Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T15:45:57.380Z Has data issue: false hasContentIssue false

Chapter 11 - Monitoring and Advanced Control of Crystallization Processes

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Crystallization is one of the main separation and purification processes in the pharmaceutical, biotechnology, food, microelectronics, fine and bulk chemicals industries. The production of more than 70 percent of all solid products involves at least one crystallization as a key processing step, which can have a significant effect on the overall performance of the entire production process and the properties of the final product. The control of crystallization processes is challenging because of the highly nonlinear dynamics, large variations in length and time scales at which the various simultaneous mechanisms occur, variations in crystallization rates over time owing to variations in the impurity profiles of chemical feedstocks, unexpected polymorphic transformations, and nonideal mixing conditions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamir, E., Nagy, Z. K., Rielly, C. D., Kleinert, T., and Judat, B. (2009a). Ind. Eng. Chem. Res. 48, 8575–84.Google Scholar
Aamir, E., Nagy, Z.K., and Rielly, C.D. (2009b). In Louhi-Kultanen, M. and Hatakka, H. (eds.), Proceedings of the 16th International Workshop on Industrial Crystallization (BIWIC 2009). Amsterdam: Elsevier, pp. 6168.Google Scholar
Aamir, E., Nagy, Z.K., Rielly, C.D. (2010a). Crystal Growth Des. 10, 4728–40.CrossRefGoogle Scholar
Aamir, E., Nagy, Z. K., and Rielly, C.D. (2010b). Chem. Eng. Sci. 65, 3602–14.Google Scholar
Abu Bakar, M. R., Nagy, Z. K., Saleemi, A. N., and Rielly, C. D. (2009a). Crystal Growth Des. 9, 1378–84.Google Scholar
Abu Bakar, M., Nagy, Z. K., and Rielly, C.D. (2009b). Org. Process Res. Dev. 13, 1343–56.Google Scholar
Abu Bakar, M. R., Nagy, Z. K., and Rielly, C. D. (2010). Crystal Growth Des. 10, 3892–900.Google Scholar
Alatalo, H. M., Hatakka, H., Louhi-Kultanen, M., Kohonen, J., and Reinikainen, S. P. (2010). Chem. Eng. Technol. 33, 743–50.Google Scholar
Anderson, J. E., Moore, S., Tarczynski, F., and Walker, D. (2001). Spectrochim. Acta A. 57, 1793–808.Google Scholar
Atkins, P., and de Paula, J. (2005). Elements of Physical Chemistry (4th edn). Oxford University Press, Oxford.Google Scholar
Barthe, S. C., Grover, M. A., and Rousseau, R. W. (2008). Crystal Growth Des. 8, 3316–22.Google Scholar
Barthe, S., and Rousseau, R. W. (2006). Chem. Eng. Technol. 29, 207–11.Google Scholar
Barrett, P., and Glennon, B. (2002). Chem. Eng. Res. Des. 80(7), 799805.Google Scholar
Barrett, P., Smith, B., Worlitschek, J., et al. (2005). Org. Proc. Res. Dev. 9, 348–55.Google Scholar
Beck, J. V., and Arnold, K. J. (1977). Parameter Estimation in Engineering and Science. Wiley, New York, NY.Google Scholar
Bolanos-Reynoso, E., Xaca-Xaca, O., Alvarez-Ramirez, J., and Lopez-Zamora, L. (2008). Ind. Eng. Chem. Res. 47, 9426–36.Google Scholar
Borissova, A., Khan, S., Mahmud, T., et al. (2009). Crystal Growth Des. 9, 692706.Google Scholar
Braatz, R. D. (2002). Ann. Rev. Control. 26, 8799.Google Scholar
Braatz, R. D., Fujiwara, M., Wubben, T., and Rusli, E. (2006). In Swarbrick, J. (ed.),Encyclopedia of Pharmaceutical Technology (3rd edn). Marcel Dekker, New York, NY, pp. 858–71.Google Scholar
Caillet, A., Rivoire, A., Galvan, J.-M., Puel, F., and Fevotte, G. (2007). Crystal Growth Des. 7, 2080–87.Google Scholar
Chen, P.-C., Chen, C. C., Fun, M. H., et al. (2004). Chem. Eng. Technol. 27, 519–28.Google Scholar
Chen, Z. P., Morris, J., Borissova, A., et al. (2009). Chemom. Int. Lab. Sys. 96, 4958.Google Scholar
Chew, J. W., Chow, P. S., and Tan, R. B. H. (2007). Crystal Growth Des. 7, 1416–22.Google Scholar
Chung, S. H., Ma, D. L., and Braatz, R. D., (1999), Can. J. Chem. Eng. 77, 590–95.Google Scholar
Chung, S. H., Ma, D. L., and Braatz, R. D. (2000). Chemom. Int. Lab. Syst. 50, 8390.Google Scholar
Connolly, M., Debenedetti, P. G., and Tung, H. H. (1996). J. Pharm. Sci. 85(2),174–77.Google Scholar
Corriou, J. P., and Rohani, S. (2008). AIChE J. 54, 3188–206.Google Scholar
Cote, A., Zhou, G., and Stanik, M. (2009). Org. Proc. Res. Dev. 13, 1276–83.Google Scholar
Darakis, E., Khanam, T., Rajendran, A., et al. (2010). Chem. Eng. Sci. 65, 1037–44.Google Scholar
De Anda, C. J., Wang, X. Z., and Roberts, K. J. (2005). Chem. Eng. Sci. 60, 1053–65.Google Scholar
Deneau, E., and Steele, G. (2005). Org. Proc. Res. Dev. 9, 943–50.Google Scholar
Dharmayat, S., De Anda, J. C., Hammond, R. B., et al. (2006). J. Crystal Growth. 294, 3540.Google Scholar
Doki, N., Kubota, N., Sato, A., and Yokota, M. (2001). Chem. Eng. J. 81, 313–16.Google Scholar
Doki, N., Seki, H., Takano, K., et al. (2004). Crystal Growth Des. 4, 949–53.Google Scholar
Doyle, W. M., and Tran, L. (1999). Spectroscopy. 14(4), 4654.Google Scholar
Dunuwila, D. D., and Berglund, K. A. (1997). J. Crystal Growth. 179, 185–93.Google Scholar
Eaton, J. W., and Rawlings, J. B. (1990). Comput. Chem. Eng. 14, 469–79.Google Scholar
Eggers, J., Kempkes, M., and Mazzotti, M. (2008). Chem. Eng. Sci. 63, 5513–21.CrossRefGoogle Scholar
Falcon, J. A., and Berglund, K. A. (2003). Crystal Growth Des. 3, 947–52.Google Scholar
Feng, L. L., and Berglund, K. A. (2002). Crystal Growth Des. 2, 449–52.Google Scholar
Fevotte, G. (2002). Int. J. Pharm. 241, 263–78.Google Scholar
Fevotte, G. (2007). Chem. Eng. Res. Des. 85, 906–20.Google Scholar
Fevotte, F., and Fevotte, G. (2010). Chem. Eng. Sci. 65, 3191–98.Google Scholar
Food and Drug Administration (FDA) (2004). PAT Guidance for Industry: A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance. Available at www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070305.pdf (accessed January 4, 2019).Google Scholar
Food and Drug Administration (FDA) (2006). Guidance for Industry, Q8 Pharmaceutical Development. Available at https://www.fda.gov/downloads/drugs/guidances/ucm073507.pdf (accessed March 30, 2019).Google Scholar
Fujiwara, M., Chow, P. S., Ma, D. L., and Braatz, R. D. (2002). Crystal Growth Des. 2, 363–70.Google Scholar
Fujiwara, M., Nagy, Z. K., Chew, J. W., and Braatz, R. D. (2005). J. Process Control. 15, 493504.Google Scholar
Garcia, E., Hoff, C., and Veesler, S. (2002). J. Crystal Growth. 23739, 2233–39.Google Scholar
Goh, L. M., Chen, K. J., Bhamidi, V., et al. (2010). Crystal Growth Des. 10, 2515–21.Google Scholar
Grön, H., Borissova, A., and Roberts, K. J. (2003). Ind. Eng. Chem. Res. 42, 198206.Google Scholar
Gunawan, R., Fusman, I., and Braatz, R. D. (2004). AIChE J. 50, 2738–49.Google Scholar
Gunawan, R., Ma, D. L., Fujiwara, M., and Braatz, R. D. (2002). Int. J. Mod. Phys. B. 16, 367–74.Google Scholar
Gutwald, T., and Mersmann, A. (1990). Chem. Eng. Technol. 13, 229–37.Google Scholar
Harner, R. S., Ressler, R. J., Briggs, R. L., et al. (2009). Org. Proc. Res. Dev. 13, 114–24.Google Scholar
Haseltine, E. L., Patience, D. B., and Rawlings, J. B. (2005). Chem. Eng. Sci. 60, 2627–41.Google Scholar
Heath, A. R., Fawell, P. D., Bahri, P. A., and Swift, J. D. (2002). Part. Part. Syst. Charact. 19, 8495.Google Scholar
Hermanto, M. W., Woo, X. Y., Braatz, R. D., and Chiu, M.-S. (2007). AIChE J. 53, 2643–50.Google Scholar
Hermanto, M. W., Kee, N. C., Tan, R. B. H., Chiu, M. S., and Braatz, R. D. (2008). AIChE J. 54, 3248–59.Google Scholar
Hermanto, M. W., Braatz, R. D., and Chiu, M.-S. (2009a). AIChE J. 55, 122–31.Google Scholar
Hermanto, M. W., Chiu, M.-S., and Braatz, R. D. (2009b). AIChE J. 55, 2631–45.Google Scholar
Hermanto, M. W., Braatz, R. D., and Chiu, M. S. (2011). AIChE J. 57, 1008–19.Google Scholar
Hounslow, M. J., asnd Reynolds, G. K. (2006). AIChE J. 52, 2507–17.Google Scholar
Howard, K. S., Nagy, Z. K., Saha, B., Robertson, A. L., and Steele, G. (2009a). Org. Proc. Res. Dev. 13, 590–97.Google Scholar
Howard, K. S., Nagy, Z. K., Saha, B., et al. (2009b). Crystal Growth Des. 9, 3964–75.Google Scholar
Hukkanen, E .J., and Braatz, R. D. (2003). Sensors & Actuators B. 96, 451–59.Google Scholar
Kail, N., Briesen, H., and Marquardt, W. (2007). Part. Part. Syst. Charac. 24, 184–92.Google Scholar
Kail, N., Briesen, H., and Marquardt, W. (2008). Powder Technol. 185, 211–22.Google Scholar
Kail, N., Briesen, H., and Marquardt, W. (2009a). Ind. Eng. Chem. Res. 48, 2936–46.Google Scholar
Kail, N., Marquardt, W., and Briesen, H. (2009b). Chem. Eng. Sci. 64, 9841000.Google Scholar
Kalbasenka, A. N., Spierings, L. C. P., Huesman, A. E. M., and Kramer, H. J. M. (2007). Part. Part. Syst. Charact. 24, 4048.Google Scholar
Kee, N. C. S., Arendt, P. D., Tan, R. B. H., and Braatz, R. D. (2009a). Crystal Growth Des. 9, 3052–61.Google Scholar
Kee, N. C. S., Tan, R. B. H., and Braatz, R. D. (2009b). Crystal Growth Des. 9, 3044–51.Google Scholar
Kee, N. C. S., Tan, R. B. H., and Braatz, R. D. (2011a). Ind. Eng. Chem. Res. 50, 1488–95.Google Scholar
Kee, N. C. S., Arendt, P. D., Goh, L. M., Tan, R. B. H., and Braatz, R. D. (2011b). Crystal Eng. Commun. 13, 1197–209.Google Scholar
Kempkes, M., Eggers, J., and Mazzotti, M. (2008). Chem. Eng. Sci. 63, 4656–75.Google Scholar
Kim, J.-W., Kim, J.-K., Kim, H.-S., and Koo, K.-K. (2011). Org. Proc. Res. Dev. 15, 602–9.Google Scholar
Kim, K., Lee, I. S., Centrone, A., Hatton, A. T., and Myerson, A. S. (2009). J. Am. Chem. Soc. 131, 18212–13.Google Scholar
Kubota, N. (2001). Crystal Res. Technol. 36, 749–69.Google Scholar
Kubota, N., Doki, N., Yokota, M., and Sato, A. (2001). Powder Technol. 121, 3138.Google Scholar
Larsen, P. A., and Rawlings, J. B. (2009). AIChE J. 55, 896905.Google Scholar
Larsen, P. A., Patience, D. B., and Rawlings, J. B. (2006). IEEE Control Systems Magazine. 26(4), 7080.Google Scholar
Larsen, P. A., Rawlings, J. B., and Ferrier, N. J. (2006). Chem. Eng. Sci. 61, 5236–48.Google Scholar
Larsen, P. A., Rawlings, J. B., and Ferrier, N. J. (2007). Chem. Eng. Sci. 62, 1430–41.Google Scholar
Lee, K., Lee, J. H., Fujiwara, M., Ma, D. L., and Braatz, R. D. (2002). In Proceedings of the American Control Conference. IEEE Press, Piscataway, NJ, pp. 1013–18.Google Scholar
Lewiner, F., Fevotte, G., Klein, J. P., and Puel, F. (2001). J. Crystal Growth. 226, 348–62.Google Scholar
Lewiner, F., Fevotte, G., Klein, J. P., and Puel, F. (2002). Ind. Eng. Chem. Res. 41, 1321–28.Google Scholar
Li, T. S., Livk, I., Lane, G., and Ilievski, D. (2003). Chem. Eng. Technol. 26, 369–76.Google Scholar
Li, M. Z., and Wilkinson, D. (2005). Chem. Eng. Sci. 60, 3251–65.Google Scholar
Lindenberg, C., Krattli, M., Cornel, J., Mazzotti, M., and Brozio, J. (2009). Crystal Growth Des. 9, 1124–36.Google Scholar
Liotta, V., and Sabesan, V. (2004). Org. Proc. Res. Dev. 8, 488–94.Google Scholar
Loffelmann, M., and Mersmann, A. (2002). Chem. Eng. Sci. 57, 4301–10.Google Scholar
Ma, D. L., and Braatz, R. D. (2001). IEEE Trans. Control Syst. Technol. 9, 766–74.Google Scholar
Ma, D. L., and Braatz, R. D. (2003). Comput. Chem. Eng. 27, 1175–84.Google Scholar
Ma, D. L., Chung, S. H., and Braatz, R. D. (1999). AIChE J. 45, 1469–76.Google Scholar
Ma, D. L., Tafti, D. K., and Braatz, R. D. (2002a). Int. J. Mod. Phys. B. 16, 383–90.Google Scholar
Ma, D. L., Tafti, D. K., and Braatz, R. D. (2002b). Ind. Eng. Chem. Res. 41, 6217–23.Google Scholar
Ma, D. L., Tafti, D. K., and Braatz, R. D. (2002c). Comput. Chem. Eng. 26, 1103–16.Google Scholar
Ma, Z., Merkus, H. G., van der Veen, H. G., Wong, M., and Scarlett, B. (2001). Part. Part. Syst. Charact. 18, 243–47.Google Scholar
Mangin, D., Garcia, E., Hoff, C., Klein, J. P., and Veesler, S. (2006). J. Crystal Growth. 286, 121–25.CrossRefGoogle Scholar
Mangin, D., Puel, F., and Veesler, S. (2009). Org. Proc. Res. Dev. 13, 1241–53.Google Scholar
Marchal, P., David, R., Klein, J. P., and Villermaux, J. (1988). Chem. Eng. Sci. 57, 1107–19.Google Scholar
Marchisio, D. L., Pikturna, J. T., Fox, R. O., Vigil, R. D., and Barressi, A. A. (2003). AIChE J. 49, 1266–76.Google Scholar
Matthews, H. B., Miller, S. M., and Rawlings, J. B. (1996). Powder Technol. 88, 227–35.Google Scholar
Matthews, H. B. (1997). Ph.D. thesis, University of Wisconsin, Madison, WI.Google Scholar
Matthews, H. B., and Rawlings, J. B. (1998). AIChE J. 44, 1119–27.Google Scholar
McGraw, R. (1997). Aerosol Sci. Technol. 27, 255–65.Google Scholar
Mesbah, A. (2010). Optimal operation of industrial batch crystallizers. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
Mesbah, A., Huesman, A. E. M., Kramer, H. J. M., and Van den Hof, P. M. J. (2011a). J. Process Control. 21, 652–66.Google Scholar
Mesbah, A., Huesman, A. E. M., Kramer, H. J. M., Nagy, Z. K., and Van den Hof, P. M. J. (2011b). AIChE J. 57, 1557–69.Google Scholar
Mesbah, A., Nagy, Z. K., Huesman, A. E. M., Kramer, H. J. M., and Van den Hof, P. M. J. (2011c). IEEE Trans. Control Syst. Technol. 20, 11881201.Google Scholar
Matthews, H. B., and Rawlings, J. B. (1998). AIChE J. 44, 1119–27.Google Scholar
Miller, S. M. (1993). Optimal quality control of batch crystallizers. Ph.D. thesis, University of Texas, Austin, TX.Google Scholar
Miller, S. M., and Rawlings, J. B. (1994). AIChE J. 40, 1312–27.Google Scholar
Mougin, P., Thomas, A., Wilkinson, D., and White, G. (2003). AIChE J. 49, 373–78.Google Scholar
Mullin, J. W. (2001). Crystallization (4th edn). London: Butterworth.Google Scholar
Nagy, Z. K. (2009a). Comput. Chem. Eng. 33, 1685–91.Google Scholar
Nagy, Z. K. (2009b). In Proceedings of the 9th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM). Amsterdam: Elsevier.Google Scholar
Nagy, Z. K., and Braatz, R. D. (2004). J. Process Control. 14, 411–22.Google Scholar
Nagy, Z. K., and Braatz, R. D. (2003a). IEEE Trans. Control Syst. Technol. 11, 694704.Google Scholar
Nagy, Z. K., and Braatz, R. D. (2003b). AIChE J. 49, 1776–86.Google Scholar
Nagy, Z. K., Aamir, E., and Rielly, C. D. (2011). Crystal Growth Des. (in press).Google Scholar
Nagy, Z. K., Fujiwara, M., and Braatz, R. D. (2008a). J. Process Control. 18, 856–64.Google Scholar
Nagy, Z. K., Chew, J. W., Fujiwara, M., Braatz, R. D. (2008b). J. Process Control. 18, 399407.Google Scholar
Nagy, Z. K., Fujiwara, M., Woo, X. Y., and Braatz, R. (2008c). Ind. Eng. Chem. Res. 47, 1245–52.Google Scholar
Nonoyama, N., Hanaki, K., and Yabuki, Y. (2006). Org. Proc. Res. Dev. 10, 727–32.Google Scholar
Nyvlt, J., Karel, M., and Pisarik, S. (1994). Crystal Res. Technol. 29, 409–15.Google Scholar
O’Grady, D., Barrett, M., Casey, E., and Glennon, B. (2007). Chem. Eng. Res. Des. 85(A7), 945–52.Google Scholar
Ono, T., ter Horst, J. H., and Jansens, P. J. (2004). Crystal Growth Des. 4, 465–69.Google Scholar
O’Sullivan, B., Barrett, P., Hsiao, G., Carr, A., and Glennon, B. (2003). Org. Proc. Res. Dev. 7, 977–82.Google Scholar
Parsons, A. R., Black, S. N., and Colling, R. (2003). Chem. Eng. Res. Des. 81(A6), 700–4.Google Scholar
Patience, D. B., and Rawlings, J. B. (2001). AIChE J. 47, 2125–30.Google Scholar
Pollanen, K., Hakkinen, A. W., Reinikainen, S. P., Louhi-Kultanen, A., and Nystrom, L. (2006). Chem. Eng. Res. Des. 84, 4759.Google Scholar
Presles, B., Debayle, J., Fevotte, G., and Pinoli, J.-C. (2010). J. Electron. Imag. 19, art. no. 031207.Google Scholar
Puel, F., Fevotte, G., and Klein, J. P. (2003). Chem. Eng. Sci. 58, 3715–27.Google Scholar
Qamar, S., Noor, S., Ul Ain, Q., and Seidel-Morgenstern, A. (2010). Ind. Eng. Chem. Res. 49, 11633–44.Google Scholar
Randolph, A. D., and White, E. T. (1977). Chem. Eng. Sci. 32, 1067–76.Google Scholar
Rawlings, J. B., Sink, C. W., and Miller, S. M. (2002). In Myerson, A. S. (ed.), Handbook of Industrial Crystallization (2nd edn). Boston, MA: Butterworth-Heinemann.Google Scholar
Rawlings, J. B., Miller, S. M., and Witkowski, W. R. (1993). Ind. Eng. Chem. Res. 32, 1275–96.Google Scholar
Rosner, D. E., McGraw, R. L., and Tandon, P. (2003). Ind. Eng. Chem. Res. 42, 2699–711.Google Scholar
Ruf, A., Worlitschek, J., and Mazzotti, M. (2000). Part. Part. Syst. Charact. 17, 167–79.Google Scholar
Rusli, E., Lee, J. H., and Braatz, R. D. (2006), Optimal distributional control of crystal size and shape. Paper presented at the Fifth World Congress on Particle Technology, Orlando, FL.Google Scholar
Saleemi, A., Nagy, Z. K., and Rielly, C. (2010). In Proceedings of the 17th International Workshop on Industrial Crystallization (BIWIC 2010). Amsterdam: Elsevier, pp. 426–33.Google Scholar
Sangwal, K. (2008). Additives and Crystallization Processes. Wiley, Chichester.Google Scholar
Sarkar, D., Doan, X.-T., Ying, Z., and Srinivasan, R. (2009). Chem. Eng. Sci. 64, 919.Google Scholar
Sarkar, D., Rohani, S., and Jutan, A. (2006). Chem. Eng. Sci. 61, 5282–95.Google Scholar
Schöll, J., Bonalumi, D., Vicum, L., Mazzotti, M., and Muller, M. (2006). Crystal Growth Des. 6, 881–91.Google Scholar
Sessiecq, P., Gruy, F., and Cournil, M. (2000). J. Crystal Growth. 208, 555–68.Google Scholar
Simon, L. L., Nagy, Z. K., and Hungerbuhler, K. (2009a). Chem. Eng. Sci. 64, 3344–51.Google Scholar
Simon, L. L., Nagy, Z. K., and Hungerbuhler, K. (2009b). Org. Proc. Res. Dev. 13, 1254–61.Google Scholar
Simon, L. L., Oucherif, K. A., Nagy, Z. K., and Hungerbuhler, K. (2010a). Chem. Eng. Sci. 65, 4983–95.Google Scholar
Simon, L .L., Oucherif, K. A., Nagy, Z. K., and Hungerbuhler, K. (2010b). Ind. Eng. Chem. Res. 49, 9932–44.Google Scholar
Starbuck, C., Spartalis, A., Wai, L., et al. (2002). Crystal Growth Des. 2(6), 515–22.Google Scholar
Tadayyon, A., and Rohani, B. (1998). Part. Part. Syst. Charact. 15, 127–35.Google Scholar
Togkalidou, T., Fujiwara, M., Patel, S., and Braatz, R. D. (2001a). J. Crystal Growth. 231, 534–43.Google Scholar
Togkalidou, T., Braatz, R. D., Johnson, B. K., Davidson, O., and Andrews, A. (2001b). AIChE J. 47, 160–68.Google Scholar
Togkalidou, T., Tung, H.-H., Sun, Y. K., Andrews, A., and Braatz, R.D. (2002). Org. Proc. Res. Dev. 6, 317–22.Google Scholar
Togkalidou, T., Tung, H.-H., Sun, Y. K., Andrews, A., and Braatz, R.D. (2004). Ind. Eng. Chem. Res. 43, 6168–81.Google Scholar
Thompson, D., Kougoulos, E., Jones, A., and Wood-Kaczmar, M. J. (2005). J. Crystal Growth. 276, 230–36.Google Scholar
Wan, J., Wang, X. Z., and Ma, C. Y. (2009). AIChE J. 55, 2049–61.Google Scholar
Wang, F., Wachter, J. A., Antosz, F. J., and Berglund, K. A. (2000). Org. Proc. Res. Dev. 4, 391–95.Google Scholar
Ward, J. D., Mellichamp, D. A., and Doherty, M. F. (2006). AIChE J. 52, 2046–54.Google Scholar
Welz, C., Srinivasan, B., and Bonvin, D. (2004). Combined online and run-to-run optimization of batch processes with terminal constraints. In Proc. of the IFAC Symp. on Advanced Control of Chemical Processes, Elsevier Scientific, Oxford, UK, pp. 5562.Google Scholar
Woo, X. Y. (2007). Modeling and simulation of antisolvent crystallization: Mixing and Control. Ph.D. thesis, University of Illinois at Urbana–Champaign and National University of Singapore.Google Scholar
Woo, W. Y., Tan, R. B. H., and Braatz, R. D. (2009). Crystal Growth Des. 9, 156–64.Google Scholar
Woo, W. Y., Tan, R. B. H., and Braatz, R. D. (2011). Crystal Eng. Commun. 13, 2006–14.Google Scholar
Woo, X. Y., Nagy, Z. K., Tan, R. B. H., and Braatz, R. D. (2009). Crystal Growth Des. 9, 182–91.Google Scholar
Woo, X. Y., Tan, R. B. H., Chow, P. S., and Braatz, R. D. (2006). Crystal Growth Des. 6, 1291–303.Google Scholar
Worlitschek, J., and Mazzotti, M. (2004). Crystal Growth Des. 4, 891903.Google Scholar
Worlitschek, J., Hocker, T., Mazzotti, M. (2005). Part. Part. Syst. Charact. 22(2), 8198.Google Scholar
Yi, Y. J., and Myerson, A. S. (2006). Chem. Eng, Res. Des. 84(A8), 721–28.Google Scholar
Yu, W., and Erickson, K. (2008). Powder Technol. 185, 2430.Google Scholar
Yu, Z. Q., Chow, P. S., and Tan, R. B. H. (2006a). Ind. Eng. Chem. Res. 45, 438–44.Google Scholar
Yu, Z. Q., Chow, P. S., and Tan, R. B. H. (2006b). Org. Proc. Res. Dev. 10, 717–22.Google Scholar
Yu, L. X., Lionberger, R. A., Raw, A. S., et al. (2003). Adv. Drug Deliv. Rev. 56, 349–69.Google Scholar
HuY., LiangJ. K., Myerson, A. S., and Taylor, L. S. (2005). Ind. Eng. Chem. Res. 44(5), 1233–40.Google Scholar
Zhang, T., Tade, M. O., Tian, Y. C., and Zang, H. (2008). Comput. Chem. Eng. 32, 2403–8.Google Scholar
Zhou, G. X., Fujiwara, M., Woo, X. Y., et al. (2006a). Crystal Growth Des. 6, 892–98.Google Scholar
Zhou, J., Moehary, F., Gross, B., and Ahmed, S. (2006b). Appl. Optics. 45, 6676–85.Google Scholar
Zhu, Y., Demilie, P., Davoine, P., and Delplancke-Ogletree, M. (2004). J. Crystal Growth. 263, 459–65.Google Scholar
Zipp, G. L., and Randolph, A. D. (1989). Ind. Eng. Chem. Res, 28, 1446–48.Google Scholar
Zumstein, R. C., and Rousseau, R. W. (1987). AIChE J. 33, 121–29.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×