Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T04:58:57.906Z Has data issue: false hasContentIssue false

Chapter 12 - U-Series Dating

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegre, C. (1964). De l'extension de la methode de calcul graphique concordia aux mesures d'ages absolus effectues a l'aide du desequilibre radioactif. C. R. Acad. Sci. 259, 4086–9.Google Scholar
Andersen, M. B., Stirling, C. H., Porcelli, D. et al. (2007). The tracing of riverine U in Arctic seawater with very precise 234U/238U measurements. Earth Planet. Sci. Lett. 259, 171–85.Google Scholar
Bard, E., Fairbanks, R. G., Hamelin, B., Zindler, A. and Hoang, C. T. (1991). Uranium–234 anomalies in corals older than 150,000 years. Geochim. Cosmochim. Acta 55, 2385–90.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. and Hawkesworth, C. J. (2003). Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–99.Google Scholar
Bender, M. L., Fairbanks, R. G., Taylor, F. W. et al. (1979). Uranium-series dating of the Pleistocene reef tracts of Barbados, West Indies. Geol. Soc. Amer. Bull. 90, 577–94.Google Scholar
Benoit, G. and Hemond, H. F. (1991). Evidence for diffusive redistribution of 210Pb in lake sediments. Geochim. Cosmochim. Acta 55, 1963–75.Google Scholar
Bischoff, J. L. and Fitzpatrick, J. A. (1991). U-series dating of impure carbonates: an isochron technique using total-sample dissolution. Geochim. Cosmochim. Acta 55, 543–54.Google Scholar
Bohm, E., Lippold, J., Gutjahr, M. et al. (2015). Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–6.Google Scholar
Bourdon, B., Joron, J.-L. and Allegre, C. J. (1999). A method for 231Pa analysis by thermal ionization mass spectrometry in silicate rocks. Chem. Geol. 157, 147–51.Google Scholar
Bruland, K. W., Bertine, K., Koide, M. and Goldberg, E. D. (1974). History of metal pollution in Southern California coastal zone. Envir. Sci. Tech. 8, 425–32.Google Scholar
Chabaux, F., Cohen, A. S., O'Nions, R. K. and Hein, J. R. (1995). 238U–234U–230Th chronometry of Fe–Mn crusts: growth processes and recovery of thorium isotopic ratios of seawater. Geochim. Cosmochim. Acta 59, 633–8.Google Scholar
Chabaux, F., O'Nions, R. K., Cohen, A. S. and Hein, J. R. (1997). 238U–234U–230Th disequilibrium in hydrogenous oceanic Fe–Mn crusts: palaeoceanographic record or diagenetic alteration? Geochim. Cosmochim. Acta 61, 3619–32.Google Scholar
Chase, Z., Anderson, R. F., Fleisher, M. Q. and Kubik, P. W. (2002). The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth Planet. Sci. Lett. 204, 215–29.Google Scholar
Chen, J. H., Edwards, R. L. and Wasserburg, G. J. (1986). 238U, 234U and 232Th in seawater. Earth Planet. Sci. Lett. 80, 241–51.Google Scholar
Cheng, H., Edwards, R. L., Hoff, J. et al. (2000). The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, 1733.Google Scholar
Cheng, H., Edwards, R. L., Murrell, M. T. and Benjamin, T. M. (1998). Uranium thorium protoactinium dating systematics. Geochim. Cosmochim. Acta 62, 3437–52.Google Scholar
Cheng, H., Edwards, R. L., Shen, C. C. et al. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371, 8291.Google Scholar
Cherdyntsev, V. V. (1969). Uranium–234. Atomizdat, Moskva. Translated by Schmorak, J. Israel Prog. Sci. Trans. 1971, 234 pp.Google Scholar
Cherdyntsev, V. V., Kazachevskii, I. V. and Kuz'mina, E. A. (1965). Dating of Pleistocene carbonate formations by the thorium and uranium isotopes. Geochem. Int. 2, 794801.Google Scholar
Cherdyntsev, V. V., Orlov, D. P., Isabaev, E. A. and Ivanov, V. I. (1961). Isotopic composition of uranium in minerals. Geochemistry 10, 927–36.Google Scholar
Chiu, T. C., Fairbanks, R. G., Mortlock, R. A. et al. (2006). Redundant 230Th/234U/238U, 231Pa/235U and 14C dating of fossil corals for accurate radiocarbon age calibration. Quaternary Sci. Rev. 25, 2431–40.Google Scholar
Cochran, J. K., Livingston, H. D., Hirschberg, D. J. and Surprenant, L. D. (1987). Natural and anthropogenic radionuclide distributions in the northwest Atlantic Ocean. Earth Planet. Sci. Lett. 84, 135–52.Google Scholar
Crozaz, G., Picciotto, E. and DeBreuck, W. (1964). Antarctic snow chronology with Pb-210. J. Geophys. Res. 69, 2597–604.Google Scholar
de Bievre, P., Lauer, K. F., Le Duigou, Y. et al. (1971). In: Hurrell, M. L. (Ed.) Proc. Int. Conf. Chem. Nucl. Data, Inst. Civil Eng. Lond., pp. 221–5.Google Scholar
Deng, F., Thomas, A. L., Rijkenberg, M. J. and Henderson, G. M. (2014). Controls on seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep waters in the Southwest Atlantic. Earth Planet. Sci. Lett. 390, 93102.Google Scholar
Edwards, R. L., Chen, J. H. and Wasserburg, G. J. (1987). 238U–234U–230Th–232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 81, 175–92.Google Scholar
Edwards, R. L., Cheng, H., Murrell, M. T. and Goldstein, S. J. (1997). Protactinium–231 dating of carbonates by thermal ionization mass spectrometry: implications for Quaternary climate change. Science 276, 782–6.Google Scholar
Edwards, R. L., Taylor, F. W. and Wasserburg, G. J. (1988). Dating earthquakes with high-precision thorium–230 ages of very young corals. Earth Planet. Sci. Lett. 90, 371–81.Google Scholar
Esat, T. M. and Yokoyama, Y. (2006). Variability in the uranium isotopic composition of the oceans over glacial–interglacial timescales. Geochim. Cosmochim. Acta 70, 4140–50.Google Scholar
Esat, T. M. and Yokoyama, Y. (2010). Coupled uranium isotope and sea-level variations in the oceans. Geochim. Cosmochim. Acta 74, 7008–20.Google Scholar
Gallup, C. D., Edwards, R. L. and Johnson, R. G. (1994). The timing of high sea levels over the past 200,000 years. Science 263, 796–9.Google Scholar
Gherardi, J. M., Labeyrie, L., Nave, S. et al. (2009). Glacial–interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanog. 24 (PA2204), 114.Google Scholar
Goldberg, E. D. (1963). Geochronology with Pb-210. In: Radioactive Dating and Methods of Low-Level Counting, Proc. Symp. I.A.E.A., Vienna, pp. 12131.Google Scholar
Goldberg, E. D. and Bruland, K. (1974) Radioactive geochronologies. In: Goldberg, E. D. (Ed.) The Sea. vol. 5, Wiley Interscience, pp. 451–89.Google Scholar
Goldberg, E. D. and Koide, M. (1962). Geochronological studies of deep sea sediments by the ionium/thorium method. Geochim. Cosmochim. Acta 26, 417–50.Google Scholar
Grant, K. M., Rohling, E. J., Bar-Matthews, M. et al. (2012). Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–7.Google Scholar
Grun, R. and McDermott, F. (1994). Open system modelling for U-series and ESR dating of teeth. Quaternary Geochron. (Quaternary Sci. Rev.) 13, 121–5.Google Scholar
Grun, R., Schwarcz, H. P. and Chadham, J. (1988). ESR dating of tooth enamel: coupled correction for U-uptake and U-series disequilibrium. Nucl. Tracks Radiat. Meas. 14, 237–41.Google Scholar
Hellstrom, J. (2006). U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochron. 1, 289–95.Google Scholar
Henderson, G. M. (2002). Seawater (234U/238U) during the last 800 thousand years. Earth Planet Sci. Lett. 199, 97110.Google Scholar
Henderson, G. M. and Burton, K. W. (1999). Using (234U/238U) to assess diffusion rates of isotopic tracers in ferromanganese crusts. Earth Planet. Sci. Lett. 170, 169–79.Google Scholar
Henderson, G. M. and O'Nions, R. K. (1995). 234U/238U ratios in Quaternary planktonic foraminifera. Geochim. Cosmochim. Acta 59, 4685–94.Google Scholar
Henderson, G. M. and Slowey, N. C. (2000). Evidence from U–Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404, 61–6.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G. et al. (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger, A. L. et al. (Eds) Milankovitch and Climate, Part 1. Reidel, pp. 269305.Google Scholar
Ivanovich, M. (1982a). Spectroscopic methods. In: Ivanovich, M. and Harmon, R. S. (Eds) Uranium Series Disequilibrium Applications to Environmental Problems. Oxford University Press, pp. 107–44.Google Scholar
Ivanovich, M. (1982b). Uranium series disequilibria applications in geochronology. In: Ivanovich, M. and Harmon, R. S. (Eds) Uranium Series Disequilibrium Applications to Environmental Problems. Oxford University Press, pp. 5678.Google Scholar
Jonas, M. (1997). Concepts and methods of ESR dating. Radiation Meas. 27, 943–73.Google Scholar
Jonkers, L., Zahn, R., Thomas, A. et al. (2015). Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, neodymium isotope and benthic record. Earth Planet. Sci. Lett. 419, 1421.Google Scholar
Kaufman, A. (1971). U-series dating of Dead Sea carbonates. Geochim. Cosmochim. Acta 35, 1269–81.Google Scholar
Kaufman, A. and Broecker, W. S. (1965). Comparison of Th-230 and C-14 ages for carbonate materials from lakes Lahontan and Bonneville. J. Geophys. Res. 70, 4039–54.Google Scholar
Kaufman, A., Broecker, W. S., Ku, T. L. and Thurber, D. L. (1971). The status of U-series methods of mollusc dating. Geochim. Cosmochim. Acta 35, 1155–83.Google Scholar
Kaufman, A. and Ku, T.-L. (1989). The U-series ages of carnotites and implications regarding their formation. Geochim. Cosmochim. Acta 53, 2675–81.Google Scholar
Kaufman, A., Ku, T.-L. and Luo, S. (1995). Uranium-series dating of carnotites: concordance between 230Th–231Pa ages. Chem. Geol. (Isot. Geosci. Sect.) 120, 175–81.Google Scholar
Keigwin, L. D. and Boyle, E. A. (2008). Did North Atlantic overturning halt 17,000 years ago? Paleoceanog. 23 (PA1101), 15.Google Scholar
Khlapin, V. G. (1926). Dokl. Akad. Nauka SSSR 178.Google Scholar
Koide, M., Soutar, A. and Goldberg, E. D. (1972). Marine geochronology with Pb-210. Earth Planet. Sci. Lett. 14, 442–6.Google Scholar
Krishnaswamy, S., Lal, D., Martin, J. M. and Meybek, M. (1971). Geochronology of lake sediments. Earth Planet. Sci. Lett. 11, 407–14.Google Scholar
Ku, T. L. (1965). An evaluation of the U234/U238 method as a tool for dating pelagic sediments. J. Geophys. Res. 70, 3457–74.Google Scholar
Ku, T. L. (1976). The uranium series methods of age determination. Ann. Rev. Earth Planet. Sci. 4, 347–79.Google Scholar
Ku, T. L., Bischoff, J. L. and Boersma, A. (1972). Age studies of Mid-Atlantic Ridge sediments near 42 °N and 20 °N. Deep-Sea Res. 19, 233–47.Google Scholar
Ku, T. L., Knauss, K. G. and Mathieu, G. G. (1977). Uranium in open ocean: concentration and isotopic composition. Deep-Sea Res. 24, 1005–17.Google Scholar
Ku, T. L. and Liang, Z. C. (1984). The dating of impure carbonates with decay-series isotopes. Nucl. Instr. Meth. in Phys. Res. A 223, 563–71.Google Scholar
Li, W. X., Lundberg, J., Dickin, A. P. et al. (1989). High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature 339, 534–6.Google Scholar
Lippold, J., Grutzner, J., Winter, D et al. (2009). Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic meridional overturning circulation? Geophys. Res. Lett. 36 (L12601), 16.Google Scholar
Lippold, J., Gutjahr, M., Blaser, P. et al. (2016). Deep water provenance and dynamics of the (de) glacial Atlantic meridional overturning circulation. Earth Planet. Sci. Lett. 445, 6878.Google Scholar
Ludwig, K. R., Simmons, K. R., Szabo, B. J. et al. (1992). Mass-spectrometric 230Th–234U–238U dating of the Devils Hole calcite vein. Science 258, 284–7.Google Scholar
Ludwig, K. R., Szabo, B. J., Moore, J. G. and Simmons, K. R. (1991). Crustal subsidence rate off Hawaii determined from 234U/238U ages of drowned coral reefs. Geology 19, 171–4.Google Scholar
Luo, S. and Ku, T. L. (1991). U-series isochron dating: a generalised method employing total-sample dissolution. Geochim. Cosmochim. Acta 55, 555–64.Google Scholar
Luo, S. and Ku, T.-L. (1999). Oceanic 231Pa/230Th ratio influenced by particle composition and remineralization. Chem. Geol. 167, 183–95.Google Scholar
Mangini, A. and Diester-Haass, L. (1983). Excess Th–230 in sediments off NW Africa traces upwelling in the past. In: Suess, A. E. and Thiede, J. (Eds) Coastal Upwelling. Plenum. Part A, pp. 455–70.Google Scholar
McDermott, F., Grun, R., Stringer, C. B. and Hawkesworth, C. J. (1993). Mass-spectrometric U-series dates for Israeli Neanderthal/early modern hominid sites. Nature 363, 252–5.Google Scholar
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. and Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–7.Google Scholar
Meadows, J. W., Armani, R. J., Callis, E. L. and Essling, A. M. (1980). Half-life of 230Th. Phys. Rev. C 22, 750–4.Google Scholar
Medina-Elizalde, M. (2013). A global compilation of coral sea-level benchmarks: Implications and new challenges. Earth Planet. Sci. Lett. 362, 310–18.Google Scholar
Milankovitch, M. M. (1941). Canon of insolation and the ice age problem. Koniglich Serbische Akademie, Beograd. Translation, Israel Prog. Sci. Trans., Washington D. C.Google Scholar
Neff, U., Bollhofer, A., Frank, N. and Mangini, A. (1999). Explaining discrepant depth profiles of 234U/238U and 230Thexc in Mn-crusts. Geochim. Cosmochim. Acta 63, 2211–18.Google Scholar
Negre, C., Zahn, R., Thomas, A. L. et al. (2010). Reversed flow of Atlantic deep water during the Last Glacial Maximum. Nature 468, 84–8.Google Scholar
Obert, J. C., Scholz, D., Felis, T. et al. (2016). 230Th/U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material. Geochim. Cosmochim. Acta 178, 2040.Google Scholar
Osmond, J. K. and Cowart, J. B. (1982). Ground water. In: Ivanovich, M. and Harmon, R. S. (Eds) Uranium Series Disequilibrium Applications to Environmental Problems, Oxford University Press, pp. 202–45.Google Scholar
Picciotto, E. G. and Wilgain, S. (1954). Thorium determination in deep-sea sediments. Nature 173, 632–3.Google Scholar
Pickett, D. A., Murrell, M. T. and Williams, R. W. (1994). Determination of femtogram quantities of protoactinium in geological samples by thermal ionization mass spectrometry. Anal. Chem. 66, 1044–9.Google Scholar
Potter, E. K., Esat, T. M., Schellmann, G. et al. (2004). Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth Planet. Sci. Lett. 225, 191204.Google Scholar
Potts, P. J. (1987). Handbook of Silicate Rock Analysis. Blackie, 602 pp.Google Scholar
Przybylowicz, W., Schwarcz, H. P. and Latham, A. G. (1991). Dirty calcites. 2. Uranium-series dating of artificial calcite–detritus mixtures. Chem. Geol. (Isot. Geosci. Sect.) 86, 161–78.Google Scholar
Rink, W. J. (1997). Electron spin resonance (ESR) dating and ESR applications in Quaternary science and archaeometry. Radiation Meas. 27, 9751025.Google Scholar
Rink, W. J., Schwarcz, H. P., Lee, H. K. et al. (2001). Electron spin resonance (ESR) and thermal ionization mass spectrometric (TIMS) 230Th/234U dating of teeth in Middle Paleolithic layers at Amud Cave, Israel. Geoarchaeology 16, 701–17.Google Scholar
Roberts, J., Miranda, C. F. and Muxart, R. (1969). Mesure de la periode du protoactinium-231 par microcalorimetrie. Radiochim. Acta 11, 104–8.Google Scholar
Rohling, E. J., Grant, K., Hemleben, C. H. et al. (2008). High rates of sea-level rise during the last interglacial period. Nature Geosci. 1, 3842.Google Scholar
Rosholt, J. N., Emiliani, C., Geiss, J., Koczy, F. F. and Wangersky, P. J. (1961). Absolute dating of deep-sea cores by the Pa-231/Th-230 method. J. Geol. 69, 162–85.Google Scholar
Rosholt, J. N., Shields, W. R. and Garner, E. L. (1963). Isotopic fractionation of uranium in sandstone. Science 139, 224–6.Google Scholar
Roy-Barman, M. and Pons-Branchu, E. (2016). Improved U–Th dating of carbonates with high initial 230Th using stratigraphical and coevality constraints. Quaternary Geochron. 32, 2939.Google Scholar
Sackett, W. M. (1960). The protoactinium-231 content of ocean water and sediments. Science 132, 1761–2.Google Scholar
Sackett, W. M. (1964). Measured deposition rates of marine sediments and implications for accumulation rates of extraterrestrial dust. Ann. N. Y. Acad. Sci. 119, 339–46.Google Scholar
Sackett, W. M. (1966). Manganese nodules: thorium-230: protoactinium-231 ratios. Science 154, 646–7.Google Scholar
Sanchez-Cabeza, J. A. and Ruiz-Fernandez, A. C. (2012). 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim. Cosmochim. Acta 82, 183200.Google Scholar
Santschi, P. H., Li, Y. H., Adler, D. M et al. (1983). The relative mobility of natural (Th, Pb and Po) and fallout (Pu, Am, Cs) radionuclides in the coastal marine environment: results from model ecosystems (MERL) and Narragansett Bay. Geochim. Cosmochim. Acta 47, 201–10.Google Scholar
Scholten, J. C., Botz, R., Mangini, A. et al. (1990). High resolution 230Thex stratigraphy of sediments from high-latitude areas (Norwegian Sea, Fram Strait). Earth Planet. Sci. Lett. 101, 5462.Google Scholar
Scholz, D. and Mangini, A. (2007). How precise are U-series coral ages? Geochim. Cosmochim. Acta 71, 1935–48.Google Scholar
Schwarcz, H. P. (1989). Uranium series dating of Quaternary deposits. Quaternary Int. 1, 717.Google Scholar
Schwarcz, H. P. and Blackwell, B. (1991). Archaeological applications. In: Ivanovich, M. and Harmon, R. S. (Eds) Uranium Series Disequilibrium Applications to Environmental Problems. 2nd Edn, Oxford University Press, pp. 513–52.Google Scholar
Schwarcz, H. P. and Latham, A. G. (1989). Dirty calcites. 1. Uranium-series dating of contaminated calcite using leachates alone. Chem. Geol. (Isot. Geosci. Sect.) 80, 3543.Google Scholar
Schwarcz, H. P. and Skoflek, I. (1982). New dates for the Tata, Hungary archaeological site. Nature 295, 590–1.Google Scholar
Scott, M. R. (1968). Thorium and uranium concentrations and isotope ratios in river sediments. Earth Planet. Sci. Lett. 4, 245–52.Google Scholar
Shirahata, H., Elias, R. W., Patterson, C. C. and Koide, M. (1980). Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond. Geochim. Cosmochim. Acta 44, 149–62.Google Scholar
Stirling, C. H. and Andersen, M. B. (2009). Uranium-series dating of fossil coral reefs: extending the sea-level record beyond the last glacial cycle. Earth Planet. Sci. Lett. 284, 269–83.Google Scholar
Stirling, C. H., Lee, D.-C., Christensen, J. N. and Halliday, A. N. (2000). High-precision in situ 238U–234U–230Th isotopic analysis using laser ablation multiple-collector ICP–MS. Geochim. Cosmochim. Acta 64, 3737–50.Google Scholar
Thompson, W. G., Spiegelman, M. W., Goldstein, S. L. and Speed, R. C. (2003). An open-system model for U-series age determinations of fossil corals. Earth Planet. Sci. Lett. 210, 365–81.Google Scholar
Thomas, A. L., Henderson, G. M., Deschamps, P. et al. (2009). Penultimate deglacial sea-level timing from uranium/thorium dating of Tahitian corals. Science 324, 1186–9.Google Scholar
Thurber, D. L., Broecker, W. S., Blanchard, R. L. and Potratz, H. A. (1965). Uranium-series ages of Pacific atoll coral. Science 149, 55–8.Google Scholar
Veeh, H. H. and Burnett, W. C. (1982). Carbonate and phosphate sediments. In: Ivanovich, M. and Harmon, R. S. (Eds) Uranium Series Disequilibrium Applications to Environmental Problems. Oxford University Press, 459–80.Google Scholar
Villemant, B. and Feuillet, N. (2003). Dating open systems by the 238U–234U–230Th method: application to Quaternary reef terraces. Earth Planet. Sci. Lett. 210, 105–18.Google Scholar
Walter, H. J., Rutgers van der Loeff, M. M. and Hoeltzen, H. (1997). Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the Polar Front: implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth Planet. Sci. Lett. 149, 85100.Google Scholar
Winograd, I. J. (1990). Dating sea level in caves: comment. Nature 343, 217–8.Google Scholar
Winograd, I. J., Coplen, T. B., Landwehr, J. M. et al. (1992). Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 284–7.Google Scholar
Yang, H.-S., Nozaki, Y., Sakai, H. and Masuda, A. (1986). The distribution of 230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean. Geochim. Cosmochim. Acta 50, 81–9.Google Scholar
Yokoyama, Y. and Nguyen, H. V. (1980). Direct and non-destructive dating of marine sediments, manganese nodules, and corals by high resolution (ɣ-ray spectrometry. In: Goldberg, E. D., Horibe, Y. and Saruhashi, K. (Eds) Isotope Marine Chemistry. Uchida Rokkaku, Ch. 14.Google Scholar
Yu, E.-F. Francois, R. and Bacon, M. P. (1996). Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–94.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • U-Series Dating
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • U-Series Dating
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • U-Series Dating
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.013
Available formats
×