Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T14:56:34.225Z Has data issue: false hasContentIssue false

Chapter 12 - Batch Crystallization

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Batch crystallization is different from continuous crystallization in that the withdrawal of crystal product for the batch system is made only once at the end of the batch run. Batch crystallization may also include the semibatch system, in which one or more feed solutions are added to the crystallizer at a constant or variable rate throughout all or part of the batch.

Batch crystallization is different from continuous crystallization in that the withdrawal of crystal product for the batch system is made only once at the end of the batch run. Batch crystallization may also include the semibatch system, in which one or more feed solutions are added to the crystallizer at a constant or variable rate throughout all or part of the batch.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baliga, J. B. (1970). Crystal nucleation and growth kinetics in batch evaporative crystallization, Ph.D. thesis, Iowa State University, Ames, IA.Google Scholar
Bałdyga, J., Jasińska, M., Krasiński, A., et al. (2001). In Proceedings of the 4th International Symposium on Mixing in Industrial Processes. Rugby: Institute of Chemical Engineers, pp. 6169.Google Scholar
Bałdyga, J., Jasińska, M., and Orciuch, W. (2003). Chem. Eng. Technol. 26(3):334–40.Google Scholar
Bałdyga, J., and Krasiński, A. (2005). In Proceedings of 16th International Symposium on Industrial Crystallization, Ulrich, J. (ed.). Düsseldorf: VDI-Verlag, pp. 411–16.Google Scholar
Bałdyga, J., Makowski, Ł., Orciuch, W., Sauter, C., and Schuchmann, H. P. (2008). Chem. Eng. Res. Des. 86:1369–81.CrossRefGoogle Scholar
Bałdyga, J., and Orciuch, W. (2001). Chem. Eng. Sci. 56:2435–44.Google Scholar
Bakar, M. R. A., Saleemi, A. N., Rielly, C. D., and Nagy, Z. K. (2008). In Proceedings of 17th International Symposium on Industrial Crystallization, Jansens, J. P., and Ulrich, J. (eds.), vol. 1. Maastricht: European Federation of Chemical Engineers, pp. 6774.Google Scholar
Bamforth, A. W. (1965). Industrial Crystallization. London: Leonard Hill.Google Scholar
Batchelor, G. K. (1980). J. Fluid Mech. 98:609–23.Google Scholar
Batchelor, G. K., and Green, J. T. (1972). J. Fluid Mech. 56:375400.CrossRefGoogle Scholar
Bennett, R. C. (1984). AIChE Symp. Ser. 80(240):4554.Google Scholar
Bohlin, M., and Rasmuson, A. C. (1992a). Can. J. Chem Eng. 70:120–26.Google Scholar
Bohlin, M., and Rasmuson, A. C. (1992b). AIChE J. 38(12):1853–63.Google Scholar
Black, S., and Jones, H. (2008). In Proceedings of 17th International Symposium on Industrial Crystallization, Jansens, J. P., and Ulrich, J. (eds.), vol. 1. Maastricht: European Federation of Chemical Engineers, pp. 1118.Google Scholar
Brittain, H. G. (ed.) (1999). Polymorphism in Pharmaceutical Solids. New York, NY: Marcel Dekker.Google Scholar
Brozio, J. (2007). In Mettler-Toledo Seminar: Optimierung und Scale-up von Kristallisationsprozessen (online seminar).Google Scholar
Budz, J., Karpinski, P. H., and Naruc, Z. (1984). AIChE J. 30(5):710–17.Google Scholar
Budz, J., Karpinski, P. H., and Naruc, Z. (1985). AIChE J. 31(2): 259–68.Google Scholar
Budz, J., Karpinski, P. H., Mydlarz, J., and Nývlt, J. (1986). Ind. Eng. Chem. Prod. Res. Dev. 25(4):657–64.Google Scholar
Butler, B. K., Zhang, H., Johns, M. R., Mackintosh, D. L., and White, E. T. (1997). The influence of growth rate dispersion in batch crystallization. Paper 38b, presented at AIChE Meeting, Los Angeles, CA.Google Scholar
Crum, L. (1988). J. Urol. 148:1587–90.Google Scholar
Davey, R., and Garside, J. (2000). From molecules to Crystallizers. An Introduction to Crystallization. New York, NY: Oxford University Press.Google Scholar
David, R., Marchal, P., Klein, J. P., and Villermaux, J. (1991). Chem. Eng. Sci. 46:205–13.Google Scholar
David, R., Paulaime, A. M., Espitailer, F., and Rouleau, L. (2003). Powder Technol. 130:338–44.Google Scholar
de Castro, L., and Priego-Capote, F. (2007). Anal. Chim. Acta, 583, 29.Google Scholar
Diemer, R. B., Jr., and Olson, J. H. (2002). Chem. Eng. Sci. 57(12):2211–28.Google Scholar
Eskin, D., Zhupanska, O., Hamey, R., Moudgil, B., and Scarlett, B. (2005). Power Technol. 156:95102.Google Scholar
Faria, N., Feyo de Azevedo, S., Rocha, F. A., and Pons, M. N. (2008). Chem. Eng. Process. Process Intens. 47:1666–77.Google Scholar
Gahn, C., and Mersmann, A. (1999a). Chem. Eng. Sci. 54:1273–82.Google Scholar
Gahn, C., and Mersmann, A. (1999b). Chem. Eng. Sci. 54:1283–92.Google Scholar
Garside, J. (1985). Chem. Eng. Sci. 40:326.CrossRefGoogle Scholar
Garside, J., Gibilaro, L. G., and Tavare, N. S. (1982). Chem. Eng. Sci. 37:1625–28.Google Scholar
Garside, J., and Jančić, S. J. (1976). AIChE J. 22(5):887–94.Google Scholar
Gidaspow, D. (1994). Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. New York, NY: Academic Press.Google Scholar
Green, D. A., Kontomaris, K., Grenville, R. K., et al. (1996). In 13th Symposium on Industrial Crystallization Proceedings. Toulouse, France: PROGEP, pp. 525–30.Google Scholar
Grossmann, S., Hilgenfeldt, S., Zomack, M., and Lohse, D. (1997). J. Acoust. Soc. Am. 102:1223–27.Google Scholar
Hounslow, M. J., Mumatz, H. S., Collier, A. P., Barrick, J. P., and Bramley, A. S. (2001). Chem. Eng. Sci. 56:2543–52.Google Scholar
Hulburt, H. M., and Katz, S. (1964). Chem. Eng. Sci. 19:555–74.Google Scholar
Ilievski, D., and Livk, I. (2006). Chem. Eng. Sci. 61:2010–22.CrossRefGoogle Scholar
Johnson, B. K., Szeto, C., Davidson, O., and Andrews, A. (1997). Optimization of pharmaceutical batch crystallization for filtration and scale-up. Paper 16a, presented at AIChE Meeting, Los Angeles, CA.Google Scholar
Jones, A. G., and Mullin, J. W. (1974). Chem. Eng. Sci. 29:105–18.Google Scholar
Jones, A. G., Chianese, A., and Mullin, J. W. (1984). In Industrial Crystallization (vol. 84), Jančić, S. J., and de Jong, E. J. (eds.). Amsterdam: Elsevier, pp. 191–95.Google Scholar
Jung, J., and Perrut, M. (2001). J. Supercrit. Fluids. 20:179219.CrossRefGoogle Scholar
Kalbasenka, A., Huesman, A., and Kramer, H. (2011). Chem. Eng. Sci. 66:4867–77.Google Scholar
Kane, S. G., Evans, T. W., Brian, P. L. T., and Sarofim, A. F. (1974). AIChE J. 20(5):855–62.Google Scholar
Karpinski, P. H. (1980). Chem. Eng. Sci. 35:2321–24.Google Scholar
Karpinski, P. H. (1981). Mass Crystallization in a Fluidized Bed, Wroclaw: Wroclaw University of Technology Press.Google Scholar
Karpinski, P. H. (2004). The concept of in-situ seeding and its applications in batch precipitation and crystallization. Paper presented at the Swiss Symposium on Crystallization and Precipitation (SSCP 2004), Zurich, Switzerland.Google Scholar
Karpinski, P. H. (2008). In Proceedings of 17th International Symposium on Industrial Crystallization (vol. 2), Jansens, J. P., and Ulrich, J. (eds.), Maastricht: European Federation of Chemical Engineers, pp. 541–49.Google Scholar
Karpinski, P. H. (2011). In Handbook of Pharmaceutical Salts (2nd edn), Stahl, P. H., and Wermuth, C. G. (eds.). Zurich: Wiley-VCH, pp. 234–69.Google Scholar
Karpinski, P. H., and Koch, R. (1979). In Industrial Crystallization (vol. 78), de Jong, E. J., and Jančić, S. J. (eds.). Amsterdam: North Holland, pp. 205–9.Google Scholar
Karpinski, P. H., and Nývlt, J. (1983). Crystal Res. Technol. 18(7):959–65.Google Scholar
Karpinski, P., Budz, J., and Naruc, Z. (1980a). Scientific Papers of Wroclaw University of Technology. 38(5):172–79.Google Scholar
Karpinski, P., Budz, J., and Naruc, Z. (1980b). Scientific Papers of Wroclaw University of Technology. 38(5):163–71.Google Scholar
Kordylla, A., Koch, S., Tumakaka, F., and Schembecker, G. (2008). J. Crystal Growth. 310:4177–84.Google Scholar
Kordylla, A., Krawczyk, T., Tumakaka, F., and Schembecker, G. (2009). Chem. Eng. Sci. 64:1635–42.Google Scholar
Krasiński, A. (2004). Particle aggregation in turbulent flow (in Polish), Ph.D. thesis, Warsaw University of Technology, Warsaw.Google Scholar
Kuijvenhoven, L. J., De Pree, L. M., and De Jong, E. J. (1983). Int. Sugar J. 85:201–7.Google Scholar
Lacmann, R., Herden, A., Tanneberger, U., et al. (1996). In 13th Symposium on Industrial Crystallization Proceedings. Toulouse: PROGEP, pp.515–18.Google Scholar
Larson, M. A. (1978). Chem. Eng. (NY) 85(4):90102.Google Scholar
Larson, M. A. (1979). In Industrial Crystallization (vol. 78), de Jong, E. J., and Jančić, S. J. (eds.). Amsterdam: North Holland, pp. 308–23.Google Scholar
Larson, M. A., and Garside, J. (1973). Chem. Eng. (Lond.). 274:318–28.Google Scholar
Lee, P. L., and Sullivan, G. R. (1988). Comp. Chem. Eng. 12:573–80.Google Scholar
Leighton, T. G. (1994). The Acoustic Bubble. San Diego, CA: Academic Press.Google Scholar
Leubner, I. H., Jagannathan, R., and Wey, J. S. (1980). Photogr. Sci. Eng. 24:268–72.Google Scholar
Liew, T. L., Barrick, J. P., and Hounslow, M. J. (2003). Chem. Eng. Technol. 26:282–85.Google Scholar
Livk, I., and Ilievski, D. (2007). Chem. Eng. Sci. 62:3787–97.Google Scholar
Malik, K. (2012). Effects of particles on suspension flow and mixing. Ph.D. thesis, Warsaw University of Technology, Warsaw.Google Scholar
Margolis, G., Brian, P. L. T., and Sarofim, A. F. (1971). Ind. Eng. Chem. Fundam. 10:439–52.Google Scholar
Marr, R., and Gamse, T. (2000). Chem. Eng. Proc. 39:1928.Google Scholar
Mersmann, A., and Rennie, F. W. (1995). In Crystallization Technology Handbook, Mersmann, A. (ed.). New York: Marcel Dekker, pp. 215–25.Google Scholar
Misra, C., and White, E. T. (1971). Chem. Eng. Prog. Symp. Ser. 67(110):5365.Google Scholar
Moyers, C. G., Jr., and Rousseau, R. W. (1987). In Handbook of Separation Process Technology, Rousseau, R. W. (ed.). New York: Wiley-Interscience, pp. 587–92.Google Scholar
Mullin, J. W. (2001). Crystallization (4th edn). Oxford: Butterworth-Heinemann.Google Scholar
Mullin, J. W., and Nývlt, J. (1971). Chem. Eng. Sci. 26:369–77.Google Scholar
Mullin, J. W., Söhnel, O., and Jones, A. G. (1990). In Proceedings of the 11th Symposium on Industrial Crystallization, Mersmann, A. (ed.). Berlin: Garmisch-Partenkirchen, pp. 211–15.Google Scholar
Nalajala, V. S., and Moholkar, V. S. (2011). Ultrason. Sonochem. 18:345–55.Google Scholar
Neppolian, B., Celik, E., Anpo, M., and Choi, H. (2008). Catalysis Letters. 125:183–91.Google Scholar
Neppolian, B., Yamashita, H., Okada, Y., Nishijima, H., and Anpo, M. (2005). Catalysis Letters. 105:111–17.Google Scholar
Neumann, A. M. (2001). Characterizing industrial crystallizers of different scale and type. Ph.D. thesis, Delft University of Technology, Netherlands.Google Scholar
Nývlt, J. (1978). Industrial Crystallization. Weinheim: Verlag Chemie.Google Scholar
Nývlt, J. (1991). In Advances in Industrial Crystallization, Garside, J., Davey, R. J., and Jones, A. G. (eds.). Oxford: Butterworth-Heinemann, pp. 197212.Google Scholar
Nývlt, J., Söhnel, O., Matuchová, M., and Broul, M. (1985). The Kinetics of Industrial Crystallization. New York, NY: Elsevier Science, p. 261.Google Scholar
Oldshue, J. Y. (1983). Fluid Mixing Technology. New York, NY: McGraw-Hill.Google Scholar
Omran, A. M., and King, C. J. (1974). AIChE J. 20(4):795803.Google Scholar
Paengjuntuek, W., Arpornwichanop, A., and Kittisupakorn, P. (2008). Chem. Eng. J. 139:344–50.Google Scholar
Ramanarayanan, K. A., Berglund, K. A., and Larson, M. A. (1985). Chem. Eng. Sci. 40(8):1604–8.Google Scholar
Randolph, A. D., and Larson, M. A. (1962). AIChE J. 8(5):639–45.Google Scholar
Randolph, A. D., and Larson, M. A. (1988). Theory of Particulate Processes (2nd edn). New York, NY: Academic Press.Google Scholar
Randolph, A. D., and White, E. T. (1977). Chem. Eng. Sci. 32:1067–76.Google Scholar
Ratsimba, B., and Laguerie, C. (1991). In Fourth World Congress of Chemical Engineering. Strategies 2000 Preprints IV: Sessions 12.1–13.4. Karlsruhe: World Congress on Chemical Engineering, pp. 127–28.Google Scholar
Rippin, D. W. T. (1983). Comp. Chem. Eng. 7:137–56.Google Scholar
Rodomonte, A., Antoniella, E., Bertocchi, P., et al. (2008). J. Pharm. Biomed. Analysis. 48(2):477–81.Google Scholar
Saffman, P. G., and Turner, J. S. (1956). J. Fluid Mech. 1:1630.CrossRefGoogle Scholar
Shiau, L. D., and Berglund, K. A. (1990). AIChE J. 36(11):1669–79.Google Scholar
Söhnel, O., and Garside, J. (1992). Precipitation. Oxford: Butterworth-Heinemann.Google Scholar
Stavek, J., Fort, I., Nývlt, J., and Sipek, M. (1988). In Proceedings of the Sixth European Conference on Mixing. New York, NY: Springer, pp. 171–76.Google Scholar
Stocking, J. H., and King, C. J. (1976). AIChE J. 22(1):131–40.Google Scholar
Subra, P., and Jestin, P. (1999). Powder Technol. 103:29.Google Scholar
Sugimoto, T. (1987). Adv. Colloid Interfac. Sci. 28:65108.Google Scholar
Sundaramurthi, P., Shalaev, E., and Suryanarayanan, R. (2010a). J. Phys. Chem. B. 114(14):4915–23.Google Scholar
Sundaramurthi, P., Shalaev, E., and Suryanarayanan, R. (2010b). J. Phys. Chem. Lett. 1:265–68.Google Scholar
Tavare, N. S. (1995). Industrial Crystallization: Process Simulation Analysis and Design. New York, NY: Plenum Press.Google Scholar
Tavare, N. S. (1985). AIChE J. 31(10):1733–35.Google Scholar
Tavare, N. S. (1987). Chem. Eng. Commun. 61:259318.Google Scholar
Tavare, N. S., and Garside, J. (1982). In Industrial Crystallization (vol. 81), Jančić, S. J., and de Jong, E. J. (eds.). Amsterdam: North Holland, pp. 2127.Google Scholar
Tavare, N. S., Garside, J., and Chivate, M. R. (1980). Ind. Eng. Chem. Process Des. Dev. 19:653–65.Google Scholar
Torbacke, M., and Rasmuson, A. C. (2001). Chem. Eng. Sci. 56:2459–73.Google Scholar
Vega, A., Diez, F., and Alvarez, J. M. (1995). Comp. Chem. Eng. 19:S471–76.Google Scholar
Wang, F., and Berglund, K. A. (2000). Ind. Eng. Chem. Res. 39:2101–4.Google Scholar
Westhoff, G. M., and Kramer, H. J. M. (2011). In 18th International Symposium on Industrial Crystallization. Zurich: ETH Zurich, pp. 153–54.Google Scholar
Wey, J. S. (1981). In Preparation and Properties of Solid State Materials (vol. 6), Wilcox, W. R. (ed.). New York, NY: Marcel Dekker, pp. 67117.Google Scholar
Wey, J. S. (1985). Chem. Eng. Commun. 35:231–52.CrossRefGoogle Scholar
Wey, J. S., and Estrin, J. (1974). Desalination. 14:103–20.Google Scholar
Wey, J. S., and Strong, R. W. (1977a). Photogr. Sci. Eng. 21:1418.Google Scholar
Wey, J. S., and Strong, R. W. (1977b). Photogr. Sci. Eng. 21:248–52.Google Scholar
Wylie, J. J., Koch, D. L., and Ladd, A. J. C. (2003). J. Fluid Mech. 480:95118.Google Scholar
Yoon, C., and McGraw, R. (2004). Aerosol Sci. 35:577–98.Google Scholar
York, P., Kompella, U. B., and Shekunov, B. Y. (eds.) (2004). Supercritical Fluid Technology for Drug Product Development (Drugs and the Pharmaceutical Sciences) (vol. 138). New York, NY: Marcel Dekker, pp. 91157.Google Scholar
You, C., Zhao, H., Cai, Y., Qi, H., and Xu, X. (2004). Int. J. Multiphase Flow. 30:1121–38.Zhang, G. P., and Rohani, S. (2003). Chem. Eng. Sci. 58:1887–96.Google Scholar
Zipp, G. L., and Randolph, A. D. (1989). Ind. Eng. Chem. Res. 28:1446–48.CrossRefGoogle Scholar
Zumstein, R. C., and Rousseau, R. W. (1987). AIChE J. 33(11):1921–25.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×