Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T08:25:25.737Z Has data issue: false hasContentIssue false

Chapter 8 - Precipitation Processes

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Precipitation generally refers to a relatively rapid formation of a sparingly soluble crystalline – or sometimes amorphous – solid phase from a liquid solution phase. Precipitation is rather poorly understood when compared with crystallization of more soluble materials. It generally involves the simultaneous and rapid occurrence of nucleation and growth together with the so-called secondary processes, such as Ostwald ripening and agglomeration. In many cases, these processes are difficult to separate and investigate independently and mechanistically.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, J. J., Rabinovich, Y. I., and Moudgil, B. M. (2001). J. Colloid Interfac. Sci. 237, 249–58.Google Scholar
Alatalo, H., Kohonen, J., Qu, H., et al. (2008). J. Chemometrics 22, 644–52.Google Scholar
Bałdyga, J. (1989). Chem. Eng. Sci. 44, 1175–82.Google Scholar
Bałdyga, J. (1994). Chem. Eng. Sci. 49, 19852003.Google Scholar
Bałdyga, J., and Bourne, J. R. (1984). Chem. Eng. Commun. 28, 243–58.Google Scholar
Bałdyga, J., and Bourne, J. R. (1986). Encyclopedia of Fluid Mechanics. Houston, TX: Gulf Publishing.Google Scholar
Bałdyga, J., and Bourne, J. R. (1989). Chem. Eng. J. 42, 8392.CrossRefGoogle Scholar
Bałdyga, J., and Bourne, J. R. (1999). Turbulent Mixing and Chemical Reactions. Chichester: Wiley.Google Scholar
Bałdyga, J., Bourne, J. R., and Zimmermann, B. (1994). Chem. Eng. Sci. 44, 1937–46.Google Scholar
Bałdyga, J., Czarnocki, R., Shekunov, B. J., and Smith, K. B. (2010a). Chem. Eng. Res. Design 88, 331–41.Google Scholar
Bałdyga, J., Henczka, M., and Shekunov, B. Y. (2004). In Supercritical Fluid Technology for Drug Product Development, York, P., Kompella, U. B., and Shekunov, B. Y. (eds.). New York, NY: Marcel Dekker, pp. 91157.Google Scholar
Bałdyga, J., and Jasińska, M. (2005). Internal Report of Faculty of Chemical and Process Engineering. Warsaw: Warsaw University of Technology.Google Scholar
Bałdyga, J., Jasińska, M., Jodko, K., and Petelski, P. (2012). Chem. Eng. Sci. 77, 207–16.CrossRefGoogle Scholar
Bałdyga, J., Jasińska, M., and Orciuch, W. (2003). Chem. Eng. Technol. 26(3), 334–40.Google Scholar
Bałdyga, J., and Krasiński, A. (2005). In Proceedings of 16th International Symposium on Industrial Crystallization, Ulrich, J. (ed.). Düsseldorf: VDI-Verlag, pp. 411–16.Google Scholar
Bałdyga, J., Kubicki, D., Shekunov, B. Y., and Smith, K. B. (2008). In Proceedings of 17th International Symposium on Industrial Crystallization (vol. 1), Jansen, J. P., and Ulrich, J. (eds.). Amsterdam: Elsevier, pp. 141–48.Google Scholar
Bałdyga, J., Kubicki, D., Shekunov, B. Y., and Smith, K. B. (2010b). Chem. Eng. Res. Design 88, 1131–41.Google Scholar
Baldyga, J., Makowski, L., and Orciuch, W. (2005). Ind. Eng. Chem. Res. 44, 5342–52.Google Scholar
Bałdyga, J., and Orciuch, W. (1997). Trans. Inst. Chem. Eng. 75A, 160–70.Google Scholar
Bałdyga, J., and Orciuch, W. (2001a). Chem. Eng. Sci. 56, 2435–44.Google Scholar
Bałdyga, J., and Orciuch, W. (2001b). Powder Technol. 121, 919.Google Scholar
Bałdyga, J., Orciuch, W., Makowski, Ł., et al. (2008). Ind. Eng. Chem. Res. 47, 3652–63.Google Scholar
Bałdyga, J., Podgórska, W., and Pohorecki, R. (1995). Chem. Eng. Sci. 50, 12811300.Google Scholar
Barrett, M., Hao, H., Maher, A., et al. (2011). Org. Process Res. Dev. 15(3), 681–87.CrossRefGoogle Scholar
Batchelor, G. K. (1980). J. Fluid Mech. 98, 609–23.Google Scholar
Becker, R. R., and Döring, W. (1935). Annalen der Physik 24, 719–52.Google Scholar
Becker, H. A., Hottel, H. C., and Williams, G. C. (1963). In Proceedings of 9th International Symposium on Combustion. New York, NY: Combustion Institute, pp. 720.Google Scholar
Bénet, N., Muhr, H., Plasari, E., and Rousseaux, J. M. (2002). Powder Technol. 128(2–3), 9398.CrossRefGoogle Scholar
Berry, C. R. (1976). Photogr. Sci. Engng. 20(1), 2930.Google Scholar
Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960). Transport Phenomena. New York, NY: Wiley.Google Scholar
Bogg, T. G., Harding, M. J., and Skinner, D. N. (1976). J. Photogr. Sci. 24, 8195.Google Scholar
Bourne, J. R. (1984). Micromixing revisited. Paper presented at the International Symposium on Chemical Reaction Engineering 87, pp. 797–813.Google Scholar
Briesen, H. (2006). Chem. Eng. Sci. 61, 104–22.CrossRefGoogle Scholar
Bromley, L. A. (1973). AIChE J. 19, 313–20.Google Scholar
Burton, W. K., Cabrera, N., and Frank, F. C. (1951). Philos. Trans. R. Soc. (Lond.) 243, 299358.Google Scholar
Chesters, A. K. (1991). Trans Inst. Chem. Eng., 69A, 259–70.Google Scholar
Craya, A., and Curtet, R. (1955). Comp. Rendus Acad. Sci. 241, 611–22.Google Scholar
Czarnocki, R. (2007). Scale up of precipitation induced by mixing with supercritical fluids. Ph.D. thesis, Warsaw University of Technology, Warsaw.Google Scholar
Davey, R., and Garside, J. (2000). From Molecules to Crystallizers: An Introduction to Crystallization. New York, NY: Oxford University Press.Google Scholar
David, R., Marchal, P., Klein, J. P., and Villermaux, J. (1991). Chem. Eng. Sci. 46(1), 205–13.Google Scholar
Derjaguin, B. V., and Landau, L. (1941). Acta Physicochim. (USSR) 14, 733–62.Google Scholar
di Veroli, G., and Rigopoulos, S. (2010). AIChE J. 56(4):878–92.Google Scholar
Einaga, A., and Komatsu, Y. (1981). J. Inorg. Nucl. Chem. 43, 2443–48.Google Scholar
Elimelech, M., Gregory, J., Jia, X., and Williams, R. A. (1995). Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Oxford: Butterworth-Heinemann.Google Scholar
Enustun, B. V., and Turkevich, J. (1960). J. Am. Chem. Soc. 82, 4502–9.CrossRefGoogle Scholar
Fissore, D., Marchisio, D. L., and Barresi, A. A. (2002). Can. J. Chem. Eng. 80, 111.Google Scholar
Fox, R. O. (1995). Phys. Fluids 7, 1082–94.Google Scholar
Frank, F. C. (1949). Discuss. Faraday Soc. 5, 4855.Google Scholar
Frössling, N. (1938). Gerlands Beitr. Geophys. 52, 170216.Google Scholar
Garten, V. A., and Head, R. B. (1963). Philos. Mag. 8, 1793–803.CrossRefGoogle Scholar
Gavi, E., Marchisio, D. L., and Barresi, A. A. (2007). Chem. Eng. Sci. 62, 2228–41.Google Scholar
Gibbs, J. W. (1928). Collected Works. London: Longmans.Google Scholar
Hamaker, H. C. (1937). Physica 4, 1058–72.Google Scholar
Harstad, K., and Bellan, J. (1999). Int. J. Heat Mass Trans. 42, 961–70.Google Scholar
Henczka, M., Bałdyga, J., and Shekunov, B. Y. (2005). Chem. Eng. Sci. 60, 2193–201.Google Scholar
Hinze, J. O. (1975). Turbulence. New York, NY: McGraw-Hill.Google Scholar
Hogg, R., Healy, T. W., and Fuerstenau, D. W. (1966).Trans. Faraday Soc. 62, 1638–51.Google Scholar
Hostomsky, J., and Jones, A. G. (1991). J. Phys. D Appl. Phys. 24, 165–70.CrossRefGoogle Scholar
Hulburt, H. M., and Katz, S. (1964). Chem. Eng. Sci., 19, 555–74.Google Scholar
Iggland, M., and Mazzotti, M. (2012). Crystal Growth Des. 12(3), 1489–500.CrossRefGoogle Scholar
Jagannathan, R., and Wey, J. S. (1981). J. Crystal Growth 51, 601–6.CrossRefGoogle Scholar
Jagannathan, R., and Wey, J. S. (1982). Photogr. Sci. Eng. 26, 6164.Google Scholar
Jiang, J., Chen, S.-F.LiuL., et al. (2009). Chem. Commun. 2009, 5853–55.Google Scholar
Kadam, S. S., Vissers, J. A. W., Forgione, M., et al. (2011). In Proceedings of 18th International Symposium on Industrial Crystallization. Amsterdam: Elsevier, pp. 7172.Google Scholar
Karpinski, P. (1981). Mass crystallization in a fluidized bed. Ph.D. thesis, Wroclaw University of Technology, Wroclaw, Poland.Google Scholar
Karpinski, P. (1985).Chem. Eng. Sci. 40(4), 641–46.Google Scholar
Karpinski, P. H. (1996). In Proceedings of 13th International Symposium on Industrial Crystallization. Toulouse: PROGEP, pp. 727–32.Google Scholar
Karpinski, P. H. (2006). Chem. Eng. Technol. 29(2), 233–37.Google Scholar
Karpinski, P. H. (2008). In Proceedings of 17th International Symposium on Industrial Crystallization, Jansens, J. P., and Ulrich, J. (eds.). Amsterdam: Elsevier, pp. 541–49.Google Scholar
Karpinski, P. H., Budz, J., and Larson, M. A. (1984). AIChE J. 28590.Google Scholar
Karpinski, P., Budz, J., and Naruc, Z. (1980). Sci. Papers Wroclaw Univ. Technol. 38(5), 163–71.Google Scholar
Kim, W.-S., and Tarbell, J. M. (1991). Chem. Eng. Commun. 101, 115–29.Google Scholar
Koutsoukos, P. G., and Kontoyannis, Ch. G. (1984). J. Chem. Soc. Faraday Trans. I 80, 1181–92.Google Scholar
Kruis, F. E., and Kusters, K. A. (1996). J. Aerosol Sci. 27, S263–64.Google Scholar
Kruis, F. E., and Kusters, K. A. (1997). Chem. Eng. Commun. 258, 201–30.Google Scholar
La Mer, V. K., and Dinegar, R. H. (1951). J. Am. Chem. Soc. 73, 380–85.Google Scholar
Laird, I. (2011). Continuous Processing for Better Particles. Presented at RSC Speciality Chemicals Symposium, Geneva.Google Scholar
Larson, I., and Attard, P. (2000). J. Colloid Interfac. Sci. 227, 152–63.Google Scholar
Larson, M. A., and Garside, J. (1973). Chem. Eng. June, 318–28.Google Scholar
Launder, B. E., and Spalding, D. B. (1972). Mathematical Models of Turbulence. New York, NY: Academic Press.Google Scholar
Lawton, S., Steele, G., Shering, P., et al. (2009). Org. Process Res. Dev. 13(6), 1357–63.Google Scholar
Leubner, I. H., Jagannathan, R., and Wey, J. S. (1980). Photogr. Sci. Eng. 24, 268–72.Google Scholar
Lifshitz, I., and Slyozov, V. (1961). J. Phys. Chem. Solids 19, 3550.Google Scholar
Liu, C. Y., Tsuei, H. S., and Youngquist, G. R. (1971). Chem. Eng. Progr. Symp. Ser. 67(110), 43.Google Scholar
Löbbus, M.,Vogelsberger, W., Sonnefeld, J., and Seidel, A. (1998). Langmuir 14, 4386–96.Google Scholar
Marcant, B. (1992). Methodologie d’Analyse d’un Systeme de Precipitation Soumis l’lnfluence des Conditions de Mtlange: Cas de 1’Oxalate de Calcium. Ph.D. thesis, INPL, Nancy, France.Google Scholar
Marcant, B., and DavidR. (1993). In Proceedings of the 12th Symposium on Industrial Crystallization (vol. 1), RojkowskiZ. H. (ed.). Amsterdam, Elsevier, pp. 2-012–2-026.Google Scholar
Marchisio, D. L., Barresi, A. A., and Fox, R. O. (2001). AIChE J. 47, 664–76.Google Scholar
Marchisio, D. L., Rivautella, L., and Barresi, A. A. (2006). AIChE J. 52, 1877–87.Google Scholar
Marchisio, D. L., Vigil, R. D., and Fox, R. O. (2003). J. Colloid Interfac. Sci. 258, 322–34.Google Scholar
McGraw, R. (1997). Aerosol Sci. Technol. 27, 255–65.Google Scholar
Meakin, P. (1988). Adv. Colloid Interfac. Sci. 28(4):249331.Google Scholar
Melis, S., Verduyn, M., Storti, G., Morbidelli, M., and Bałdyga, J. (1999). AIChE J. 45, 1383–93.Google Scholar
Mersmann, A. (ed.) (2001). Crystallization Technology Handbook (2nd edn). New York, NY: Marcel Dekker.Google Scholar
Morales, J. G., Clemente, R. R., Lopez, A. H., Macipe, L., and Raskopf, G. (1996). In Proceedings of 13th International Symposium on Industrial Crystallization. Toulouse: PROGEP, pp. 713–14.Google Scholar
Mukhopadhyay, M. (2004). In Supercritical Fluid Technology for Drug Product Development, York, P., Kompella, U. B., and Shekunov, B. Y. (eds.). pp. 2790.Google Scholar
Mullin, J. W., and Nývlt, J. (1971). Chem. Eng. Sci. 26, 369–77.Google Scholar
Neppolian, B., Celik, E., Anpo, M., and Choi, H. (2008). Catalysis Lett. 125, 183–91.Google Scholar
Neppolian, B., Yamashita, H., Okada, Y., Nishijima, H., and Anpo, M. (2005). Catalysis Lett. 105, 111–17.CrossRefGoogle Scholar
Nielsen, A. E. (1964). Kinetics of Precipitation. Oxford: Pergamon Press.Google Scholar
Nielsen, A. E. (1969). Krist. Technik 4, 1738.Google Scholar
Nielsen, A. E., and Söhnel, O. (1971). J. Crystal Growth 11, 233–42.Google Scholar
Nývlt, J. (1971). Industrial Crystallisation from Solutions. London: Butterworth.Google Scholar
Nývlt, J. (1974). Coll. Czech. Chem. Commun. 39, 3463–72.Google Scholar
Nyvlt, J., and Karpinski, P. (1977). Krist. Technik 12, 1233.Google Scholar
Nývlt, J., and Pekárek, V. (1980). Z. Physik. Chem. Neue Folge 122, 199215.Google Scholar
Nývlt, J., and Zacek, S. (1986). Coll. Czech. Chem. Commun. 51, 1609–17.Google Scholar
Ohara, M., and Reid, R. C. (1973). Modeling Crystal Growth Rates from Solution. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Ostwald, W. (1901). Analytische Chemie (3rd edn). Leipzig: Engelmann.Google Scholar
Packter, A. (1974). Krist. Technik 9, 249–56.Google Scholar
Paul, E. L., Atiemo-Obeng, V., Kresta, S. M., and North American Mixing Forum. (2003). Handbook of Industrial Mixing: Science and Practice. Hoboken, NJ: Wiley-Interscience.Google Scholar
Peng, D. Y., and Robinson, D. B. (1976). Ind. Eng. Chem. Fund. 15, 5963.Google Scholar
Perrut, M. (2000). Ind. Eng. Chem. 39, 4531–35.Google Scholar
Phillips, , Rohani, S., and Baldyga, J. (1999). AIChE J. 45(1), 8292.Google Scholar
Piton, D., Fox, R. O., and Marcant, B. (2000). Can. J. Chem. Eng. 78, 983–93.Google Scholar
Pitzer, K. (1991). Activity Coefficients in Electrolyte Solutions. Boca Raton, FL: CRC Press.Google Scholar
Podgórska, W. (1993). Effects of mixing on precipitation (in Polish). Ph.D. thesis, Warsaw University of Technology.Google Scholar
Qamar, S., and Seidel-Morgenstern, A. (2009). Comput. Chem. Eng. 33, 1221–26.Google Scholar
Ramkrishna, D., and Mahoney, A. W. (2002). Chem. Eng. Sci. 57, 595606.Google Scholar
Randolph, A. D., and Larson, M. A. (1962). AIChE J. 8, 639–45.Google Scholar
Randolph, A. D., and Larson, M. A. (1988). Theory of Particulate Processes (2nd edn). New York, NY: Academic Press.Google Scholar
Raphael, M., and Rohani, S. (1999). Can. J. Chem. Eng. 77, 540–54.Google Scholar
Raphael, M., Rohani, S., and Sosulski, F. (1997). In Separation and Purification by Crystallization, Botsaris, G. D., and Toyokura, K. (eds.). ACS Symposium Series 667, pp. 188209.Google Scholar
Regenfuss, P., Clegg, R. M., Fulwyler, M. J., Barrantes, F. J., and Jovin, T. M. (1985). Rev. Sci. Instrum. 56, 283–90.Google Scholar
Rowe, J. M., and Johnston, K. P. (2012). In Formulating Poorly Water Soluble Drugs, WilliamsIII, R. O. O., Watts, A. B., and Miller, D. A. (eds.). AAPS Advances in the Pharmaceutical Sciences Series 3, pp. 501–68.Google Scholar
Rusli, I. T. (1991). In Opportunities and Challenges in Crystallization Research, Ames, IA: ISU-ERI, pp. 241250.Google Scholar
Shekunov, B. Y., Bałdyga, J., and York, P. (2001). Chem. Eng. Sci. 56, 2421–33.Google Scholar
Shekunov, B. Y., and Sun, Y. (2003). In Proceedings of the 6th International Symposium on Supercritical Fluids (vol. 3). pp. 1813–18.Google Scholar
Smoluchowski, M. (1916). Phys. Z. 17, 557–85.Google Scholar
Smoluchowski, M. (1917). Z. Phys. Chem. 92, 129–68.Google Scholar
Söhnel, O. (1991). In Advances in Industrial Crystallization, Garside, J., Davey, R. J., and Jones, A. G. (eds.). Oxford: Butterworth-Heinemann, pp. 6374.Google Scholar
Söhnel, O., and Garside, J. (1992). Precipitation. Oxford: Butterworth-Heinemann.Google Scholar
Söhnel, O., and Mullin, J. W. (1978). J. Crystal Growth 44, 377–82.Google Scholar
Strong, R. W., and Wey, J. S. (1979). Photogr. Sci. Eng. 23, 344–48.Google Scholar
Sugimoto, T. (1983). J. Colloid Interfac. Sci., 91, 5168.Google Scholar
Šefčik, J., and McCormick, A. (1997). AIChE J. 43, 2773–84.CrossRefGoogle Scholar
Stokes, R. J., and Evans, D. F. (1997). Fundamentals of Interfacial Engineering. New York, NY: Wiley-VCH.Google Scholar
Tanaka, T., and Iwasaki, M. (1983). J. Photogr. Sci. 31, 1320.Google Scholar
Tanaka, T., and Iwasaki, M. (1985). J. Imag. Sci. 29, 8692.Google Scholar
Tanaka, T., Matsubara, T., Saeki, N., and Hada, H. (1976). Photogr. Sci. Eng. 20, 213–19.Google Scholar
Tavare, N. S. (1995). Industrial Crystallization. New York, NY: Plenum Press.Google Scholar
Thompson, D. R., Kougoulos, E., Jones, A. G., and Wood-Kaczmar, M. W. (2005). J. Crystal Growth 276(1–2), 230–36.CrossRefGoogle Scholar
Thomson, M. B., and Nancollas, G. H. (1978). Science 200, 1059–60.Google Scholar
Tokuyama, M., Kawasaki, K., and Enomoto, Y. (1986). Phys. A: Stat. Mech. App. 134(2), 323–38.Google Scholar
Turnbull, D., and Vonnegut, B. (1952). Ind. Eng. Chem. 44, 1292–98.Google Scholar
Verwey, E. J. W., and Overbeek, J. Th. G. (1948). Theory of Stability of Lyophobic Colloids. Amsterdam: Elsevier.Google Scholar
Vicum, L., Mazzotti, M., and Bałdyga, J. (2002). In Proceedings of the 15th International Symposium on Industrial Crystallization. Amsterdam: Elsevier.Google Scholar
Vicum, L., Mazzotti, M., and Bałdyga, J. (2003). Chem. Eng. Technol. 26, 325–33.Google Scholar
Voorhees, P. W. (1985). J. Stat. Phys. 38(1–2), 231–52.CrossRefGoogle Scholar
Voorhees, P. W., and Glickman, M. E. (1984). Acta Metaallurg. 32(11), 2001–11.Google Scholar
Volmer, M., and Weber, A. (1926). Z. Physik. Chem. 119, 277301.Google Scholar
Walton, A. G. (1967). The Formation and Properties of Precipitates. New York, NY: Interscience.Google Scholar
Wey, J. S. (1981). In Preparation and Properties of Solid State Materials (vol. 6), Wilcox, W. R. (ed.). New York, NY: Marcel Dekker, pp. 67117.Google Scholar
Wey, J. S. (1990). J. Imag. Sci. 34, 202–6.Google Scholar
Wey, J. S., and Schad, M. J. (1986). J. Imag. Sci. 30, 193–97.Google Scholar
Wey, J. S., and Strong, R. W. (1977a). Photogr. Sci. Eng. 21, 1418.Google Scholar
Wey, J. S., and Strong, R. W. (1977b). Photogr. Sci. Eng. 21, 248–52.Google Scholar
Wey, J. S., Terwilliger, J. P., and Gingello, A. D. (1980). AIChE Symp. Series 193(76), 3442.Google Scholar
Wagner, C. (1961). Z. Elektrochem. 65, 581–91.Google Scholar
Williams, J. J. E., and Crane, R. I. (1983). Int. J. Multiphase Flow 9, 421–35.Google Scholar
Woo, X. Y., Nagy, Z. K., Tan, R. B. H., and Braatz, R. D. (2009). Crystal Growth Des. 9(1), 182–91.Google Scholar
Yao, J. H., Elder, K. R., Guo, H., and Grant, M. (1993). Phys. Rev. B 47(21), 110–25.Google Scholar
York, P., and Hanna, M. (1996). In Respiratory Drug Delivery Volume V: Proceedings of the Conference on Respiratory Drug Delivery, pp. 231–39.Google Scholar
York, P., Kompella, U. B., and Shekunov, B. Y. (eds.) (2004). Supercritical Fluid Technology for Drug Product Development (Drugs and the Pharmaceutical Sciences) (vol. 138). New York, NY: Marcel Dekker.Google Scholar
Yu, Z. Q., Chow, P. S., and Tan, R. B. H. (2008). Org. Process Res. Dev. 12(4), 646–54.Google Scholar
Zauner, R., and Jones, A. G. (2000). Ind. Eng. Chem. 39, 2392–403.Google Scholar
Zauner, R., and Jones, A. G. (2002). Chem. Eng. Sci. 57, 821–31.Google Scholar
Zlokarnik, M. (2002). Scale-Up in Chemical Engineering. Weinheim: Wiley-VCH.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×