Jones, W. Crystal Growth Des. 2005b; 5:1023–33.Google Scholar
Della Valle, R. G., Venuti, E., Brillante, A., and Girlando, A. J. Phys. Chem. A 2008; 112:6715–22.Google Scholar
Docherty, R., Clydesdale, G., Roberts, K. J., and Bennema, P. J. Phys. D: Appl. Phys. 1991; 24:8999.Google Scholar
Donnay, J. D. H., and Harker, D. Am. Mineral. 1937; 22:446–67.Google Scholar
Engel, G. E., Wilke, S., König, O., Harris, K. D. M., and Leusen, F. J. J. J. Appl. Crystallogr. 1999; 32:1169–79.Google Scholar
Erdemir, D., Chattopadhyay, S., Guo, L., et al. Phys. Rev. Lett. 2007; 99:115702.CrossRefGoogle Scholar
Esselink, K., Hilbers, P. A. J., and van Beest, B. W. H. J. Chem. Phys. 1994; 101:9033.Google Scholar
Favre‐Nicolin, V., and Černý, R. J. Appl. Crystallogr. 2002; 35:734–43.Google Scholar
Florence, A. J., Shankland, N., Shankland, K., et al. J. Appl. Crystallogr. 2005; 38:249–59.Google Scholar
Frenkel, D., and Smit, B. Understanding Molecular Simulation (2nd edn). Academic Press, San Diego, CA, 2002.Google Scholar
Friedel, M. G. Bull. Soc. Franc. Mineralog. 1907; 30:326455.Google Scholar
Friščić, T., and Jones, W. Farad.Disc. 2007; 136:167–78.Google Scholar
Gdanitz, R. J. Chem. Phys. Lett. 1992; 190:391–96.CrossRefGoogle Scholar
Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning (1st edn). Addison-Wesley Professional, Reading, MA, 1989.Google Scholar
Guo, Z., Lue, B.-M., Thomasen, K., Meyer, A. S., and Xu, X. Green Chem. 2007; 9:1362–73.Google Scholar
Hamad, S., Hughes, C. E., Catlow, C. R. A., and Harris, K. D. M. J. Phys. Chem B 2008; 112:7280–88.Google Scholar
Hamad, S., Moon, C., Catlow, C. R. A., Hulme, A. T., and Price, S. L. J. Phys. Chem. B 2006; 110, 33233329.Google Scholar
Hammond, R. B., Pencheva, K., Ramachandran, V., and Roberts, K. J. Crystal Growth Des. 2007; 7:1571–74.Google Scholar
Hartel, R. W. Crystallization in Foods (1st edn). Springer, Berlin, 2001.Google Scholar
Hartman, P., and Perdok, W. G. Acta Crystallogr. 1955; 8:4952.Google Scholar
Huang, J., Stringfellow, T. C., and Yu, L. J. Am. Chem. Soc. 2008; 130:13973–80.Google Scholar
Hulme, A. T., Johnston, A., Florence, A. J., et al. J. Am. Chem. Soc. 2007; 129:3649–57.Google Scholar
Jensen, F. Introduction to Computational Chemistry (2nd edn). Wiley, West Sussex, 2007.Google Scholar
Jetti, R. K. R., Boese, R., Sarma, J. A. R. P., et al. Angewandt. Chem. Int. Ed. 2003; 42:1963–67.Google Scholar
Jones, F., and Ogden, M. I. Crystal Eng. Commun. 2010; 12:1016–23.CrossRefGoogle Scholar
Kaelble, D. H. Physical Chemistry of Adhesion. Wiley, New York, NY, 1971.Google Scholar
Kaemmerer, H., Jones, M. J., Lorenz, H., and Seidel-Morgenstern, A. Fluid Phase Equilibria 2010; 296:192205.Google Scholar
Karamertzanis, P. G., and Pantelides, C. C. J. Comput. Chem. 2005; 26:304–24.Google Scholar
Karamertzanis, P. G., and Pantelides, C. C. Mol. Phys. 2007; 105:273–91.Google Scholar
Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S., and Pantelides, C. C. J. Chem. Theory Comput. 2011a; 7:19982016.Google Scholar
Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S., et al. Int. J. Pharm. 2011b; 418:168–78.Google Scholar
Kelton, K. F. Solid State Physics: Advances in Research and Applications (vol. 1). Academic Press, San Diego, CA, 1991, p. 75.Google Scholar
Kim, S., Orendt, A. M., Ferraro, M. B., and Facelli, J. C. J. Comput. Chem. 2009; 30:1973–85.CrossRefGoogle Scholar
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Science 1983; 220:671–80.Google Scholar
Kitaĭgorodskiĭ, A. I. Molecular Crystals and Molecules (1st edn). Academic Press, New York, NY, 1973.Google Scholar
Klamt, A. J. Phys. Chem. 1995; 99:2224–35.Google Scholar
Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid PhaseThermodynamics and Drug Design. Elsevier Science, Amsterdam, 2005.Google Scholar
Klamt, A., Eckert, F., Hornig, M., Beck, M. E., and Bürger, T. J. Comput. Chem. 2002; 23:275–81.CrossRefGoogle Scholar
Ladd, M. F. C., and Palmer, R. A. Structure Determination by X-Ray Crystallography (4th edn). Springer, New York, NY, 2003.Google Scholar
Laio, A., and Parrinello, M. Proc. Natl. Acad. Sci. USA 2002; 99:12562–66.Google Scholar
Land, T. A., and De Yoreo, J. J. J. Crystal Growth 2000; 208:623–37.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. Mater. Res. Bull. 1988; 23:447–52.Google Scholar
Leach, A. Molecular Modelling: Principles and Applications (2nd edn). Prentice Hall, Hoboken, NJ, 2001.Google Scholar
Lee, A. Y., and Myerson, A. S. Mater. Res. Soc. Bul. 2006; 31:881–86.Google Scholar
Lin, S.-T. Quantum mechanical approaches to the prediction of phase equilibria: solvation thermodynamics and group contribution methods. Ph.D. thesis, University of Delaware, Newark, DE, 2000.Google Scholar
Lin, S.-T., and Sandler, S. I. Ind. Eng. Chem. Res. 2002; 41:899913.Google Scholar
Lindemann, F. Phys. Z. 1910; 11:609–12.Google Scholar
Liu, X. Y., and Bennema, P. In Crystal Growth of Organic Materials, Myerson, A. S., Green, D. A., and Meenan, P. American Chemical Society, Washington, DC, 1996.Google Scholar
Lommerse, J. P., Motherwell, W. D., Ammon, H. L., et al. Acta Crystallogr. B: Struct. Sci. 2000; 56:697714.Google Scholar
Lovette, M. A., Browning, A. R., Griffin, D. W., et al. Ind. Eng. Chem. Res. 2008; 47:9812–33.Google Scholar
Lu, J. J., and Ulrich, J. Crystal Res. Technol. 2003; 38:6373.Google Scholar
Lu, J. J., Ulrich, J., and Schmiech, P. BIWIC 2001: 8th International Workshop on Industrial Crystallization, ed. Jansens, P., and Kramer, H. Laboratory for Process Equipment, Delft University of Technology, Delft, 2001, pp. 243–48.Google Scholar
Maddox, J. Nature 1995; 378:231–31.Google Scholar
Maragliano, L., and Vanden-Eijnden, E. Chem. Phys. Lett. 2006; 426:168–75.Google Scholar
Martoňák, R., Laio, A., Bernasconi, M., et al. Z. Kristallogr. 2005; 220:489–98.Google Scholar
Meekes, H., Boerrigter, S. X. M., Hollander, F. F. A., and Bennema, P. Chem. Eng. Technol. 2003; 26:256–61.Google Scholar
Mellot-Draznieks, C. J. Mater. Chem. 2007; 17:4348.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. J. Chem. Phys. 1953; 21:1087.Google Scholar
Mettes, J. A., Keith, J. B., and McClurg, R. B. Acta Crystallogr. A 2004; 60:621–36.Google Scholar
Mooij, W. T. M., van Eijck, B. P., and Kroon, J. J. Phys. Chem. A 1999; 103:9883–90.Google Scholar
Motherwell, W. D., Ammon, H. L., Dunitz, J. D., et al. Acta Crystallogr. B: Struct. Sci. 2002; 58:647–61.CrossRefGoogle Scholar
Mullins, P. E. Application of COSMO-SAC to solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds. Masters thesis, Virginia Tech, Blacksburg, VA, 2007.Google Scholar
Myerson, A. S., and Jang, S. M. J. Crystal Growth 1995; 15,459–66.Google Scholar
Neumann, M. A. J. Phys. Chem. B 2008; 112:9810–29.Google Scholar
Neumann, M. A., Leusen, F. J. J., and Kendrick, J. Angewandt. Chem. Int. Ed. 2008; 47:2427–30.Google Scholar
Newsam, J. M., Deem, M. W., and Freeman, C. M. Accuracy in Powder Diffraction II, ed. Prince, E., and Stalick, J. K. (NIST Special Publication No. 846). National Institute of Standards and Technology, 1992, pp. 8091.Google Scholar
Oganov, A. R. Modern Methods of Crystal Structure Prediction. Wiley-VCH, Berlin, 2011.Google Scholar
Pawley, G. S. J. Appl. Crystallogr. 1981; 14:357–61.Google Scholar
Piana, S., and Gale, J. D. J. Am. Chem. Soc. 2005; 127:1975–82.Google Scholar
Piana, S., and Gale, J. D. J. Crystal Growth 2006; 294:4652.Google Scholar
Pillardy, J., Arnautova, Y. A., Czaplewski, C., Gibson, K. D., and Scheraga, H. A. Proc. Natl. Acad. Scie. USA 2001; 98:12351–56.Google Scholar
Poornachary, S. K., Chow, P. S., and Tan, R. B. H. Crystal Growth Des. 2008; 8:179–85.Google Scholar
Prausnitz, J. M., Lichtenthaler, R. N., and de Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria (3rd edn). Prentice-Hall, Philadelphia, PA, 1998.Google Scholar
Price, S. L. Phys. Chem. Chem. Phys. 2008a; 10:19962009.Google Scholar
Price, S. L. Int. Rev. Phys. Chem. 2008b; 27:541–68.Google Scholar
Price, S. L. Accounts Chem. Res. 2009; 42:117–26.Google Scholar
Pye, C. C., Ziegler, T., van Lenthe, E., and Louwen, J. N. Can. J. Chem. 2009; 87:790–97.Google Scholar
Raiteri, P., Laio, A., Gervasio, F. L., Micheletti, C., and Parrinello, M. J. Phys. Chem. B 2006; 110:3533–39.Google Scholar
Raiteri, P., Martoňák, R., and Parrinello, M. Angewandt. Chem. Int. Ed. 2005; 44:3769–73.Google Scholar
Reid, R., Poling, B. E., and Prausnitz, J. M. The Properties of Gases and Liquids (4th edn). McGraw-Hill, New York, NY, 1987.Google Scholar
Rietveld, H. M. J. Appl. Crystallogr. 1969; 2:6571.Google Scholar
Sandoval, L., and Urbassek, H. M. Appl. Phys. Lett. 2009; 95:191909.Google Scholar
Santiso, E. E., and Gubbins, K. E. Mol. Simulat. 2004; 30:699748.Google Scholar
Santiso, E. E., and Trout, B. L. J. Chem. Phys. 2011; 134:064109.Google Scholar
Saska, M., and Myerson, A. S. J. Crystal Growth 1983; 61:546–55.Google Scholar
Schmidt, M. U., and Englert, U. J. Chem. Soc. Dalton Trans. 1996; 10:2077–82.Google Scholar
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., et al. J. Comput. Chem. 1993; 14:1347–63.Google Scholar
Schön, J. C., and Jansen, M. Predicting Solid Compounds Using Simulated Annealing. Wiley-VCH, Berlin, 2010.Google Scholar
Seaton, C. C., Chadwick, K., Sadiq, G., Guo, K., and Davey, R. J. Crystal Growth Des. 2010; 10:726–33.CrossRefGoogle Scholar
Shah, M., Santiso, E. E., and Trout, B. L. J. Phys. Chem. B 2011; 115:10400–12.Google Scholar
Shankland, K., Pidcock, E., Van De Streek, J., et al. J. Appl. Crystallogr. 2006; 39:910–91.Google Scholar
Shu, C.-C., and Lin, S.-T. Ind. Eng. Chem. Res. 2011; 50:142–47.Google Scholar
Steinhardt, P. J., Nelson, D. R., and Ronchetti, M. Phys. Rev. B 1983; 28:784.Google Scholar
Stoica, C., Verwer, P., Meekes, H., et al. Crystal Growth Des. 2004; 4:765–68.Google Scholar
Stone, A. J. The Theory of Intermolecular Forces (1st edn). Clarendon Press, Oxford, 1997.Google Scholar
Stone, A. J. J. Chem. Theory Comput. 2005; 1:1128–32.Google Scholar
Stone, A. J., and Alderton, M. Mol. Phys. 1985; 56:1047–64.Google Scholar
Szabo, A., and Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, New York, NY, 1996.Google Scholar
Talbi, E.-G. Metaheuristics: From Design to Implementation. Wiley, Hoboken, NJ, 2009.Google Scholar
Taylor, H. F. W. Cement Chemistry. Thomas Telford, London, 1997.Google Scholar
ten Wolde, P. R., Ruiz-Montero, M. J., and Frenkel, D. J. Chem. Phys. 1996; 104:9932–47.Google Scholar
Theoretical and Computational Biophysics Group. Visual Molecular Dynamics, University of Illinois at Urbana-Champaign, 2006. Available at www.ks.uiuc.edu/Research/vmd/.Google Scholar
Torbeev, V. Y., Shavit, E., Weissbuch, I., Leiserowitz, L., and Lahav, M. Crystal Growth Des. 2005; 5:2190–96.Google Scholar
Torrie, G. M., and Valleau, J. P. J. Comput. Phys. 1977; 23:187–99.Google Scholar
Towler, C. S., Davey, R. J., Lancaster, R. W., and Price, C. J. J. Am. Chem. Soc. 2004; 126:13347–53.Google Scholar
Tung, H.-H., Tabora, J., Variankaval, N., Bakken, D., and Chen, C.-C. J. Pharm. Sci. 2008; 97:1813–20.Google Scholar
van der Eerden, J. P. Handbook of Crystal Growth (vol. 1), ed. Hurle, D. T. J. North-Holland, Amsterdam, 1993, pp. 307475.Google Scholar
Vanden-Eijnden, E. J. Comput. Chem. 2009; 30:1737–47.Google Scholar
Visser, J. W. J. Appl. Crystallogr. 1969; 2:8995.Google Scholar
Werner, P.-E., Eriksson, L., and Westdahl, M. J. Appl. Crystallogr. 1985; 18:367–70.Google Scholar
Winn, D., and Doherty, M. F. AIChE J. 1998; 44:2501–14.Google Scholar
Winn, D., and Doherty, M. F. AIChE J. 2000; 46:1348–67.Google Scholar
Winn, D., and Doherty, M. F. Chem. Eng. Sci. 2002; 57:1805–13.Google Scholar
Wulff, G. Krystal. Mineral. 1901; 34:449530.Google Scholar
Xu, S., and Bartell, L. S. J. Phys. Chem. 1993; 97:13544–49.Google Scholar
Yi, P., and Rutledge, G. C. J. Chem. Phys. 2009; 131:134902.Google Scholar
Zabinsky, Z. B. Stochastic Adaptive Search for Global Optimization (1st edn). Springer Science and Business Media, New York, NY, 2003.Google Scholar
Zahn, D. J. Phys. Chem. B 2007; 111:5249–53.Google Scholar
Zhang, Y., Sizemore, J. P., and Doherty, M. F. AIChE J. 2006; 52:1906–15.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×